
Lecture 4
Design Patterns

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Announcement

• Project proposal is due tomorrow at 8 pm.

• Presentation sign-up sheet is available on
the blackboard.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Announcement

• Students in Software Engineering (SSE)

• http://www.edge.utexas.edu/sse/

• Software Engineering Reading Group
(SERG)

• https://users.ece.utexas.edu/~miryung/
teaching/SE-Seminar.Spring09.html

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Announcement

• Don’t forget to put a header [EE382V]
when emailing me.

• Please cc TA when you send me an email
for _all_ your correspondences.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Announcement

• Question: Can you see your reading
assignment grades on the blackboard?

• Please do not attach a document.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Today’s Presentation

• Skeptic: Jason Vanfickell

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Slide from Mary Shaw @ CMU

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Example handbook
Contents
 Chemical and physical property

data
 Fundamentals (e.g.

thermodynamics)
 Processes (the bulk of the book)

heat transfer operations
distillation
kinetics
liquid-liquid
liquid-solid
etc.

 Materials of construction
 Waste management

Slide from Rob DeLine @ Microsoft Research

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Other Precedents

•Polya’s How to Solve It
• Catalogs techniques for solving mathematical (geometry) problems
• Two categories: problems to prove, problems to find/construct

•Christopher Alexander’s books, e.g. A Pattern Language
• Saw building architecture/urban design as recurring patterns
• Gives 253 patterns as: name; example; context; problem; solution

•Pattern languages as engineering handbooks
• Hype aside, it’s about recording known solutions to problems
• Pattern languages exist for many problems, but we’ll look at design
• Best known: Gamma, Helm, Johnson, Vlissides (“Gang of four”)

Design Patterns: Elements of reusable object-oriented software
• Notice the subtitle: here, design is about objects and their interactions

Slide from Rob DeLine @ Microsoft Research

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

What type of paper is Gamma
et al.?

• Concept/ idea paper

• Survey paper

•

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

What type of paper is Gamma
et al.?

• idea paper

• survey paper

• evaluation?

• case studies / experience reports

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Reconciling review guidelines for a
survey / idea paper?

• What is the discussed problem?

• What are main ideas?

• Why the proposed ideas are novel?

• What are the limitations & strengths of the
proposed ideas & framework?

• What are future directions?

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Why do we need Design
Patterns?

• To reuse proven expert design

• To communicate design easily with other engineers

• To simplify design

• To leverage existing design template

• To reorganize / refactor design

• To allow composing software out of building blocks

• To help novice engineers understand software

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Why do we need Design
Patterns?

1. Abstract design experience => a reusable
base of experience

2. Provide common vocabulary for discussing
design

3. Reduce system complexity by naming
abstractions => reduce the learning time
for a class library / program comprehension

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Why do we need Design
Patterns?

4. Provide a target for the reorganization or
refactoring of class hierarchies

Current Version anticipated changes

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Why do we need Design
Patterns?

4. Provide a target for the reorganization or
refactoring of class hierarchies

Current Version
Improved

Version with
design patterns

refactoring anticipated changes

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Which aspects of design does
Gang Of Four discuss?

• a class or object collaboration and its
structure

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Categorizing Design Patterns

purpose

creational structural behavioral

scope class factory method adapter (class) interpreter

template method

object abstract factory adapter (object) chain of
responsibility

builder bridge command

prototype composite iterator

singleton decorator mediator

facade memento

flyweight observer

proxy state

strategy

visitor

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

WHY Categorizing Design
Patterns?

• to refer to families of related patterns

• to learn and organize patterns in the
catalog

• to find new patterns

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Design Patterns

• Intent

• Motivation

• Applicability

• Participants

• Collaborations

• Diagrams

• Consequences

• Implementation

• Examples

• See Also

Problem / Goal

Solution

What types of changes are easier to implement due to this design

Case studies

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Example: Abstract Factory

Problem / Goal
: Having an explicit dependencies on concrete
product classes makes it difficult to change
product types or add a new product type.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Example: Abstract Factory

Typical OOP program hard-codes type
choices

void AppInit () {
#if Motif

 Window w = new MotifWindow(...);

 ScrollBar b = new MotifScrollBar(...);
#else if OpenLook

 Window w = new OpenLookWindow(...);

 ScrollBar b = new OpenLookScrollBar

(...);
#endif

 w.Add(b);
}

We want to easily change the app’s “look
and feel”, which means calling different
constructors.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Solution: Abstract Factory

Solution
: Wrap the constructors in factory methods

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Solution: Abstract Factory

OpenLookWindowKit

Window ScrollBarWindowKit

CreateScrollBar()
CreateWIndow()

CreateScrollBar()

CreateWindow()

MotifWindow MotifScrollbar OpenLookScrollbarOpenLookWindow

MotifWindowKit

CreateScrollBar()

CreateWindow()

return
 new OpenLookScrollBar

return
 new MotifWindow

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Solution: Abstract Factory

OpenLookWindowKit

Window ScrollBarWindowKit

CreateScrollBar()
CreateWIndow()

CreateScrollBar()

CreateWindow()

MotifWindow MotifScrollbar OpenLookScrollbarOpenLookWindow

MotifWindowKit

CreateScrollBar()

CreateWindow()

return
 new OpenLookScrollBar

return
 new MotifWindow

class WindowKit {

 WindowKit ();

 Window CreateWindow (...);

 ScrollBar CreateScrollBar (...);

void appInit () {

 Window w = CreateWindow(...);

 ScrollBar b = CreateScrollBar(...);

 w.Add(b);
}

Client Code

WindowKit kit = new MotifWindowKit();
kit.appInit();

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Participants

OpenLookWindowKit

Window ScrollBarWindowKit

CreateScrollBar()
CreateWIndow()

CreateScrollBar()

CreateWindow()

MotifWindow MotifScrollbar OpenLookScrollbarOpenLookWindow

MotifWindowKit

CreateScrollBar()

CreateWindow()

return
 new OpenLookScrollBar

return
 new MotifWindow

AbstractFactory

ConcreteFactory ConcreteFactory

Genetic Product Genetic Product

Specific Products

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

What types of changes can you
anticipate?

• What happens if we have multiple types of
windows?

• What happens if we need different types of
windows that take different arguments?

• What happens if we want to define a
window as combination of window, scroll
bar and button

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

What types of changes can you
anticipate?

• Adding a different look and feel such as
MacWindowKit

• Adding a new type of object such as a
button as a part of WindowKit

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

How about adding a different look and
feel such as MacWindowKit?

OpenLookWindowKit

Window ScrollBarWindowKit

CreateScrollBar()
CreateWIndow()

CreateScrollBar()

CreateWindow()

MotifWindow MotifScrollbar OpenLookScrollbarOpenLookWindow

MotifWindowKit

CreateScrollBar()

CreateWindow()

return
 new OpenLookScrollBar

return
 new MotifWindow

Name:

UT EID:

class WindowKit {

 WindowKit ();

 Window CreateWindow (...);

 ScrollBar CreateScrollBar (...);

void appInit () {

 Window w = CreateWindow(...);

 ScrollBar b = CreateScrollBar(...);

 w.Add(b);
}

Client Code

WindowKit kit = new MotifWindowKit();
kit.appInit();

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

How about adding a different look and
feel such as MacWindowKit?

OpenLookWindowKit

Window ScrollBarWindowKit

CreateScrollBar()
CreateWIndow()

CreateScrollBar()

CreateWindow()

MotifWindow MotifScrollbar OpenLookScrollbarOpenLookWindow

MotifWindowKit

CreateScrollBar()

CreateWindow()

return
 new OpenLookScrollBar

return
 new MotifWindow

MacWindow MacScrollBar

MacWindowKit

CreateScrollBar()
CreateWindow()

class WindowKit {

 WindowKit ();

 Window CreateWindow (...);

 ScrollBar CreateScrollBar (...);

void appInit () {

 Window w = CreateWindow(...);

 ScrollBar b = CreateScrollBar(...);

 w.Add(b);
}

Client Code

WindowKit kit = new MacWindowKit();
kit.appInit();

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

How about adding a new type
of object such as as button?

OpenLookWindowKit

Window ScrollBarWindowKit

CreateScrollBar()
CreateWIndow()

CreateScrollBar()

CreateWindow()

MotifWindow MotifScrollbar OpenLookScrollbarOpenLookWindow

MotifWindowKit

CreateScrollBar()

CreateWindow()

return
 new OpenLookScrollBar

return
 new MotifWindow

Name:

UT EID:

class WindowKit {

 WindowKit ();

 Window CreateWindow (...);

 ScrollBar CreateScrollBar (...);

void appInit () {

 Window w = CreateWindow(...);

 ScrollBar b = CreateScrollBar(...);

 w.Add(b);
}

Client Code

WindowKit kit = new MotifWindowKit();
kit.appInit();

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

How about adding a new type
of object such as a button?

OpenLookWindowKit

Window ScrollBarWindowKit

CreateScrollBar()
CreateWIndow()

CreateScrollBar()

CreateWindow()

MotifWindow MotifScrollbar OpenLookScrollbarOpenLookWindow

MotifWindowKit

CreateScrollBar()

CreateWindow()

return
 new OpenLookScrollBar

return
 new MotifWindow

Button

MotifButton OpenLookButton

CreateButton() CreateButton()

CreateButton()

class WindowKit {

 WindowKit ();

 Window CreateWindow (...);

 ScrollBar CreateScrollBar (...);
 Button CreateButton(...);

void appInit () {

 Window w = CreateWindow(...);

 ScrollBar b = CreateScrollBar(...);
 Button bt = CreateButton(...);

 w.Add(b);
 w.Add(bt);
}

Client Code

WindowKit kit = new MotifWindowKit();
kit.appInit();

OpenLookWindowKit

Window ScrollBarWindowKit

CreateScrollBar()
CreateWIndow()

CreateScrollBar()

CreateWindow()

MotifWindow MotifScrollbar OpenLookScrollbarOpenLookWindow

MotifWindowKit

CreateScrollBar()

CreateWindow()

return
 new OpenLookScrollBar

return
 new MotifWindow

Slide from Rob DeLine @ Microsoft Research 33

Problem: uniformly access sequential data

We don’t want to make data access specific to the
interface

class List {

 List ();

 void Add (object element);

 void Remove (object element);

 object Head ();

 List Rest ();
}
...
for (List scan = myList; scan != null; scan = scan.Rest()) ...

We also want multiple simultaneous traversals,
different traversal orders

Slide from Rob DeLine @ Microsoft Research 34

Solution: iterator

Put the traversal data in its own class
class List { ...

 ListIterator GetIterator();
}

class ListIterator {

 object GetCurrent ();

 bool Done ();

 void MoveToNext ();
}

for (ListIterator scan = myList.GetIterator();

 ! scan.Done();

 scan.MoveToNext()) ...

Slide from Rob DeLine @ Microsoft Research 35

Problem: We need many instances

For page layout, we need many instances of letters
class Glyph {

 Page myPage;

 Row myRow;

 Column myColumn;

 void PrintMe ();
}

For a 10-page doc, with 1000 glyphs per page,
representation needs 3*32*10*1000 = 1 MB !

Slide from Rob DeLine @ Microsoft Research 36

Solution: Flyweight

Use a single object per unique glyph
 move all state outside the object itself
 treat the “object” as a mathematical value (functional

programming)

class Glyph {

 void PrintMe (Page page, Row row, Column col);
}

Slide from Rob DeLine @ Microsoft Research 37

Problem: Too many object interconnections

In asynchronous programs, events have many
reactions

void FontSelectCallback (FontDisplay fontList) {

 Font font = fontList.GetSelectedItem();

 if (! font.SupportsBold())

 boldSelector.Deactivate();

 if (! font.SupportsItalic())

 italicSelector.Deactivate();

 ...
}

If this dialog box gets a new element, we must update
many classes

Slide from Rob DeLine @ Microsoft Research 38

Solution: mediator

Centralize the interconnection code
void FontSelectCallback (FontDisplay fontList) {

 fontList.mediator.FontChanged(fontList.GetSelectedItem

());
}

class FontMediator {

 void FontChanged (Font newFont) {

 if (! font.SupportsBold())

 boldSelector.Deactivate();

 if (! font.SupportsItalic())

 italicSelector.Deactivate();

 }
}

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

From your reviews

• “ They do leave out the implementation complexities of the
patterns and admit that some of the patterns would
not be clear to use until after the first
implementation of a design was complete. Nor do
they claim that design patterns can be used in every part of
software implementation. The technique, however, has
been and will continue to be an important part of Object-
Oriented design. “

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

From your reviews

• It is debatable if the "class" jurisdiction is
unique enough to be classified as a domain
separate from "Object."

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

From your reviews

• I think that the idea of design patterns is an adequate
idea as prelude to software architecture, but the
mature expression of this concept is software
architecture. In my opinion, there is even more utility
in application of general architectural tools. Software
architecture offers more reusability because it
includes not only design but implementation
issues.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

From your reviews

• First, this technique is strongly linked to
object-oriented programming. Because of
the verbose nature of object- oriented
naming conventions, this may be less
dramatic of a step towards common meta-
language than it would be if it were applied
to environments such as LISP.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

From your reviews

• However, there is also a drawback to employing design
patterns: it makes a design more complicated as
more abstractions and indirections are often
introduced by design patterns. These extra
additions to the "core" design structures clutter the
software's design and its implementation.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Take away message

• Design patterns are reusable solutions for
well-known problems.

• Design patterns are often a target for
refactoring.

• Design patterns make it easier to add
particular types of changes.

