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Introduction

What is iscc?

⇒ interactive interface to the barvinok counting library
⇒ also provides interface to the CLooG code generation library, to the pet

polyhedral model extractor and to some operations of the isl integer
set library

⇒ inspired by Omega Calculator from the Omega Project

Where to get iscc?

⇒ currently distributed as part of barvinok package
⇒ available from http://freecode.com/projects/barvinok/

How to run iscc?

⇒ compile and install barvinok following the instructions in README
⇒ run iscc

Note: iscc currently does not use readline, so you may want to use a
readline front-end: rlwrap iscc

Examples from polyhedral model for program analysis and transformation

http://freecode.com/projects/barvinok/
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Interaction with Libraries
isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations
CLooG: generates code to scan elements in parametric affine sets
pet: extracts polyhedral model

clang GMP

isl NTL PolyLib

pet CLooG barvinok

iscc

Future work:
remove dependence on PolyLib and NTL

merge barvinok into isl
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Iteration Domains and Sets

for (i = 1; i <= 5; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

parameters

] ->

{ [i,j

set variables

] : 1 <= i <= 5 and 1 <= j <= i

Presburger formula

}
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Set Variables and Parameters

comp

set variables
I local to set
I identified by position

parameters (symbolic constants)
I global
I identified by name

[n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i }

is equal to

[n] -> { [a,b] : 1 <= a <= n and 1 <= b <= a }

but not equal to

[n] -> { [j,i] : 1 <= i <= n and 1 <= j <= i }

or

[m] -> { [i,j] : 1 <= i <= m and 1 <= j <= i }
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Code Generation, Schedules and Maps

codegen1,codegen2

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

codegen [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

⇒ generate code that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a schedule: maps iterations domain to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange i and j
{[i,j] -> [t1,t2] : t1 = j and t2 = i} or {[i,j] -> [j,i]}

S := [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

codegen ({[i,j] -> [j,i]} *

intersect domain of map on the left with set on the right

S);
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Code Generation, Schedules and Maps

codegen3,codegen4

Generating code for more than one domain/statement

⇒ domains should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over domains with
different names

Examples:

S := [n] -> { A

(optional) name of space

[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);
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Access Relations and Polyhedral Model

model

Simple program with temporary array t:

for (i = 0; i < N; ++i)

S1: t[i] = f(a[i]);

for (i = 0; i < N; ++i)

S2: b[i] = g(t[N-i-1]);

An access relation maps an iteration to an array index
For example, the access relation for the read in S2:

[N] -> { S2[i] -> t[N-i-1] }

Polyhedral model of a program consists of
iteration domains
access relations (reads and writes)
schedule

M := parse_file("simple.c");

D := M[0]; W := M[1]; R := M[2]; S := M[3];
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Lexicographic Optimization

lex1,lex2

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

What is the last iteration of the loop?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

lexmax

lexicographically last element of set

S;

When is a given array element accessed last?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

lexmax

lexicographically last image element

(Aˆ-1

inverse map

);
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Dependence Analysis

dep1

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
Last write: lexmax R;

In general: impose lexicographical order on shared iterators
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A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
Last write: lexmax R;

In general: impose lexicographical order on shared iterators
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Dependence Analysis

dep2

In general:

last Write before Read under Schedule

Result: last write + set of reads without corresponding write

for (i = 0; i < n; ++i)

T: t[i] = a[i];

for (i = 0; i < n; ++i)

for (j = 0; j < n - i; ++j)

F: t[j] = f(t[j], t[j+1]);

for (i = 0; i < n; ++i)

B: b[i] = t[i];

M := parse_file("dep.c");

Write := M[1]; Read := M[2]; Sched := M[3];

last Write before Read under Sched;
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Transitive Closures

trans

Given a graph (represented as an affine map)

M := { A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] };

A

B

What is the transitive closure?

⇒ Mˆ+;

A

B

Result:

({ B[] -> A[o0] : o0 <= 4 and o0 >= 3; B[] -> A[2];

A[i] -> A[o0] : i >= 0 and i <= 3 and o0 >= 1 and

o0 <= 4 and o0 >= 1 + i }, True

exact transitive closure

)
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Reachability Analysis

reach

double x[2][10];

int old = 0, new = 1, i, t;

for (t = 0; t<1000; t++) {

for (i = 0; i<10;i++)

x[new][i] = g(x[old][i]);

new = (new+1) %2; old = (old+1) %2;

}

Invariant between new and old?

T := {[new,old] -> [(new+1)%2,(old+1)%2]};

S0 := {[0,1]};

(Tˆ+)(S0);
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Cardinality

card1,card2,card3

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

card

number of elements in the set

S;

How many times is a given array element written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card

number of image elements

(Aˆ-1);

How many array elements are written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card (ran A);
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Quasipolynomials

card4

for (i = 1; i <= n; ++i)

for (j = 1; j <= n - 2 * i; ++j)

/* S */

How many times is S executed?

card [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= n - 2i };

Result:

[n] -> { ((-1/4 * n + 1/4 * nˆ2) - 1/2 * [(n)/2]

greatest integer part

) : n >= 3 }

That is,

−
n
4
+

n2

4
−

1
2

⌊n
2

⌋
if n ≥ 3.

Polynomial approximations
⇒ run iscc --polynomial-approximation
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Memory Requirements

bound

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p = malloc(i * j + i - N + 1);

/* ... */

free(p);

}

How much memory is needed?

ub [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};

Result:

([N] -> { max((1 - 2 * N + Nˆ2)) : N >= 1 }, True

bound is tight

)
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Incremental Counting

sum1

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

direct computation

card [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

incremental computation

card [N] -> { [i] -> [j] : 0<=i<N and 0<=j<N-i };

Result:
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 }

sum

sum over all elements in domain

[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 };



Basic Concepts and Operations Weighted Counting November 22, 2011 20 / 33

Incremental Counting

sum1

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

direct computation

card [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

incremental computation

card [N] -> { [i] -> [j] : 0<=i<N and 0<=j<N-i };

Result:
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 }

sum

sum over all elements in domain

[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 };



Basic Concepts and Operations Weighted Counting November 22, 2011 20 / 33

Incremental Counting

sum1

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

direct computation

card [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

incremental computation

card [N] -> { [i] -> [j] : 0<=i<N and 0<=j<N-i };

Result:
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 }

sum

sum over all elements in domain

[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 };



Basic Concepts and Operations Weighted Counting November 22, 2011 20 / 33

Incremental Counting

sum1

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

direct computation

card [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

incremental computation

card [N] -> { [i] -> [j] : 0<=i<N and 0<=j<N-i };

Result:
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 }

sum

sum over all elements in domain
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 };



Basic Concepts and Operations Weighted Counting November 22, 2011 21 / 33

Total Memory Allocation

sum2

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j)

p[i][j] = malloc(i * j + i - N + 1);

/* ... */

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j)

free(p[i][j]);

How much memory allocated in total?

sum [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};
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Weighted Counting

sum3,sum4

y

x2+y2

4

x

x

5+2x2

4

M : x → (x, y)

F := { [x,y] -> 1/4*xˆ2+1/4*yˆ2 : 1 <= x,y <= 2 };

D := dom F;

F(D);

⇒ sum of F over points in D
M := { [x] -> [x,y] };

F(M);

⇒ sum of F over image of M (alternative notation: M . F)
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Compositions with Piecewise (Folds of)
Quasipolynomials

f . g;

f: D1 → D2 is a map
g: D2 → Q may be

I piecewise quasipolynomial
(result of counting problems)

⇒ take sum over intersection of ran f and dom g
I piecewise fold of quasipolynomials

(result of upper bound computation)

⇒ compute bound over intersection of ran f and dom g

(f . g): D1 → Q of same type as g

Note: if f is single-valued, then sum/bound is computed over a single point
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Outline

1 Introduction

2 Basic Concepts and Operations
Sets and Iteration Domains
Maps and Code Generation
Access Relations and Polyhedral Model
Dependence Analysis
Transitive Closures
Basic Counting
Computing Bounds
Weighted Counting

3 Simple Applications
Pointer Conversion
Dynamic Memory Requirement Estimation
Reuse Distance Computation
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Pointer Conversion

p = a;

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p += j * ((j-i)/4);

*p = hard_work(i,j);

}

Can we parallelize this code?

⇒ No, (false) dependency through p
⇒ Compute closed formula for p

p = a +
∑

(i′,j′)∈S
(i′,j′)4

lexicographically less than

(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }
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Pointer Conversion

pointer

p = a +
∑

(i′,j′)∈S
(i′,j′)4(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }

S := [N] -> { [i,j] : 0 <= i < N and i <= j < N };

L := S <<=

map: (elements of) left set lexicographically smaller than right set

S;

INC := { [[i,j] -> [i’,j’]] -> j’ * [(j’-i’)/4] };

INC := INC * (wrap

embed map in a set

(Lˆ-1));

sum INC;

Note: if domain of argument to sum [ub] is an embedded map, then sum
[bound] is computed over range of embedded map
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Dynamic Memory Requirement Estimation [CFGV2006]

mem1

How much memory is needed to execute the following program?

void m0(int m) {
for (c = 0; c < m; c++) {
m1(c); /*S1*/

B[] m2Arr = m2(2*m-c); /*S2*/

}

}

void m1(int k) {
for (i = 1; i <= k; i++) {
A a = new A(); /*S3*/

B[] dummyArr = m2(i); /*S4*/

}

}

B[] m2(int n) {
B[] arrB = new B[n]; /*S5*/

for (j = 1; j <= n; j++)
B b = new B(); /*S6*/

return arrB;
}

D := {

m0[m]->S1[c] : 0<=c<m;

m0[m]->S2[c] : 0<=c<m;

m1[k]->S3[i] : 1<=i<=k;

m1[k]->S4[i] : 1<=i<=k;

m2[n]->S5[];

m2[n]->S6[j] : 1<=j<=n

};

DM := (domain_map D)ˆ-1;
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Dynamic Memory Requirement Estimation [CFGV2006]

mem2

How much (scoped) memory is needed?
⇒ compute for each method

retm size of memory returned by m

capm size of memory “captured” (not returned) by m

memRqm total memory requirements of m

memRqm = capm + max
p called by m

memRqp

B[] m2(int n) {

B[] arrB = new B[n];

for (j=1; j<=n; j++)

B b = new B();

return arrB;

}
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Dynamic Memory Requirement Estimation [CFGV2006]

mem2

How much (scoped) memory is needed?
⇒ compute for each method

retm size of memory returned by m

capm size of memory “captured” (not returned) by m

memRqm total memory requirements of m

memRqm = capm + max
p called by m

memRqp

B[] m2(int n) {

B[] arrB = new B[n];

for (j=1; j<=n; j++)

B b = new B();

return arrB;

}

ret_m2 := DM .

{ [m2[n] -> S5[]] -> n : n >= 0 };

cap_m2 := DM .

{ [m2[n] -> S6[j]] -> 1 };

req_m2 := cap_m2 +

{ m2[n] -> max(0) };
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Dynamic Memory Requirement Estimation [CFGV2006]
void m1(int k) {

for (i = 1; i <= k; i++) {

A a = new A(); /* S3 */

B[] dummyArr = m2(i); /* S4 */

}

}

capm1(k) =
∑

1≤i≤k

(1 + retm2(i))

ret_m2 is a function of the arguments of m2
We want to use it as a function of the arguments and local variables of m1

⇒ define parameter binding

CB_m1 := { [m1[k] -> S4[i]] -> m2[i] };

cap_m1 := DM . ({ [m1[k]->S3[i]] -> 1 } + (CB_m1 . ret_m2));
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Dynamic Memory Requirement Estimation [CFGV2006]

mem3

void m1(int k) {

for (i = 1; i <= k; i++) {

A a = new A(); /* S3 */

B[] dummyArr = m2(i); /* S4 */

}

}

memRqm = capm + max
p called by m

memRqp

CB_m1 := { [m1[k] -> S4[i]] -> m2[i] };

ret_m1 := { m1[k] -> 0 };

cap_m1 := DM . ({ [m1[k]->S3[i]] -> 1 } + (CB_m1 . ret_m2));

req_m1 := cap_m1 + (DM . CB_m1 . req_m2);
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Dynamic Memory Requirement Estimation [CFGV2006]

mem4

void m0(int m) {

for (c = 0; c < m; c++) {

m1(c); /* S1 */

B[] m2Arr = m2(2 * m - c); /* S2 */

}

}

CB_m0 := { [m0[m] -> S1[c]] -> m1[c];

[m0[m] -> S2[c]] -> m2[2 * m - c] };

ret_m0 := { m0[m] -> 0 };

cap_m0 := DM . CB_m0 . (ret_m1 + ret_m2);

req_m0 := cap_m0 + (DM . CB_m0 . (req_m1 .

combine reductions

req_m2));
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Reuse Distance Computation
Given an access to a cache line `, how many distinct cache lines have
been accessed since the previous access to `?
⇒ Is the cache line still in the cache?

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

Assume A[i] in cache line bi/3c

i 0 1 2 3 4 5 6 7
r a b c a b c a b c a b c a b a b a b a b
r@i 0 7 0 1 6 2 2 5 4 3 4 6 4 3 5 2 6 1 7 0⌊
(r@i)/3

⌋
0 2 0 0 2 0 0 1 1 1 1 2 1 1 1 0 2 0 2 0

distance 0 0 2 1 2 2 1 0 1 1 1 3 2 1 1 3 3 2 2 2
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Reuse Distance Computation

brd

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

domain
cache

time

A

S

M

NEXT

Assume A[i] in cache line bi/3c

D := { a[i] : 0 <= i <= 7; b[i] : 0 <= i <= 7; c[i] : 0 <= i <= 3 };

C := { A[i] -> L[j] : exists a = [i/3] : j = a };

A := ({ a[i] -> A[i]; b[i] -> A[7-i]; c[i] -> A[2i] } . C) * D;

S := { a[i] -> [i,0]; b[i] -> [i,1]; c[i] -> [i,2] } * D;

TIME := ran S; LT := TIME << TIME; LE := TIME <<= TIME;

T := ((Sˆ-1) . A . (Aˆ-1) . S) * LT;

M := lexmin T;

NEXT := S . M . (Sˆ-1); # map to next access to same cache line

AFTER_PREV := (NEXTˆ-1) . (S . LE . (Sˆ-1));

BEFORE := S . (LEˆ-1) . (Sˆ-1);

card ((AFTER_PREV * BEFORE) . A);
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