
EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Lecture 8 and 9

Program Differencing

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Agenda - Lecture 8 and 9

• Motivation for Program Differencing Techniques

• Problem Definition: What is a Program Differencing
Problem?

• Lecture 8 (Today)

• String-matching based differencing techniques: Hunt1972
& Tichy1984.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Agenda

• Lecture 9

• AST-based differencing techniques: Yang1992 & Neamtiu2005.

• CFG-based program differencing technique (Jdiff):
Apiwattanapong et al, 2004.

• Lecture 10

• Synthesis - Program Differencing Techniques

• If time permits, Logical Structural Diff (LSdiff) by Kim & Notkin,
ICSE 2009

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Motivation: When do you use program
differencing tools such as diff?

• Identify which change led to a bug

• Code reviews

• Generalization task

• Regression testing

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Motivation of Program Differencing
Techniques

• Code Reviews

• Software Version Merging

• To detect possible conflicts among parallel updates

• Regression Testing

• prioritize or select test cases that need to be re-run by
analyzing matched code elements

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Motivation of Program Differencing
Techniques

• Profile Propagation

• Mining Software Repositories Research

• Multi-Version Software Analysis

Multi-Version Analysis

Time

Code Snippet

P1 P2 P3 P4 P5 P6

Interval

Matching

Matching between
Two Versions

Time

Two Version
Matching

Code Snippet

P1 P2 P3 P4 P5 P6

Matching between
Two Versions

Time

Two Version
Matching

Code Snippet

P1 P2 P3 P4 P5 P6

Matching between
Two Versions

Time

Two Version
Matching

Code Snippet

P1 P2 P3 P4 P5 P6

Matching between
Two Versions

Time

Two Version
Matching

Code Snippet

P1 P2 P3 P4 P5 P6

Matching between
Two Versions

Time

Two Version
Matching

Code Snippet

P1 P2 P3 P4 P5 P6

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Multi-Version Program Analyses

Granularity

Interval

file

module

subsystem sever

al
lines

commit

transaction

minor

release
(months)

major

release
(years)

system

fault prone modules

code churns

code decay

metric visualization

system growth

time series

analysis

OS errors

clone

genealogies

fix-inducing

changes

merging

restoration

origin

analysis

signature

changes

subsystem

growth

refactoring

reconstruction

defect
occurrence

sequence

analysis

MR

classification
characteristics

 related changes

related changes

instabilities

procedure

Problem Definition: Program Differencing

• Input:

• Two programs

• Output:

• Differences between the two programs

• Unchanged code fragments in the old version
and their corresponding locations in the new
version

Problem Definition: Program Differencing

Determine the differences !
between O and N.
For a code fragment nc ∈ N, determine

whether nc ∈ !.

If not, find nc’s corresponding origin oc
in O.

New Program (N)Old Program (O)

!

ncoc

Characterization of Matching Problem

line 1

line 2

line 3

line 4

line 1

line 2

line 3

line 4

line 5

line 6

Old File

New Filee.g. diff

Program
Representation

string (a sequence
of lines)

Matching
Granularity

line

Matching
Multiplicity

1:1

Matching
Criteria /
Heuristics

Two lines have the
same sequence of

characters.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Recap of Lecture 8

• Comparison of two empirical study papers

• Qualitative vs. Quantitative

• Finding Hypothesis vs. Proving Hypothesis

• Moved on to Program Differencing

• When do programmers use diff tools?

• Motivation from software engineering research perspectives

• Characterization of Differencing Problem

• Representation, Granularity, Multiplicity, Equivalence Criteria

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Agenda Lecture 9

• Example

• String matching

• diff (LCS) - class activity

• AST matching

• Yang 1992

• CFG matching (Jdiff)

• Adam Duley’s presentation on Jdiff

• Jdiff ’s evaluation section

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Example

Past Current

p0 mA (){ c0 mA (){

p1 if (pred_a) { c1 if (pred_a0) {

p2 foo() c2 if (pred_a) {

p3 } c3 foo()

p4 } c4 }

p5 mB (b) { c5 }

p6 a := 1 c6 }

p7 b := b+1 c7 mB (b) {

p8 fun (a,b) c8 b := b+1 \\ c

p9 } c9 a := 1

c10 fun (a,b)

c11 }

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

String Matching : LCS

• The goal of diff is to report the minimum number of line
changes necessary to convert one file into the other.

• => to maximize the number of unchanged lines

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Longest Common Subsequence

s h a n g h a i

s h a h a i n g

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Longest Common Subsequence

• shahai

s h a n g h a i

s h a h a i n g

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Longest Common Subsequence
Algorithm

• Dynamic programming algorithm, O(mn) in time and
space

• Available operations are addition and deletion.

• Matched pairs cannot cross one another.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Dynamic Programming LCS:
Step (1) Computing the length of LCS

function LCSLength (X[1..m], Y[1..n]) {
 C = array (0..m, 0..n)

 for row=0..m
 C[row,0] = 0;
 for col =0..n
 C[0,col] = 0
 for row=1..m
 for col = 1..n
 if X[row] = Y[col]
 C[row,col] = C[row-1, col-1] +1
 else
 C[row,col] = max(C[row, col-1], C[row-1, col])
 return C[row, col]

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

0 0 0 0 0 0 0 0 0 0 0 0 0

p0 0

p1 0

p2 0

p3 0

p4 0

p5 0

p6 0

p7 0

p8 0

p9 0

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Dynamic Programming LCS:
Step (1) Computing the length of LCS

function LCSLength (X[1..m], Y[1..n]) {
 C = array (0..m, 0..n)

 for row=0..m
 C[row,0] = 0;
 for col =0..n
 C[0,col] = 0
 for row=1..m
 for col = 1..n
 if X[row] = Y[col]
 C[row,col] = C[row-1, col-1] +1
 else
 C[row,col] = max(C[row, col-1], C[row-1, col])
 return C[row, col]

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

0 0 0 0 0 0 0 0 0 0 0 0 0

p0 0 1 1 1 1 1 1 1 1 1 1 1 1

p1 0 1 1 2 2 2 2 2 2 2 2 2 2

p2 0 1 1 2 3 3 3 3 3 3 3 3 3

p3 0 1 1 2 3 4 4 4 4 4 4 4 4

p4 0 1 1 2 3 4 5 5 5 5 5 5 5

p5 0 1 1 2 3 4 5 5 6 6 6 6 6

p6 0 1 1 2 3 4 5 5 6 6 7 7 7

p7 0 1 1 2 3 4 5 5 6 7 7 7 7

p8 0 1 1 2 3 4 5 5 6 7 7 8 8

p9 0 1 1 2 3 4 5 6 6 7 7 8 9

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Dynamic Programming LCS:
Step (2) Reading out an LCS

function backTrace (C[0..m, 0..n], X[1..m], Y[1..n],
row, col) {
 if row=0 or col=0
 return “”
 else if X[row] = Y[col]
 return backTrace(C, X, Y, row-1, col-1) +X[row]
 else
 if C[row, col-1] > C[row-1, col]
 return backTrace(C, X, Y, row, col-1)
 else
 return backTrace(C, X, Y, row-1, col)

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

0 0 0 0 0 0 0 0 0 0 0 0 0

p0 0 1 1 1 1 1 1 1 1 1 1 1 1

p1 0 1 1 2 2 2 2 2 2 2 2 2 2

p2 0 1 1 2 3 3 3 3 3 3 3 3 3

p3 0 1 1 2 3 4 4 4 4 4 4 4 4

p4 0 1 1 2 3 4 5 5 5 5 5 5 5

p5 0 1 1 2 3 4 5 5 6 6 6 6 6

p6 0 1 1 2 3 4 5 5 6 6 7 7 7

p7 0 1 1 2 3 4 5 5 6 7 7 7 7

p8 0 1 1 2 3 4 5 5 6 7 7 8 8

p9 0 1 1 2 3 4 5 6 6 7 7 8 9

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Line-level LCS based matching

Past Current

p0 mA (){ c0 mA (){

p1 if (pred_a) { c1 if (pred_a0) {

p2 foo() c2 if (pred_a) {

p3 } c3 foo()

p4 } c4 }

p5 mB (b) { c5 }

p6 a := 1 c6 }

p7 b := b+1 c7 mB (b) {

p8 fun (a,b) c8 b := b+1 \\ c

p9 } c9 a := 1

c10 fun (a,b)

c11 }

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Line-level LCS based matching

Past Current

p0 mA (){ c0 mA (){

p1 if (pred_a) { c1 if (pred_a0) {

p2 foo() c2 if (pred_a) {

p3 } c3 foo()

p4 } c4 }

p5 mB (b) { c5 }

p6 a := 1 c6 }

p7 b := b+1 c7 mB (b) {

p8 fun (a,b) c8 b := b+1 \\ c

p9 } c9 a := 1

c10 fun (a,b)

c11 }

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

What are assumptions of LCS algorithm?

• Assumptions

• One-to-one mapping

• No crossing blocks

• Limitations

• When the equally likely LCSs are available, the output
depends on implementation details of LCS.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

What are assumptions of LCS algorithm?

• Assumptions

• one-to-one mapping

• no crossing matches

• Limitations

• cannot find copy and paste

• cannot detect moves

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Bdiff [Tichy 84]

• copy, paste and move operations are available

• crossing block moves are permitted

• one-to-one correspondences are not required

String-Based Matching (1)

Diff Bdiff [Tichy84]

Basis Longest common

subsequence

Minimal covering set

Available
operations

Addition, deletion Addition, deletion,

move, copy, paste

Multiplicity (S:T) 1:1 n:1

Assumption Linear ordering Crossing block

moves

Example sha ng hai

sha hai ng

sha ng hai

sha hai ng hai

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Abstract Syntax Tree Level Differencing

• Compare parse trees

• AST Node: token, variable name, or non-terminal
expression

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Abstract Syntax Tree

2 + 3

+

2 3

If

==

:=

x 2
x 3

+x

if (x==2) x = x+3

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Yang 1992

function simple_tree_matching(A, B)
if the roots of the two trees A and B contain distinct symbols, then
return (0)
m := the number of the first level subtrees of A
n := the number of the first level subtrees of B
Initialization M [i,0] := 0 for i=0, .., m, M[0,j]:= 0 for j=0,...,n

for i:= 1 to m do
 for j:= 1 to n do
 M[i, j] = max (M[i, j-1], M[i-1,j] M[i-1,j-1]+W[i,j])
 where W[i,j] = simple_tree_matching (A_i, B_j) where A_i
and B_j are the ith and jth first level subtrees of A and B
 end for
end for
return M[m,n]+1

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

root

mA mB

Body

If

pred_a foo

arg_list

Body

:=

a 1

:=

b +

b 1

arg_list

b

fun

arg_list

a b

Past

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Current

root

mA mB

Body

If

pred_a0

foo

arg_list

Body

:=

a 1

:=

b +

b 1

arg_list

b

fun

arg_list

a b

If

pred_a

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

• Assumptions

• respect parent-child relationships

• the order between sibling nodes

• Limitations

• sensitive to tree level changes

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

AST-Based Matching

AST-Based Matching

Cdiff[Yan91] [NFT05]

Goal Differencing

Version merging

Understanding type

evolution

Algorithm LCS variation Name matching (procedure)

Parallel graph traversal

Strength Respect the parent-child

relationship as well as the

order between sibling

nodes.

Identify renaming of types

and variables.

Weakness Very sensitive to tree level

changes

Cannot match structurally

different trees

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Jdiff

• Adam Duley

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Jdiff

• Step 1. Hierarchical name based matching: classes =>
methods

• Step 2. Per a pair of matched methods, create a pair of
ECFGs.

• Step 3. Recursively match hammocks

• Why do they match hammocks?

• Why do they need a look-ahead (LH)?

• Why do they need a similarity threshold (S)?

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

CFG-Based Matching (1)

•! Hammock = a single entry,

single exit subgraph in CFG

•! Hammock node = a

replacement node for a

hammock graph

Entry

call a.m1()

A.m1() A.m1()

return

try

throw

E1:E2:E3

catch

E1:E2

…. catch E1

…

Exit

A B

exception

exception

ECFG

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

CFG-Based Matching (2)

[LS94] Jdiff [AOH04]

Representation CFG ECFG

Algorithm Reduction to a hammock node

Recursive expansion and comparison

Node alignment DFS (LCS) DFS (a look-ahead)

Hammock node

comparison

Start node’s label Ratio of matched nodes in

a hammock

Nested level Same level Different levels

Strength (+) Flexible matches

(+) Robust to control

structure changes

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Evaluation of Jdiff

1. Measure Jdiff ’s effectiveness for coverage estimation

• Compared estimated coverage and actual coverage

• This evaluation actually measures the effectiveness of Jdiff for the
purpose that it was built for.

2. Measured JDiff ’s performance for various values of lookahead and
similarity parameters

3. Compared with Laski and Szermer’s algorithm

• Measured % increases in the number of matched nodes

• Q: Is the differencing algorithm more effective when it finds more
matched nodes?

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

My general thoughts on Jdiff

• Algorithm that is based on CFG matching, yet customized
for OO program’s characteristics: mainly dynamic binding &
exception handling

• Introduction of several parameters to make the tool
more robust to insertions and changes in nesting
structure

• Thorough evaluation of Jdiff: answering three different
research questions

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Questions from Lecture 8

• What exactly is the goal of Kemerer & Slaughter’s paper?

• Applicability of Software Evolution Study?

• The “Halting Problem?”

• A method for choosing research methods / presenting
results?

• Application principal component analysis or clustering?

• e.g., See Nagapaan et al.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Survey

• Thank you for filling them out!

• Class activities

• Reading assignments

• Scheduling, etc.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Adjusting Schedule & Class Presentation

• Option 1. - Students voted for the option 1.

• Your presentation is associated with the paper. So you
may have to shift your presentation to a later date.

• Option 2.

• Your presentation is associated with the date. So you
have to present a different paper assigned for the date.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Preview for Next Monday

• Synthesis of program differencing techniques

• Miryung Kim and David Notkin. "Program element
matching for multi-version program analyses". In
Proceedings of the International Workshop on Mining
Software Repositories, pages 58–64, 2006.

• If you are doing a literature survey, this is a good paper
to read.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Preview for Next Monday

• Discovering and Representing Systematic Code Changes,
to appear in ICSE 2009, Miryung Kim and David Notkin

• What kinds of questions that programmers ask when
reviewing code?

• What would you like to have an ideal program
differencing tool?

• Strengths and limitations of LSdiff / its evaluation

• Any other applications of LSdiff other than code
reviews?

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Preview for Next Wednesday

• Thomas Zimmermann, Peter Weißgerber, Stephan Diehl,
and Andreas Zeller. "Mining version histories to guide
software changes", IEEE Transactions on Software
Engineering, 31(6):429–445, 2005.

• Association rule mining

• How can we recover transactions from CVS history?

• What are the objectives of their evaluation? Are they
sufficiently validating their claims?

