Lecture 6 & 7/

Empirical Studies of Software Evolution: Code Decay

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Annhouncement

Your proposals have been graded.

Literature Survey & Tool Evaluation: Each in the range
of 1-4

Project Proposal: Each in the range of |-8

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Today’s Agenda

Divya’s presentation on the code decay paper
Discuss Belady & Lehman’s paper
Discuss Code Decay paper

Q and A session on my feedback to your proposals

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Today’s Presenter

® Divya Gopinath (Skeptic)

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

A Model of Large Software Development

L.A Belady and M.M Lehman
1976
IBM OS/360

Seminal empirical study paper in software evolution

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

What was it like in 1976!

® |BM PC came out around 1984
® Apple introduced PC in 1970s

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

What was it like in 1976!

E.W. Dijkstra: a program must as a mathematical
theorem should and can be provable

Increasing cost of building and maintaining software was
alarming

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Subject Program & Data

OS/360
20 years old
20 user-oriented releases

Starting with the available data, they attempted to
deduce the nature of consecutive releases of OS/360

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

When observing software evolution, what
can you measure!

of bugs (reported problems)

of modules => # of directories, # of files

performance metrics => times, memory usage, CPU usage, IPC

change types: corrective, adaptive, perfective

of developers working in the organization, # of deveopers per module

size of code changes => # of lines of changed code

how wide spread the changes are => # of files or modules touched by the same change

age in calendar year, days, months / age in logical unit such as release, check-in, version

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Variables observed in Belady and Lehman
1976

The release number

Days between releases

The size of the system

The number of modules added, deleted, and changed

® Complexity: the fraction of the released system modules
that were handled during the course of release MH r/ M r

Manpower, machine time, and costs involved in each release

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Growth Trends of System Attribute
Counts With Time

%]
Z
=z
2
is}
(51
]
=
=
Q
x
=
=
<
=
ol
=
I
b
@

STATEMENTS

INSTRUCTIONS

MODULES HANDLED

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Growth Trends

Average growth trends
of system attributes
compared with planned Figure 4 Serial ond average
Figure 2 Averoge growth trends growth growth frends of «
of system attributes particular attribute

TREND
AVERAGE

N
\

COUNTS

FORECAST
AND
ULTIMATE
ACTUAL

wl
-
Z
=
o]
(]

AVERAGE ATTRIBUTE

L
[
2
]
£
T
=
L
[
w
=
2]

AVERAGE RELEASE

LEGEND: SEQUENCE NUMBER

Qo SIZE (N MODULES
DLE
X MODULES HAN D AVERAGE RELEASE

+ RELEASE INTERVAL LEGEND: SEQUENCE NUMBER

O SIZE IN MODULES RELEASE SEQUENCE NUMBSBER
X MODULES HANDLED
+ RELEASE INTERVAL

NUMBER OF MODULES HANDLED PER DAY

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

What can you deduce from these graphs!?

Average growth trends
of system attributes
compared with planned
growth

® |t takes longer and
longer to release the
next release

COUNTS

FORECAST
AND
ULTIMATE
ACTUAL

Ll
‘.....
]
m
Ja s
ju
[
=T
w
&)
<
oo
Ll
>
<

The size of increases
over time

It requires modifying
more and more modules
per each release SEUERAGE RELEASE

LEGEND:
O SIZE IN MODULES
X MODULES HANDLED
+ RELEASE INTERVAL

What can you deduce from these graphs!?

Figure 4 Serial and average
growth trends of a
particular attribute

® Handling fewer number
of modules as the
software evolves

-
<L
O
o=
Ll
a
O
Lot
—
(]
=
<L
I
2.
W]
—
-
o
o
=
W
o
o
Ll
w
=
=2
<

RELEASE SEQUENCE NUMBER

Belady & Lehman: the Law of Program
Evolution Dynamics

. Law of continuing change: a system that is used
undergoes continuing change until it is judged more
cost effective to freeze and recreate it

. Law of increasing entropy: the entropy of a system (its
unstructuredness) increases with time, unless specific
work is executed to maintain or reduce it.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Belady & Lehman: the Law of Program
Evolution Dynamics

3. Law of statistically smooth growth: Growth trend
measures of global system attributes may appear to be
stochastic locally in time and space, but statistically, they
are cyclically self-regulating, with well-defined long-

range trends

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Belady & Lehman: the Law of Program
Evolution Dynamics

Law of continuing change: a system that is used undergoes continuing change until it is
judged more cost effective to freeze and recreate it

AM_r =200 + S| + Z|

Law of increasing entropy: the entropy of a system (its unstructuredness) increases with
time, unless specific work is executed to maintain or reduce it.

C r=0.14+0.0012R"2 +S2 + Z2

Law of statistically smooth growth: Growth trend measures of global system attributes may
appear to be stochastic locally in time and space, but statistically, they are cyclically self-
regulating, with well-defined long-range trends

M_r=760+200R + S + Z (where S and Z represents cyclic and stochastic components)

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

As a skeptic:

Laws are presumptive
How do you use for real daily software development!?
External validity: does the law hold for other projects!?

Factors:

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

As a skeptic:

What is the unit of a module and a component?

What is the granularity of a release? Do they have the same
amount of functionality addition per each release!?

What types of changes does each release include!?
Any changes in the organization structures & developers!?
Are they laws or just hypotheses!?

What are potential contributions / benefits of
understanding software evolution?

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

My general thoughts on Belady & Lehman

Very insightful paper at the time of 1976

The first use of statistical regression for characterizing
software evolution

Discussed the nature of software evolution,
characterized it using their empirical data

Deduction of laws from one system’s evolution --- very
weak external validity, perhaps hasty conclusions

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Does Code Decay!?

® FEick etal.

® TSE 2001 (almost 25 years after Belady & Lehman’s
Study)

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Problem Definition

® What do the authors mean by “code decay?”
® it is harder to change than it should be

® related to Belady & Lehman’s second law: the entropy of a
system increases with time, unless specific work is executed
to maintain or reduce it.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Discussed Problem

® Check whether code decay is real:“Does Code Really
Decay?”

® how code decay can be characterized
® the extent to which each risk factor matters

® *Empirical Study* Paper

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Hypotheses

® What the authors are trying or expecting to find!

The span of files increases over time (age)

Effort has some relations to many measurable
variables.

Modularity breaks over time

Fault potential has some relation to many
measurable variables.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Hypotheses

What the authors are trying or expecting to find!

The span of changes increases over time
Breakdown of modularity increases over time
Fault potential, the likelihood of changes to induce faults has some relations to ...

Efforts has some relationship too

Usually *good* empirical study paper either finds surprising
empirical evidence that contradicts conventional wisdom or
provides thorough empirical evidence that validates well known
hypotheses.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Study Approach

Data selection

Selection of measurement variables (so called
independent variables)

Study method that finds *relationships™ among the
measurement variables

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Study Approach:
(1) Data Selection

® Rich data set

® Telephone switching
system

100 million LOC
5000 modules
50 major subsystems

in C and C+

This system evolved by following
a well-defined process.
Structured, manually labeled data
Easy to group related changes

#lines add., del

Study Approach:
(2) Measure Independent Variables

® ¢ denotes changes (mostly a MR)

® Variables
® DELTAS(c) = # of deltas associated with ¢
ADD(c) = # of lines added by ¢
DEL(c) = # of lines deleted by c
DATE(c) = the date on which c is completed
INT(c) = the interval of c (calendar time required to implement c)

DEV(c) = number of developers implementing ¢

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Study Approach:
(2) Measure Independent Variables

® Derived variables
e FREQ(m,l) = 2 'ovrostf|
® FILES(c) = # of files touched for change ¢
® NCSL (m) = # of non-commentary source lines per module

® AGE(m) = average age of its consequent lines

Study Approach:
(3) Finding Correlation

® Linking risk factors to symptoms
® Statistical regression

® This requires designing some template models

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Study Approach:
(3) Finding Correlation

Fault Potential |.The number of faults that will have to be fixed in module m
in the future. Change effects are dampened over time

FPwrp(m,t) =y Z o~ olt-DATE(c)]
¢ ~> m, DATE(c)<t

X log[ADD(c, m) + DEL(c, m)]

Fault Potential Il. The number of faults that will have to be fixed in 2 module
in the future. Faults are less likely in older code (when beta is <I)

FPara(m, t) =72 x Y 1{c~>m} x gt
ceEA
Effort Model: predictors of the person-hours

EFF(c) = ap + a;FILES(c) + az Y e ~> f}|f]
7

+ azADD(c) + a4DEL(c)
+ a5INT(c) + agDEV(c).

Results: (1) The span of changes increases
over time?

Highlighted smooths

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Results: (2) Breakdown of modularity
increases over time!?

1996

\ [’ ! WY
E L o % b —
\'% \ qo"c ?‘ ofo\
s \ ,\"\ ¢ ¢ ,

*
ity o

&

<
i

If modules have changed together as a part of the same MR,
they were placed to close to each other.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Results: (3) Fault potential, the likelihood
of changes to induce faults increases over
time

Z e—oc[t—DATE(c)}

¢ ~> m, DATE(c)<t

x log[ADD(c, m) + DEL(c, m)] Large, recent changes

add the most to fault
FPwp(m) oc) eMTPATEO potential.

c~>m

log[A c,m ¢, mj, i .
g[ADD(c, m) + DEL(c, m)] Code having many lines

that have survived for a

long time is likely to be

o B AGE(m) ;
FParar(m, t) = 7 % EE; He—m}xf + relatively free of faults.

FPaa(m) = .017 x >~ 1{c~>m} x .642GF0,

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Results: (4) Prediction of efforts increases
over time

EFF(c) = ag + a;FILES(c) + az Y 1{c ~> f}|f]
7

+ azADD(c) 4+ a4DEL(c)
+ a5INT(c) + agDEV(c).

log(1 + EFF(c)) = .32 + .13 (log[1 + FILES(c)])”
—.09(log[1 4+ DEL(c)])?
+ .121log[1 + ADD(c)]log[1 + DEL(c)]
+ .11log[1 + INT(c)]
— .47log[1 + DELTAS(c)].

File span has positive correlation.
Large deletions are implemented rather easily.
Hardest changes require both additions and deletions.
Large number of editing changes are rather easy to implement.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Expected results!?

Any unexpected
results?

* The number of developers does
not have much impact

e Complexity metrics did not play
much roles compared to size and
number of changes

Expected results!?

*File span increases over time.
*Size and time of changes have
some positive correlation with fault
potential

*Modularity degrades over time.

Any unexpected
results?

*Once size and time of changes
are taken into account, other
variables (e.g. # developers,

complexity metrics, span of files)
did not play much roles in
predicting faults.

eLarge number of editing
changes are rather easy to
implement.

* In the beginning of evolution,
file span was relatively large.

Threats to Validity!?
Limitations!?

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Four types of threats to validity

External Validity: Can we generalize to other situations!?

Internal Validity: Assuming that there is a relationship in this
study, is the relationship a causal one!

Construction Validity: Assuming that there is a causal
relationship in this study, can we claim that the program
reflected well our construct of the program and measure!?

Conclusion Validity: Is there a relationship between the cause
and effect?

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Another way of looking at Validity

Theory: what you think

Cau Se cause effect Effect
Construct T—— Construct

Program Observations

Observation: what you test

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Example:WWW => Student Learning

Theory: WWW virtual classroom improves student understanding of course
materials

WWwW cause effect

¢ Understanding
virtual classroom constructs

program-
outcome

Second life instruction Test score

Observation: Let one half of EE382V to use second-life virtual class room and let
the other half come to regular lecture. Compare their test scores at the end.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

External Validity

Theory: WWW virtual classroom improves student understanding of course

WWWwW cause effect

4 Understanding
virtual classroom constructs

program-

Test score
outcome

Second life instruction

Observation: Let one half of EE382V to use www site and let the other half

External Validity: Does this study generalize to students of EE322c?

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Internal Validity

Theory: WWW virtual classroom improves student understanding of course

WWWwW cause effect .
4 Understanding
virtual classroom constructs

e . : rogram-
Second life instruction Test score
outcome

Observation: Let one half of EE382V to use www site and let the other half

Internal Validity: Assuming that students using WWW did better in their
test, isn’t it because these students have more money (apparently they have
computers & high-speed internet) and rich students have more
experiences with objective tests (due to their parents sending them to
prep-schools.)

Construct Validity

Theory: WWW virtual classroom improves student understanding of course

cause effect .
4 Understanding
virtual classroom constructs

e . : rogram-
Second life instruction l?)utf:ome Test score

Observation: Let one half of EE382V to use www site and let the other half

Construct Validity: Is the operationalization method valid? Do objective
test scores truly reflect students’ understanding of core concepts?
Don’t students who are familiar with second life interface just test better?

Conclusion Validity

Theory: WWW virtual classroom improves student understanding of course

WWWwW cause effect .
4 Understanding
virtual classroom constructs

e . : rogram-
Second life instruction Test score
outcome

Observation: Let one half of EE382V to use www site and let the other half

Conclusion Validity: Are the correlation between second-life virtual
classroom use and test scores significant?

|. Temporal Behavior of the Span of Code
Changes

Cause Construct Effect

cause effect Construct
constructs

Program Observations
program-
outcome

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

|. Temporal Behavior of the Span of Code
Changes

External Validity
Internal Validity
Construct Validity

Conclusion Validity

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

2. Time Behavior of Modularity

Cause Construct Effect

cause effect Construct
constructs

Program Observations
program-
outcome

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

2. Time Behavior of Modularity

External Validity
Internal Validity
Construct Validity

Conclusion Validity

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

3. Prediction of Faults

Cause Construct Effect

cause effect Construct
constructs

Program Observations
program-
outcome

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

3. Prediction of Faults

External Validity
Internal Validity
Construct Validity

Conclusion Validity

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

4. Models of Effort

Cause Construct Effect

cause effect Construct
constructs

Program Observations
program-
outcome

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

4. Models of Effort

External Validity
Internal Validity
Construct Validity

Conclusion Validity

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

My general thoughts on Code Decay
Paper

Rich data set!!!
Scientific research method

® |dentification of hypotheses => identify key variables
and measure them = > create statistical models =>
statistical regression

What do identified coefficients real mean?

Can programmers use any of these findings for daily
development activities?

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Recap

Code decay can be mapped to specific measured / derived
variables.

® e.g,span of changes => file span, non-localized changes =>
changes that spans module boundaries

Early mining software repositories research in late 90s that is
based on statistical regression analysis and visualization

These types of research require having good insights.
® e.g.,weighted time dampened model

|dentified which factors do mater! => some surprising results
that complexity metrics do not matter

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Limitations

Carefully designed model that may have over-fitted
data!?

Their model did not consider change types or change
content

Their model cannot handle module specific information

Their results do not generalize to other systems
because most changes in open source system does not
map to a logical software change

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

