
Lecture 5
Software Architecture

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Announcement

• Project proposal was due yesterday.

• I received your email submission. No
worries.

• The project proposal will be graded.

• The next checkpoint (Feb 23rd) for Option
A students are not mandatory.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Announcement

• Don’t forget to put a header [EE382V]
when emailing me.

• Please cc TA when you send me an email
for _all_ your correspondences.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Announcement

• I will select some good student reviews
(3pt) and upload them --- of course I will
make them anonymous.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Today’s Presentation

• Advocate: Christopher Spandikow

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Today’s Lecture on Software
Architecture

• We read the software architecture paper by David Garlan and Mary Shaw at
CMU.

• Around the same time, Alexander Wolf and Dewayne Perry (back then they
were at Bell Lab) also wrote a paper on the idea of software architecture.

• Dr. Perry is an active researcher in Software Architecture and he is here in our
department.

• Some of today’s slides are borrowed from Rob DeLine at Microsoft Research,
who did his Ph.D under the supervision of Mary Shaw at CMU.

• Some of today’s slides are borrowed from Vibha Sazawal at UMD, who worked
with Jonathan Aldrich at CMU, a creator of ArchJava.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

What is a software
architecture?

• According to Google Images

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

What is a software
architecture?

• According to Google Images

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

What is a software
architecture?

• According to Google Images

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

What is software architecture?

• CMU-SEI definition

• software elements, the externally visible
properties of those elements and the
relationships among them

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

What do these figures mean?

• Boxes

• Lines

• Grouping

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

What do these figures mean?

• Boxes => Component

• Lines => Connections

• Grouping, backgrounds, fences =>
Composition

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Components (boxes)

• Places where computation takes place

• Places where data is stored

• Box shapes distinguish component types

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Connections (lines, arrows)

• Some kind of interaction among
components

• Often binary, sometimes n-ary

• Line attributes distinguish connection types

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Composition (grouping,
backgrounds, fences)

• Show commonality and boundaries

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Carving out a new level of
abstraction

• In the early age of programming languages...

sum := 0;
i := 0;
while (i < 10) {
 sum := sum +

i;
 i := i + 1;
}
return;

10: stconst r0, 0
11: stconst r1, 0
12: stconst r2,

10
13: sub r2,r0,r4
14: bz r4, 18
15: add r1,r0,r1
16: incr r0
17: br 12
18: ret

sum :=
0

i := 0

i <= 10

sum := sum +
i;

i := i + 1;

retur
n

T

F

no control
abstractions

semi-formal
notations and jargon

precise notations
and disciplines

“structured
programming”

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Architecture as a new
abstraction

• Researchers are carving out a higher-level
abstraction

architectural
description
languages
(ADLs)

s = socket(...);
bind(s, ...);
listen(s, ...);
while (true) {
 x = accept

(s, ...);
 receive(x, ...);
 close(x);
}

no interaction
abstractions

semi-formal
notations and jargon

precise notations
and disciplines

pattern
languages and
other guidance

classifications

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

What kinds of jargon have you
heard of?

• Client / Server?

• Three-tier architecture

• Implicit invocation / event-driven

• Manager and agent

• Pipeline

• Peer to peer

• Model view controller

• Regular programs built in procedural languages

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Software Architecture Styles

• Pipe and filter

• Client and server

• Object oriented

• Publish and subscribe

• Layers

• Microkernel

• Web services

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Example: Pipe and Filter

• A filter reads streams of data on its inputs and produces streams of data on its
outputs by applying a local transformation.

• Component (Filter)

• Connector (Pipe)

• Constraints

• filters must be independent => no shared states among filters

• filters do not know the identity of other filters

• outputs are the same regardless of ordering of filters

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Example: Pipe and Filter

• Advantages:

• programmers can understand the overall input and output behavior as a simple
composition of filters

• reuse: any two filters can be hooked together

• different types of filters can be easily added or deleted

• Disadvantages:

• not good for interactive applications as each filter provides a complete
transformation of input data to output data

• each filter has to parse and unparse the data

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Pipe Line Architecture

• a linear sequence of filters

• e.g. a compiler architecture

information, including the complete language semantics and a

formal proof of communication integrity in the core of ArchJava.

3.1. Components and Ports
A component is a special kind of object that communicates with

other components in a structured way. Components are instances

of component classes, such as the Parser in Figure 1.

A component can only communicate with other components at its

level in the architecture through explicitly declared ports—regular

method calls between components are not allowed. A port

represents a logical communication channel between a component

and one or more components that it is connected to.

Ports declare three sets of methods, specified using the

requires, provides, and broadcasts keywords. A

provided method is implemented by the component and is

available to be called by other components connected to this port.

Conversely, each required method is provided by some other

component connected to this port. A component can invoke one

of its required methods by sending a message to the port that

defines the required method. For example, the parse method

calls nextToken on the parser’s in port. Broadcast methods

are just like required methods, except that they can be connected

to any number of implementations and must return void.

The goal of this port design is to specify both the services

implemented by a component and the services a component needs

to do its job. Required interfaces make dependencies explicit,

reducing coupling between components and promoting

understanding of components in isolation. Ports also make it

easier to reason about a component’s communication patterns.

ArchJava supports design with abstract components and ports,

which allow an architect to specify and typecheck an ArchJava

architecture before beginning program implementation.

3.2. Component Composition
In ArchJava, hierarchical software architecture is expressed with

composite components, which are made up of a number of

subcomponents connected together. A subcomponent1 is a

component instance nested within another component. Singleton

subcomponents are typically declared with final fields of

component type. Figure 2 shows how a compiler’s architecture

can be expressed in ArchJava. The example shows that the parser

communicates with the scanner using one protocol, and with the

code generator using another. The architecture also implies that

the scanner does not communicate directly with the code

generator. A primary goal of ArchJava is to ease program

understanding tasks by supporting this kind of reasoning about

program structure.

Connections. The symmetric connect primitive connects two

or more ports together, binding each required method to a

provided method with the same name and signature. The

arguments to connect may be a component’s own ports, or those

of subcomponents in final fields. Connection consistency

checks are performed to ensure that each required method is

bound to a unique provided method.

Provided methods can be implemented by forwarding invocations

to subcomponents or to the required methods of another port. The

1 Note: the term subcomponent indicates composition, whereas

the term component subclass would indicate inheritance.

Compiler
out in out in

parser codegen scanner

public component class Compiler {
 private final Scanner scanner = ...;
 private final Parser parser = ...;
 private final CodeGen codegen = ...;

 connect scanner.out, parser.in;
 connect parser.out, codegen.in;

 public static void main(String args[]) {
 new Compiler().compile(args);
 }

 public void compile(String args[]) {
 // for each file in args do:
 ...parser.parse(file);...
 }
}

Figure 2. A graphical compiler architecture and its ArchJava

representation. The Compiler component class contains

three subcomponents—a Scanner, a Parser, and a

CodeGen. This compiler architecture follows the well-known

pipeline compiler design [GS93]. The scanner, parser, and

codegen components are connected in a linear sequence, with

the out port of one component connected to the in port of the

next component.

public component class Parser {
 public port in {
 provides void setInfo(Token symbol,
 SymTabEntry e);
 requires Token nextToken()
 throws ScanException;
 }
 public port out {
 provides SymTabEntry getInfo(Token t);
 requires void compile(AST ast);
 }

 void parse(String file) {
 Token tok = in.nextToken();
 AST ast = parseFile(tok);
 out.compile(ast);
 }

 AST parseFile(Token lookahead) { ... }
 void setInfo(Token t, SymTabEntry e) {...}
 SymTabEntry getInfo(Token t) { ... }
 ...
}

Figure 1. A parser component in ArchJava. The Parser

component class uses two ports to communicate with other

components in a compiler. The parser’s in port declares a

required method that requests a token from the lexical

analyzer, and a provided method that initializes tokens in the

symbol table. The out port requires a method that compiles

an AST to object code, and provides a method that looks up

tokens in the symbol table.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Example: Event-based, Implicit
Invocation

• Instead of invoking a procedure directly, a component can announce or broadcast
one or more events.

• Other components in the system can register an interest in an event by associating
a procedure with the event.

• e.g. Java Swing GUI

• Component: modules whose interfaces provide both a collection of procedures and
a set of events

• Connector: traditional procedure calls as well as bindings between event
announcements and procedure calls

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

• Constraints

• Announcers of events do not know which components will be affected by
those events

• Components cannot make assumptions about order of processing

• Advantages

• Any components can be introduced into a system by registering for the events

• Disadvantages

• Component relinquish control over the computation performed by the system

• Ordering is difficult to understand, difficult to expect when finished

• Shared event data

Example: Event-based, Implicit
Invocation

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Architecture Description
Languages (ADL)

• In the 90s, researchers created many
architectural notations.

• grew out of module interconnection
languages (1975)

• focus on recording system structure
(typically static structure)

• different goals, but many shared concepts

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Common Concepts in ADL

• Components (computation)

• Connectors (common disagreement: aren’t
these just components?)

• Compositions (combinations of elements
to form new elements)

• Architectural Styles (constraints on
elements and their composition)

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

UniCon

Focus on encapsulating complex construction rules
 Editor lets you drag-and-drop elements and hook them up

 Given a system description, UniCon’s compiler produces
low-level interaction code
build instructions (makefile) that invokes needed tools

Shaw, DeLine, Klein, Ross, Young and Zelesnik, “Abstractions for software
architectures and tools to support them”, Trans. on Soft. Eng. 21(4):314-335.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Wright

• Focus on making interaction formal

• components interact through ports

• connectors interact through roles

• attachments are made by binding ports to roles

• ports and roles are formally defined as CSP (communicating
sequential processes).

• i.e., a process description language for defining connector types as
a protocol of interaction of components

• what is a process? a “thing” that engages in communication/
interaction events in a sequence. an event can have associated data.

Allen & Garlan, “Formalizing architectural connection”, ICSE 1994

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Wright Component
Description Example

component Split =

 port In = read?x -> In [] read-eof  close  

 port Left, Right = write!x  Out ┌┐close  

 comp spec =

 let Close = In.close  Left.close  Right.close  

 in
 Close []

 In.read?x  Left.write!x 

 (Close [] In.read?x  Right.write!x  computation)

Component type is described as a
component-specs plus a set of ports

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Wright Connector Description
Example

connector Pipe =

role Writer = write!x  Writer ┌┐close  

role Reader = let ExitOnly = close  

 in let DoRead = (read?x  Reader [] read-eof  ExitOnly)

 in DoRead ExitOnly

glue = let ReadOnly = Reader.read!y  ReadOnly

 [] Reader.read-eof  Reader.close   []
Reader.close  

 in let WriteOnly = Writer.write?x  WriteOnly [] Writer.close
 

 in Writer.write?x  glue [] Reader.read!y  glue

 [] Writer.close  ReadOnly [] Reader.close  WriteOnly

spec ∀ Reader.readi!y . ∃ Writer.writej?x . i=j ∨ x=y

 ∧ Reader.read-eof ⇒ (Writer.close ∧ #Reader.read =
#Writer.write)

Connector type is described as a set of
roles and a glue specification.

Roles: obligation of
each participating

component.

A glue spec: protocol
description

(coordination among
roles)

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Wright Connector Description
Example

connector Pipe =

role Writer = write!x  Writer ┌┐close  

role Reader = let ExitOnly = close  

 in let DoRead = (read?x  Reader [] read-eof  ExitOnly)

 in DoRead ExitOnly

glue = let ReadOnly = Reader.read!y  ReadOnly

 [] Reader.read-eof  Reader.close   []
Reader.close  

 in let WriteOnly = Writer.write?x  WriteOnly [] Writer.close
 

 in Writer.write?x  glue [] Reader.read!y  glue

 [] Writer.close  ReadOnly [] Reader.close  WriteOnly

spec ∀ Reader.readi!y . ∃ Writer.writej?x . i=j ∨ x=y

 ∧ Reader.read-eof ⇒ (Writer.close ∧ #Reader.read =
#Writer.write)

Roles specify possible behaviors (the steps that can make up a protocol and
possible ordering). Glue describes how behaviors are combined across roles.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Wright System Description

A system composes components and connectors

system Capitalize

 component Split = ...

 connector Pipe = ...

 ...
instances

 split: Split; p1, p2: Pipe;
attachments

 split.Left as p1.Writer;

 upper.In as p1.Reader;

 split.Right as p2.Writer;

 lower.In as p2.Reader;

 ...
end Capitalize.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

ADL to ArchJava

• Existing ADLs decouple implementation
code from architecture, allowing
inconsistencies, causing confusion, violating
architectural properties, and inhibiting
software evolution.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

ArchJava

• ArchJava is an extension to Java that
seamlessly unifies software architecture
with implementation.

• It also ensures that the implementation
conforms to architectural constraints

• It ensures traceability between architecture
and code and support the co-evolution of
architecture and implementation
ArchJava: Connecting Software Architecture to Implementation, Jonathan Aldrich, Craig
Chambers and David Notkin [ICSE 2002]

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

ArchJava Component Example

information, including the complete language semantics and a

formal proof of communication integrity in the core of ArchJava.

3.1. Components and Ports
A component is a special kind of object that communicates with

other components in a structured way. Components are instances

of component classes, such as the Parser in Figure 1.

A component can only communicate with other components at its

level in the architecture through explicitly declared ports—regular

method calls between components are not allowed. A port

represents a logical communication channel between a component

and one or more components that it is connected to.

Ports declare three sets of methods, specified using the

requires, provides, and broadcasts keywords. A

provided method is implemented by the component and is

available to be called by other components connected to this port.

Conversely, each required method is provided by some other

component connected to this port. A component can invoke one

of its required methods by sending a message to the port that

defines the required method. For example, the parse method

calls nextToken on the parser’s in port. Broadcast methods

are just like required methods, except that they can be connected

to any number of implementations and must return void.

The goal of this port design is to specify both the services

implemented by a component and the services a component needs

to do its job. Required interfaces make dependencies explicit,

reducing coupling between components and promoting

understanding of components in isolation. Ports also make it

easier to reason about a component’s communication patterns.

ArchJava supports design with abstract components and ports,

which allow an architect to specify and typecheck an ArchJava

architecture before beginning program implementation.

3.2. Component Composition
In ArchJava, hierarchical software architecture is expressed with

composite components, which are made up of a number of

subcomponents connected together. A subcomponent1 is a

component instance nested within another component. Singleton

subcomponents are typically declared with final fields of

component type. Figure 2 shows how a compiler’s architecture

can be expressed in ArchJava. The example shows that the parser

communicates with the scanner using one protocol, and with the

code generator using another. The architecture also implies that

the scanner does not communicate directly with the code

generator. A primary goal of ArchJava is to ease program

understanding tasks by supporting this kind of reasoning about

program structure.

Connections. The symmetric connect primitive connects two

or more ports together, binding each required method to a

provided method with the same name and signature. The

arguments to connect may be a component’s own ports, or those

of subcomponents in final fields. Connection consistency

checks are performed to ensure that each required method is

bound to a unique provided method.

Provided methods can be implemented by forwarding invocations

to subcomponents or to the required methods of another port. The

1 Note: the term subcomponent indicates composition, whereas

the term component subclass would indicate inheritance.

Compiler
out in out in

parser codegen scanner

public component class Compiler {
 private final Scanner scanner = ...;
 private final Parser parser = ...;
 private final CodeGen codegen = ...;

 connect scanner.out, parser.in;
 connect parser.out, codegen.in;

 public static void main(String args[]) {
 new Compiler().compile(args);
 }

 public void compile(String args[]) {
 // for each file in args do:
 ...parser.parse(file);...
 }
}

Figure 2. A graphical compiler architecture and its ArchJava

representation. The Compiler component class contains

three subcomponents—a Scanner, a Parser, and a

CodeGen. This compiler architecture follows the well-known

pipeline compiler design [GS93]. The scanner, parser, and

codegen components are connected in a linear sequence, with

the out port of one component connected to the in port of the

next component.

public component class Parser {
 public port in {
 provides void setInfo(Token symbol,
 SymTabEntry e);
 requires Token nextToken()
 throws ScanException;
 }
 public port out {
 provides SymTabEntry getInfo(Token t);
 requires void compile(AST ast);
 }

 void parse(String file) {
 Token tok = in.nextToken();
 AST ast = parseFile(tok);
 out.compile(ast);
 }

 AST parseFile(Token lookahead) { ... }
 void setInfo(Token t, SymTabEntry e) {...}
 SymTabEntry getInfo(Token t) { ... }
 ...
}

Figure 1. A parser component in ArchJava. The Parser

component class uses two ports to communicate with other

components in a compiler. The parser’s in port declares a

required method that requests a token from the lexical

analyzer, and a provided method that initializes tokens in the

symbol table. The out port requires a method that compiles

an AST to object code, and provides a method that looks up

tokens in the symbol table.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

ArchJava Component Example

information, including the complete language semantics and a

formal proof of communication integrity in the core of ArchJava.

3.1. Components and Ports
A component is a special kind of object that communicates with

other components in a structured way. Components are instances

of component classes, such as the Parser in Figure 1.

A component can only communicate with other components at its

level in the architecture through explicitly declared ports—regular

method calls between components are not allowed. A port

represents a logical communication channel between a component

and one or more components that it is connected to.

Ports declare three sets of methods, specified using the

requires, provides, and broadcasts keywords. A

provided method is implemented by the component and is

available to be called by other components connected to this port.

Conversely, each required method is provided by some other

component connected to this port. A component can invoke one

of its required methods by sending a message to the port that

defines the required method. For example, the parse method

calls nextToken on the parser’s in port. Broadcast methods

are just like required methods, except that they can be connected

to any number of implementations and must return void.

The goal of this port design is to specify both the services

implemented by a component and the services a component needs

to do its job. Required interfaces make dependencies explicit,

reducing coupling between components and promoting

understanding of components in isolation. Ports also make it

easier to reason about a component’s communication patterns.

ArchJava supports design with abstract components and ports,

which allow an architect to specify and typecheck an ArchJava

architecture before beginning program implementation.

3.2. Component Composition
In ArchJava, hierarchical software architecture is expressed with

composite components, which are made up of a number of

subcomponents connected together. A subcomponent1 is a

component instance nested within another component. Singleton

subcomponents are typically declared with final fields of

component type. Figure 2 shows how a compiler’s architecture

can be expressed in ArchJava. The example shows that the parser

communicates with the scanner using one protocol, and with the

code generator using another. The architecture also implies that

the scanner does not communicate directly with the code

generator. A primary goal of ArchJava is to ease program

understanding tasks by supporting this kind of reasoning about

program structure.

Connections. The symmetric connect primitive connects two

or more ports together, binding each required method to a

provided method with the same name and signature. The

arguments to connect may be a component’s own ports, or those

of subcomponents in final fields. Connection consistency

checks are performed to ensure that each required method is

bound to a unique provided method.

Provided methods can be implemented by forwarding invocations

to subcomponents or to the required methods of another port. The

1 Note: the term subcomponent indicates composition, whereas

the term component subclass would indicate inheritance.

Compiler
out in out in

parser codegen scanner

public component class Compiler {
 private final Scanner scanner = ...;
 private final Parser parser = ...;
 private final CodeGen codegen = ...;

 connect scanner.out, parser.in;
 connect parser.out, codegen.in;

 public static void main(String args[]) {
 new Compiler().compile(args);
 }

 public void compile(String args[]) {
 // for each file in args do:
 ...parser.parse(file);...
 }
}

Figure 2. A graphical compiler architecture and its ArchJava

representation. The Compiler component class contains

three subcomponents—a Scanner, a Parser, and a

CodeGen. This compiler architecture follows the well-known

pipeline compiler design [GS93]. The scanner, parser, and

codegen components are connected in a linear sequence, with

the out port of one component connected to the in port of the

next component.

public component class Parser {
 public port in {
 provides void setInfo(Token symbol,
 SymTabEntry e);
 requires Token nextToken()
 throws ScanException;
 }
 public port out {
 provides SymTabEntry getInfo(Token t);
 requires void compile(AST ast);
 }

 void parse(String file) {
 Token tok = in.nextToken();
 AST ast = parseFile(tok);
 out.compile(ast);
 }

 AST parseFile(Token lookahead) { ... }
 void setInfo(Token t, SymTabEntry e) {...}
 SymTabEntry getInfo(Token t) { ... }
 ...
}

Figure 1. A parser component in ArchJava. The Parser

component class uses two ports to communicate with other

components in a compiler. The parser’s in port declares a

required method that requests a token from the lexical

analyzer, and a provided method that initializes tokens in the

symbol table. The out port requires a method that compiles

an AST to object code, and provides a method that looks up

tokens in the symbol table.

A component can only
communicate with other
components through explicitly
declared ports; regular method
calls between components are
not allowed.

A port represents a logical
communication channel
between a component and
other components that it is
connected to.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

ArchJava Component Example

information, including the complete language semantics and a

formal proof of communication integrity in the core of ArchJava.

3.1. Components and Ports
A component is a special kind of object that communicates with

other components in a structured way. Components are instances

of component classes, such as the Parser in Figure 1.

A component can only communicate with other components at its

level in the architecture through explicitly declared ports—regular

method calls between components are not allowed. A port

represents a logical communication channel between a component

and one or more components that it is connected to.

Ports declare three sets of methods, specified using the

requires, provides, and broadcasts keywords. A

provided method is implemented by the component and is

available to be called by other components connected to this port.

Conversely, each required method is provided by some other

component connected to this port. A component can invoke one

of its required methods by sending a message to the port that

defines the required method. For example, the parse method

calls nextToken on the parser’s in port. Broadcast methods

are just like required methods, except that they can be connected

to any number of implementations and must return void.

The goal of this port design is to specify both the services

implemented by a component and the services a component needs

to do its job. Required interfaces make dependencies explicit,

reducing coupling between components and promoting

understanding of components in isolation. Ports also make it

easier to reason about a component’s communication patterns.

ArchJava supports design with abstract components and ports,

which allow an architect to specify and typecheck an ArchJava

architecture before beginning program implementation.

3.2. Component Composition
In ArchJava, hierarchical software architecture is expressed with

composite components, which are made up of a number of

subcomponents connected together. A subcomponent1 is a

component instance nested within another component. Singleton

subcomponents are typically declared with final fields of

component type. Figure 2 shows how a compiler’s architecture

can be expressed in ArchJava. The example shows that the parser

communicates with the scanner using one protocol, and with the

code generator using another. The architecture also implies that

the scanner does not communicate directly with the code

generator. A primary goal of ArchJava is to ease program

understanding tasks by supporting this kind of reasoning about

program structure.

Connections. The symmetric connect primitive connects two

or more ports together, binding each required method to a

provided method with the same name and signature. The

arguments to connect may be a component’s own ports, or those

of subcomponents in final fields. Connection consistency

checks are performed to ensure that each required method is

bound to a unique provided method.

Provided methods can be implemented by forwarding invocations

to subcomponents or to the required methods of another port. The

1 Note: the term subcomponent indicates composition, whereas

the term component subclass would indicate inheritance.

Compiler
out in out in

parser codegen scanner

public component class Compiler {
 private final Scanner scanner = ...;
 private final Parser parser = ...;
 private final CodeGen codegen = ...;

 connect scanner.out, parser.in;
 connect parser.out, codegen.in;

 public static void main(String args[]) {
 new Compiler().compile(args);
 }

 public void compile(String args[]) {
 // for each file in args do:
 ...parser.parse(file);...
 }
}

Figure 2. A graphical compiler architecture and its ArchJava

representation. The Compiler component class contains

three subcomponents—a Scanner, a Parser, and a

CodeGen. This compiler architecture follows the well-known

pipeline compiler design [GS93]. The scanner, parser, and

codegen components are connected in a linear sequence, with

the out port of one component connected to the in port of the

next component.

public component class Parser {
 public port in {
 provides void setInfo(Token symbol,
 SymTabEntry e);
 requires Token nextToken()
 throws ScanException;
 }
 public port out {
 provides SymTabEntry getInfo(Token t);
 requires void compile(AST ast);
 }

 void parse(String file) {
 Token tok = in.nextToken();
 AST ast = parseFile(tok);
 out.compile(ast);
 }

 AST parseFile(Token lookahead) { ... }
 void setInfo(Token t, SymTabEntry e) {...}
 SymTabEntry getInfo(Token t) { ... }
 ...
}

Figure 1. A parser component in ArchJava. The Parser

component class uses two ports to communicate with other

components in a compiler. The parser’s in port declares a

required method that requests a token from the lexical

analyzer, and a provided method that initializes tokens in the

symbol table. The out port requires a method that compiles

an AST to object code, and provides a method that looks up

tokens in the symbol table.

provides: a provided method
is implemented by the
component and is available to
be called by other components
connected to this port.
requires: each required
method is provided by some
other component connected to
this port.
broadcasts: the same as
required except that they can
be connected to any number of
implementations and must
return void.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

ArchJava Connector Example

information, including the complete language semantics and a

formal proof of communication integrity in the core of ArchJava.

3.1. Components and Ports
A component is a special kind of object that communicates with

other components in a structured way. Components are instances

of component classes, such as the Parser in Figure 1.

A component can only communicate with other components at its

level in the architecture through explicitly declared ports—regular

method calls between components are not allowed. A port

represents a logical communication channel between a component

and one or more components that it is connected to.

Ports declare three sets of methods, specified using the

requires, provides, and broadcasts keywords. A

provided method is implemented by the component and is

available to be called by other components connected to this port.

Conversely, each required method is provided by some other

component connected to this port. A component can invoke one

of its required methods by sending a message to the port that

defines the required method. For example, the parse method

calls nextToken on the parser’s in port. Broadcast methods

are just like required methods, except that they can be connected

to any number of implementations and must return void.

The goal of this port design is to specify both the services

implemented by a component and the services a component needs

to do its job. Required interfaces make dependencies explicit,

reducing coupling between components and promoting

understanding of components in isolation. Ports also make it

easier to reason about a component’s communication patterns.

ArchJava supports design with abstract components and ports,

which allow an architect to specify and typecheck an ArchJava

architecture before beginning program implementation.

3.2. Component Composition
In ArchJava, hierarchical software architecture is expressed with

composite components, which are made up of a number of

subcomponents connected together. A subcomponent1 is a

component instance nested within another component. Singleton

subcomponents are typically declared with final fields of

component type. Figure 2 shows how a compiler’s architecture

can be expressed in ArchJava. The example shows that the parser

communicates with the scanner using one protocol, and with the

code generator using another. The architecture also implies that

the scanner does not communicate directly with the code

generator. A primary goal of ArchJava is to ease program

understanding tasks by supporting this kind of reasoning about

program structure.

Connections. The symmetric connect primitive connects two

or more ports together, binding each required method to a

provided method with the same name and signature. The

arguments to connect may be a component’s own ports, or those

of subcomponents in final fields. Connection consistency

checks are performed to ensure that each required method is

bound to a unique provided method.

Provided methods can be implemented by forwarding invocations

to subcomponents or to the required methods of another port. The

1 Note: the term subcomponent indicates composition, whereas

the term component subclass would indicate inheritance.

Compiler
out in out in

parser codegen scanner

public component class Compiler {
 private final Scanner scanner = ...;
 private final Parser parser = ...;
 private final CodeGen codegen = ...;

 connect scanner.out, parser.in;
 connect parser.out, codegen.in;

 public static void main(String args[]) {
 new Compiler().compile(args);
 }

 public void compile(String args[]) {
 // for each file in args do:
 ...parser.parse(file);...
 }
}

Figure 2. A graphical compiler architecture and its ArchJava

representation. The Compiler component class contains

three subcomponents—a Scanner, a Parser, and a

CodeGen. This compiler architecture follows the well-known

pipeline compiler design [GS93]. The scanner, parser, and

codegen components are connected in a linear sequence, with

the out port of one component connected to the in port of the

next component.

public component class Parser {
 public port in {
 provides void setInfo(Token symbol,
 SymTabEntry e);
 requires Token nextToken()
 throws ScanException;
 }
 public port out {
 provides SymTabEntry getInfo(Token t);
 requires void compile(AST ast);
 }

 void parse(String file) {
 Token tok = in.nextToken();
 AST ast = parseFile(tok);
 out.compile(ast);
 }

 AST parseFile(Token lookahead) { ... }
 void setInfo(Token t, SymTabEntry e) {...}
 SymTabEntry getInfo(Token t) { ... }
 ...
}

Figure 1. A parser component in ArchJava. The Parser

component class uses two ports to communicate with other

components in a compiler. The parser’s in port declares a

required method that requests a token from the lexical

analyzer, and a provided method that initializes tokens in the

symbol table. The out port requires a method that compiles

an AST to object code, and provides a method that looks up

tokens in the symbol table.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

ArchJava Connector Example

information, including the complete language semantics and a

formal proof of communication integrity in the core of ArchJava.

3.1. Components and Ports
A component is a special kind of object that communicates with

other components in a structured way. Components are instances

of component classes, such as the Parser in Figure 1.

A component can only communicate with other components at its

level in the architecture through explicitly declared ports—regular

method calls between components are not allowed. A port

represents a logical communication channel between a component

and one or more components that it is connected to.

Ports declare three sets of methods, specified using the

requires, provides, and broadcasts keywords. A

provided method is implemented by the component and is

available to be called by other components connected to this port.

Conversely, each required method is provided by some other

component connected to this port. A component can invoke one

of its required methods by sending a message to the port that

defines the required method. For example, the parse method

calls nextToken on the parser’s in port. Broadcast methods

are just like required methods, except that they can be connected

to any number of implementations and must return void.

The goal of this port design is to specify both the services

implemented by a component and the services a component needs

to do its job. Required interfaces make dependencies explicit,

reducing coupling between components and promoting

understanding of components in isolation. Ports also make it

easier to reason about a component’s communication patterns.

ArchJava supports design with abstract components and ports,

which allow an architect to specify and typecheck an ArchJava

architecture before beginning program implementation.

3.2. Component Composition
In ArchJava, hierarchical software architecture is expressed with

composite components, which are made up of a number of

subcomponents connected together. A subcomponent1 is a

component instance nested within another component. Singleton

subcomponents are typically declared with final fields of

component type. Figure 2 shows how a compiler’s architecture

can be expressed in ArchJava. The example shows that the parser

communicates with the scanner using one protocol, and with the

code generator using another. The architecture also implies that

the scanner does not communicate directly with the code

generator. A primary goal of ArchJava is to ease program

understanding tasks by supporting this kind of reasoning about

program structure.

Connections. The symmetric connect primitive connects two

or more ports together, binding each required method to a

provided method with the same name and signature. The

arguments to connect may be a component’s own ports, or those

of subcomponents in final fields. Connection consistency

checks are performed to ensure that each required method is

bound to a unique provided method.

Provided methods can be implemented by forwarding invocations

to subcomponents or to the required methods of another port. The

1 Note: the term subcomponent indicates composition, whereas

the term component subclass would indicate inheritance.

Compiler
out in out in

parser codegen scanner

public component class Compiler {
 private final Scanner scanner = ...;
 private final Parser parser = ...;
 private final CodeGen codegen = ...;

 connect scanner.out, parser.in;
 connect parser.out, codegen.in;

 public static void main(String args[]) {
 new Compiler().compile(args);
 }

 public void compile(String args[]) {
 // for each file in args do:
 ...parser.parse(file);...
 }
}

Figure 2. A graphical compiler architecture and its ArchJava

representation. The Compiler component class contains

three subcomponents—a Scanner, a Parser, and a

CodeGen. This compiler architecture follows the well-known

pipeline compiler design [GS93]. The scanner, parser, and

codegen components are connected in a linear sequence, with

the out port of one component connected to the in port of the

next component.

public component class Parser {
 public port in {
 provides void setInfo(Token symbol,
 SymTabEntry e);
 requires Token nextToken()
 throws ScanException;
 }
 public port out {
 provides SymTabEntry getInfo(Token t);
 requires void compile(AST ast);
 }

 void parse(String file) {
 Token tok = in.nextToken();
 AST ast = parseFile(tok);
 out.compile(ast);
 }

 AST parseFile(Token lookahead) { ... }
 void setInfo(Token t, SymTabEntry e) {...}
 SymTabEntry getInfo(Token t) { ... }
 ...
}

Figure 1. A parser component in ArchJava. The Parser

component class uses two ports to communicate with other

components in a compiler. The parser’s in port declares a

required method that requests a token from the lexical

analyzer, and a provided method that initializes tokens in the

symbol table. The out port requires a method that compiles

an AST to object code, and provides a method that looks up

tokens in the symbol table.

connect: this primitive
connects two or more ports
together, binding each required
method to a provided method
with the same name and
signature.
Connection consistency checks
are performed to ensure that
each required method is bound
to a unique provided method.

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

ArchJava: Connector
TypeChecking

• ArchJava is integrated with Java

• ArchJava makes dependencies explicit,
reduces coupling, and promotes
understanding of components in isolation

• ArchJava gives you a mechanism for
expressing and checking connections but
those connections are modeled as
individual method calls

UT Austin ◆ EE 382V Software Evolution ◆ Spring 2009 ◆ Miryung Kim

Take away message

• Software Architecture is a high-level
abstraction of software design.

• A software architecture is usually specified
by its components, connections, and
composition mechanism.

• Active research in architecture description
languages, architectural styles, and enforcing
architecture at an implementation level.

