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Lecture 8 and 9 

Program Differencing
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Agenda - Lecture 8 and 9 

• Motivation for Program Differencing Techniques

• Problem Definition: What is a Program Differencing 
Problem?

• Lecture 8 (Today) 

• String-matching based differencing techniques: Hunt1972 
& Tichy1984.    
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Agenda

• Lecture 9

• AST-based differencing techniques:  Yang1992 & Neamtiu2005.

• CFG-based program differencing technique (Jdiff): 
Apiwattanapong et al, 2004.

• Lecture 10 

• Synthesis - Program Differencing Techniques 

• If time permits, Logical Structural Diff (LSdiff) by Kim & Notkin, 
ICSE 2009 
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Motivation: When do you use program 
differencing tools such as diff?

• Identify which change led to a bug 

• Code reviews

• Generalization task 

• Regression testing 
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Motivation of Program Differencing 
Techniques

• Code Reviews

• Software Version Merging

• To detect possible conflicts among parallel updates

• Regression Testing 

• prioritize or select test cases that need to be re-run by 
analyzing matched code elements
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Motivation of Program Differencing 
Techniques

• Profile Propagation

• Mining Software Repositories Research 

• Multi-Version Software Analysis 
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Multi-Version Program Analyses 
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Problem Definition: Program Differencing

• Input: 

• Two programs 

• Output: 

• Differences between the two programs

• Unchanged code fragments in the old version 
and their corresponding locations in the new 
version



Problem Definition: Program Differencing 

Determine the differences ! 
between O and N. 
For a code fragment nc ∈ N, determine 

whether nc ∈ !. 

If not, find nc’s corresponding origin oc 
in O.

New Program (N)Old Program (O)

!

ncoc



Characterization of  Matching Problem
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Recap of Lecture 8

• Comparison of two empirical study papers

• Qualitative vs. Quantitative 

• Finding Hypothesis vs. Proving Hypothesis 

• Moved on to Program Differencing 

• When do programmers use diff tools? 

• Motivation from software engineering research perspectives

• Characterization of Differencing Problem 

• Representation, Granularity, Multiplicity, Equivalence Criteria
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Agenda Lecture 9 

• Example

• String matching

• diff (LCS) - class activity

• AST matching 

• Yang 1992 

• CFG matching (Jdiff) 

• Adam Duley’s presentation on Jdiff

• Jdiff ’s evaluation section 
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Example

Past Current

p0 mA (){ c0 mA (){ 

p1    if (pred_a) { c1    if (pred_a0) {

p2       foo() c2       if (pred_a) {

p3    }    c3          foo()

p4 }    c4       } 

p5 mB (b) { c5    } 

p6    a := 1 c6 } 

p7    b := b+1  c7 mB (b) { 

p8    fun (a,b)   c8    b := b+1 \\ c

p9 } c9    a := 1 

c10    fun (a,b) 

c11 }
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String Matching : LCS

• The goal of diff is to report the minimum number of line 
changes necessary to convert one file into the other. 

• => to maximize the number of unchanged lines
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Longest Common Subsequence

s h a n g h a i

s h a h a i n g
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Longest Common Subsequence

• shahai 

s h a n g h a i

s h a h a i n g
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Longest Common Subsequence 
Algorithm

• Dynamic programming algorithm, O(mn) in time and 
space

• Available operations are addition and deletion.

• Matched pairs cannot cross one another. 
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Dynamic Programming LCS: 
Step (1) Computing the length of LCS 

function LCSLength (X[1..m], Y[1..n]) { 
    C  = array (0..m, 0..n) 

 for row=0..m
   C[row,0] = 0; 
 for col =0..n
   C[0,col] = 0 
 for row=1..m 
   for col = 1..n
     if X[row] = Y[col] 
       C[row,col] = C[row-1, col-1] +1 
     else 
       C[row,col] = max(C[row, col-1], C[row-1, col]) 
 return C[row, col] 

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

0 0 0 0 0 0 0 0 0 0 0 0 0

p0 0

p1 0

p2 0

p3 0

p4 0

p5 0

p6 0

p7 0

p8 0

p9 0
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Dynamic Programming LCS: 
Step (1) Computing the length of LCS 

function LCSLength (X[1..m], Y[1..n]) { 
    C  = array (0..m, 0..n) 

 for row=0..m
   C[row,0] = 0; 
 for col =0..n
   C[0,col] = 0 
 for row=1..m 
   for col = 1..n
     if X[row] = Y[col] 
       C[row,col] = C[row-1, col-1] +1 
     else 
       C[row,col] = max(C[row, col-1], C[row-1, col]) 
 return C[row, col] 

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

0 0 0 0 0 0 0 0 0 0 0 0 0

p0 0 1 1 1 1 1 1 1 1 1 1 1 1

p1 0 1 1 2 2 2 2 2 2 2 2 2 2

p2 0 1 1 2 3 3 3 3 3 3 3 3 3

p3 0 1 1 2 3 4 4 4 4 4 4 4 4

p4 0 1 1 2 3 4 5 5 5 5 5 5 5

p5 0 1 1 2 3 4 5 5 6 6 6 6 6

p6 0 1 1 2 3 4 5 5 6 6 7 7 7

p7 0 1 1 2 3 4 5 5 6 7 7 7 7

p8 0 1 1 2 3 4 5 5 6 7 7 8 8

p9 0 1 1 2 3 4 5 6 6 7 7 8 9
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Dynamic Programming LCS: 
Step (2) Reading out an LCS

function backTrace (C[0..m, 0..n], X[1..m], Y[1..n], 
row, col) { 
    if row=0 or col=0 
       return “”
    else if X[row] = Y[col] 
       return backTrace(C, X, Y, row-1, col-1) +X[row] 
    else 
           if C[row, col-1] > C[row-1, col] 
              return backTrace(C, X,  Y, row, col-1) 
           else 
              return backTrace(C, X,  Y, row-1, col) 
          
       

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

0 0 0 0 0 0 0 0 0 0 0 0 0

p0 0 1 1 1 1 1 1 1 1 1 1 1 1

p1 0 1 1 2 2 2 2 2 2 2 2 2 2

p2 0 1 1 2 3 3 3 3 3 3 3 3 3

p3 0 1 1 2 3 4 4 4 4 4 4 4 4

p4 0 1 1 2 3 4 5 5 5 5 5 5 5

p5 0 1 1 2 3 4 5 5 6 6 6 6 6

p6 0 1 1 2 3 4 5 5 6 6 7 7 7

p7 0 1 1 2 3 4 5 5 6 7 7 7 7

p8 0 1 1 2 3 4 5 5 6 7 7 8 8

p9 0 1 1 2 3 4 5 6 6 7 7 8 9
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Line-level LCS based matching

Past Current

p0 mA (){ c0 mA (){ 

p1    if (pred_a) { c1    if (pred_a0) {

p2       foo() c2       if (pred_a) {

p3    }    c3          foo()

p4 }    c4       } 

p5 mB (b) { c5    } 

p6    a := 1 c6 } 

p7    b := b+1  c7 mB (b) { 

p8    fun (a,b)   c8    b := b+1 \\ c

p9 } c9    a := 1 

c10    fun (a,b) 

c11 }
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Line-level LCS based matching

Past Current

p0 mA (){ c0 mA (){ 

p1    if (pred_a) { c1    if (pred_a0) {

p2       foo() c2       if (pred_a) {

p3    }    c3          foo()

p4 }    c4       } 

p5 mB (b) { c5    } 

p6    a := 1 c6 } 

p7    b := b+1  c7 mB (b) { 

p8    fun (a,b)   c8    b := b+1 \\ c

p9 } c9    a := 1 

c10    fun (a,b) 

c11 }
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What are assumptions of LCS algorithm?

• Assumptions

• One-to-one mapping 

• No crossing blocks  

• Limitations

• When the equally likely LCSs are available, the output 
depends on implementation details of LCS. 
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What are assumptions of LCS algorithm?

• Assumptions

• one-to-one mapping

• no crossing matches

• Limitations

• cannot find copy and paste

• cannot detect moves
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Bdiff [Tichy 84]

• copy, paste and move operations are available 

• crossing block moves are permitted

• one-to-one correspondences are not required

String-Based Matching (1) 

Diff Bdiff [Tichy84] 

Basis Longest common 

subsequence 

Minimal covering set 

Available 
operations 

Addition, deletion Addition, deletion, 

move, copy, paste 

Multiplicity (S:T) 1:1 n:1 

Assumption Linear ordering  Crossing block 

moves  

Example sha ng hai 

sha hai ng 

sha ng hai 

sha hai ng hai 
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Abstract Syntax Tree Level Differencing

• Compare parse trees 

• AST Node: token, variable name, or non-terminal 
expression
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Abstract Syntax Tree

2 + 3

+

2 3

If

==

:=

x 2
x 3

+x

if (x==2) x = x+3
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Yang 1992

function simple_tree_matching(A, B) 
if the roots of the two trees A and B contain distinct symbols, then 
return (0) 
m := the number of the first level subtrees of A 
n := the number of the first level subtrees of B 
Initialization M [i,0] := 0 for i=0, .., m, M[0,j]:= 0 for j=0,...,n 

for i:= 1 to m do 
   for j:= 1 to n do  
      M[i, j] = max (M[i, j-1], M[i-1,j] M[i-1,j-1]+W[i,j]) 
          where W[i,j] = simple_tree_matching (A_i, B_j) where A_i 
and B_j are the ith and jth first level subtrees of A and B 
      end for 
end for                 
return M[m,n]+1
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root

mA mB

Body

If

pred_a foo

arg_list

Body

:=

a 1

:=

b +

b 1

arg_list

b

fun

arg_list

a b

Past
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Current

root

mA mB

Body

If

pred_a0

foo

arg_list

Body

:=

a 1

:=

b +

b 1

arg_list

b

fun

arg_list

a b

If

pred_a
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• Assumptions

• respect parent-child relationships 

• the order between sibling nodes

• Limitations

• sensitive to tree level changes
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AST-Based Matching

AST-Based Matching 

Cdiff[Yan91] [NFT05] 

Goal Differencing 

Version merging 

Understanding type 

evolution 

Algorithm LCS variation Name matching (procedure) 

Parallel graph traversal 

Strength Respect the parent-child 

relationship as well as the 

order between sibling 

nodes.  

Identify renaming of types 

and variables. 

Weakness Very sensitive to tree level 

changes 

Cannot match structurally 

different trees 
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Jdiff

• Adam Duley
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Jdiff

• Step 1. Hierarchical name based matching: classes => 
methods 

• Step 2. Per a pair of matched methods, create a pair of 
ECFGs. 

• Step 3. Recursively match hammocks 

• Why do they match hammocks? 

• Why do they need a look-ahead (LH)? 

• Why do they need a similarity threshold (S)? 
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CFG-Based Matching (1) 

•! Hammock = a single entry, 

single exit subgraph in CFG  

•! Hammock node = a 

replacement node for a 

hammock graph 

Entry 

call a.m1() 

A.m1() A.m1() 

return 

try 

throw 

E1:E2:E3 

catch  

E1:E2 

…. catch E1 

… 

Exit 

A B 

exception 

exception 

ECFG 
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CFG-Based Matching (2) 

[LS94] Jdiff [AOH04] 

Representation CFG ECFG 

Algorithm Reduction to a hammock node 

Recursive expansion and comparison 

Node alignment DFS (LCS) DFS (a look-ahead) 

Hammock node 

comparison 

Start node’s label Ratio of matched nodes in 

a hammock 

Nested level  Same level Different levels 

Strength  (+) Flexible matches 

(+) Robust to control 

structure changes 
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Evaluation of Jdiff

1. Measure Jdiff ’s effectiveness for coverage estimation   

• Compared estimated coverage and actual coverage

• This evaluation actually measures the effectiveness of Jdiff for the 
purpose that it was built for.

2. Measured JDiff ’s performance for various values of lookahead and 
similarity parameters

3. Compared with Laski and Szermer’s algorithm 

• Measured % increases in the number of matched nodes

• Q: Is the differencing algorithm more effective when it finds more 
matched nodes?
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My general thoughts on Jdiff

• Algorithm that is based on CFG matching, yet customized 
for OO program’s characteristics: mainly dynamic binding & 
exception handling

• Introduction of several parameters to make the tool 
more robust to insertions and changes in nesting 
structure  

• Thorough evaluation of Jdiff: answering three different 
research questions 
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Questions from Lecture 8

• What exactly is the goal of Kemerer & Slaughter’s paper?

• Applicability of Software Evolution Study?

• The “Halting Problem?”

• A method for choosing research methods / presenting 
results?

• Application principal component analysis or clustering? 

• e.g., See Nagapaan et al. 
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Survey

• Thank you for filling them out! 

• Class activities

• Reading assignments 

• Scheduling, etc.
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Adjusting Schedule & Class Presentation 

• Option 1. - Students voted for the option 1. 

• Your presentation is associated with the paper. So you 
may have to shift your presentation to a later date. 

• Option 2. 

• Your presentation is associated with the date. So you 
have to present a different paper assigned for the date. 
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Preview for Next Monday

• Synthesis of program differencing techniques 

• Miryung Kim and David Notkin. "Program element 
matching for multi-version program analyses". In 
Proceedings of the International Workshop on Mining 
Software Repositories, pages 58–64, 2006.

• If you are doing a literature survey, this is a good paper 
to read. 
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Preview for Next Monday

• Discovering and Representing Systematic Code Changes, 
to appear in ICSE 2009, Miryung Kim and David Notkin

• What kinds of questions that programmers ask when 
reviewing code? 

• What would you like to have an ideal program 
differencing tool?

• Strengths and limitations of LSdiff / its evaluation

• Any other applications of LSdiff other than code 
reviews?
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Preview for Next Wednesday

• Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, 
and Andreas Zeller. "Mining version histories to guide 
software changes", IEEE Transactions on Software 
Engineering, 31(6):429–445, 2005.

• Association rule mining

• How can we recover transactions from CVS history?

• What are the objectives of their evaluation? Are they 
sufficiently validating their claims? 


