
November 22, 2011 1 / 33

iscc Tutorial

Sven Verdoolaege

Team ALCHEMY, INRIA Saclay, France
Sven.Verdoolaege@inria.fr

November 22, 2011

Sven.Verdoolaege@inria.fr


November 22, 2011 2 / 33

Outline

1 Introduction

2 Basic Concepts and Operations
Sets and Iteration Domains
Maps and Code Generation
Access Relations and Polyhedral Model
Dependence Analysis
Transitive Closures
Basic Counting
Computing Bounds
Weighted Counting

3 Simple Applications
Pointer Conversion
Dynamic Memory Requirement Estimation
Reuse Distance Computation



Introduction November 22, 2011 3 / 33

Outline

1 Introduction

2 Basic Concepts and Operations
Sets and Iteration Domains
Maps and Code Generation
Access Relations and Polyhedral Model
Dependence Analysis
Transitive Closures
Basic Counting
Computing Bounds
Weighted Counting

3 Simple Applications
Pointer Conversion
Dynamic Memory Requirement Estimation
Reuse Distance Computation



Introduction November 22, 2011 4 / 33

Introduction

What is iscc?

⇒ interactive interface to the barvinok counting library
⇒ also provides interface to the CLooG code generation library, to the pet

polyhedral model extractor and to some operations of the isl integer
set library

⇒ inspired by Omega Calculator from the Omega Project

Where to get iscc?

⇒ currently distributed as part of barvinok package
⇒ available from http://freecode.com/projects/barvinok/

How to run iscc?

⇒ compile and install barvinok following the instructions in README
⇒ run iscc

Note: iscc currently does not use readline, so you may want to use a
readline front-end: rlwrap iscc

Examples from polyhedral model for program analysis and transformation

http://freecode.com/projects/barvinok/


Introduction November 22, 2011 4 / 33

Introduction

What is iscc?

⇒ interactive interface to the barvinok counting library
⇒ also provides interface to the CLooG code generation library, to the pet

polyhedral model extractor and to some operations of the isl integer
set library

⇒ inspired by Omega Calculator from the Omega Project

Where to get iscc?

⇒ currently distributed as part of barvinok package
⇒ available from http://freecode.com/projects/barvinok/

How to run iscc?

⇒ compile and install barvinok following the instructions in README
⇒ run iscc

Note: iscc currently does not use readline, so you may want to use a
readline front-end: rlwrap iscc

Examples from polyhedral model for program analysis and transformation

http://freecode.com/projects/barvinok/


Introduction November 22, 2011 4 / 33

Introduction

What is iscc?

⇒ interactive interface to the barvinok counting library
⇒ also provides interface to the CLooG code generation library, to the pet

polyhedral model extractor and to some operations of the isl integer
set library

⇒ inspired by Omega Calculator from the Omega Project

Where to get iscc?

⇒ currently distributed as part of barvinok package
⇒ available from http://freecode.com/projects/barvinok/

How to run iscc?

⇒ compile and install barvinok following the instructions in README
⇒ run iscc

Note: iscc currently does not use readline, so you may want to use a
readline front-end: rlwrap iscc

Examples from polyhedral model for program analysis and transformation

http://freecode.com/projects/barvinok/


Introduction November 22, 2011 4 / 33

Introduction

What is iscc?

⇒ interactive interface to the barvinok counting library
⇒ also provides interface to the CLooG code generation library, to the pet

polyhedral model extractor and to some operations of the isl integer
set library

⇒ inspired by Omega Calculator from the Omega Project

Where to get iscc?

⇒ currently distributed as part of barvinok package
⇒ available from http://freecode.com/projects/barvinok/

How to run iscc?

⇒ compile and install barvinok following the instructions in README
⇒ run iscc

Note: iscc currently does not use readline, so you may want to use a
readline front-end: rlwrap iscc

Examples from polyhedral model for program analysis and transformation

http://freecode.com/projects/barvinok/


Introduction November 22, 2011 5 / 33

Interaction with Libraries
isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations
CLooG: generates code to scan elements in parametric affine sets
pet: extracts polyhedral model

clang GMP

isl NTL PolyLib

pet CLooG barvinok

iscc

Future work:
remove dependence on PolyLib and NTL

merge barvinok into isl



Introduction November 22, 2011 5 / 33

Interaction with Libraries
isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations
CLooG: generates code to scan elements in parametric affine sets
pet: extracts polyhedral model

clang GMP

isl NTL PolyLib

pet CLooG barvinok

iscc

Future work:
remove dependence on PolyLib and NTL

merge barvinok into isl



Introduction November 22, 2011 5 / 33

Interaction with Libraries
isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations
CLooG: generates code to scan elements in parametric affine sets
pet: extracts polyhedral model

clang GMP

isl

NTL PolyLib

pet CLooG barvinok

iscc

Future work:
remove dependence on PolyLib and NTL

merge barvinok into isl



Introduction November 22, 2011 5 / 33

Interaction with Libraries
isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations
CLooG: generates code to scan elements in parametric affine sets
pet: extracts polyhedral model

clang GMP

isl

NTL PolyLib

pet CLooG barvinok

iscc

Future work:
remove dependence on PolyLib and NTL
merge barvinok into isl



Basic Concepts and Operations November 22, 2011 6 / 33

Outline

1 Introduction

2 Basic Concepts and Operations
Sets and Iteration Domains
Maps and Code Generation
Access Relations and Polyhedral Model
Dependence Analysis
Transitive Closures
Basic Counting
Computing Bounds
Weighted Counting

3 Simple Applications
Pointer Conversion
Dynamic Memory Requirement Estimation
Reuse Distance Computation



Basic Concepts and Operations Sets and Iteration Domains November 22, 2011 7 / 33

Iteration Domains and Sets

for (i = 1; i <= 5; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

parameters

] ->

{ [i,j

set variables

] : 1 <= i <= 5 and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Iteration Domains November 22, 2011 7 / 33

Iteration Domains and Sets

for (i = 1; i <= 5; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

parameters

] ->

{ [i,j

set variables

] : 1 <= i <= 5 and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Iteration Domains November 22, 2011 7 / 33

Iteration Domains and Sets

for (i = 1; i <= 5; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

parameters

] ->

{ [i,j

set variables

] : 1 <= i <= 5 and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Iteration Domains November 22, 2011 7 / 33

Iteration Domains and Sets

for (i = 1; i <= 5; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

parameters

] ->

{ [i,j

set variables

] : 1 <= i <= 5 and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Iteration Domains November 22, 2011 7 / 33

Iteration Domains and Sets

for (i = 1; i <= 5; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

parameters

] ->

{ [i,j

set variables

] : 1 <= i <= 5 and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Iteration Domains November 22, 2011 7 / 33

Iteration Domains and Sets

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

parameters

] -> { [i,j

set variables

] : 1 <= i <= n and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Iteration Domains November 22, 2011 7 / 33

Iteration Domains and Sets

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

parameters

] -> { [i,j

set variables

] : 1 <= i <= n and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Iteration Domains November 22, 2011 8 / 33

Set Variables and Parameters

comp

set variables
I local to set
I identified by position

parameters (symbolic constants)
I global
I identified by name

[n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i }

is equal to

[n] -> { [a,b] : 1 <= a <= n and 1 <= b <= a }

but not equal to

[n] -> { [j,i] : 1 <= i <= n and 1 <= j <= i }

or

[m] -> { [i,j] : 1 <= i <= m and 1 <= j <= i }



Basic Concepts and Operations Sets and Iteration Domains November 22, 2011 8 / 33

Set Variables and Parameters

comp

set variables
I local to set
I identified by position

parameters (symbolic constants)
I global
I identified by name

[n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i }

is equal to

[n] -> { [a,b] : 1 <= a <= n and 1 <= b <= a }

but not equal to

[n] -> { [j,i] : 1 <= i <= n and 1 <= j <= i }

or

[m] -> { [i,j] : 1 <= i <= m and 1 <= j <= i }



Basic Concepts and Operations Maps and Code Generation November 22, 2011 9 / 33

Code Generation, Schedules and Maps

codegen1,codegen2

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

codegen [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

⇒ generate code that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a schedule: maps iterations domain to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange i and j
{[i,j] -> [t1,t2] : t1 = j and t2 = i} or {[i,j] -> [j,i]}

S := [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

codegen ({[i,j] -> [j,i]} *

intersect domain of map on the left with set on the right

S);



Basic Concepts and Operations Maps and Code Generation November 22, 2011 9 / 33

Code Generation, Schedules and Maps

codegen1,codegen2

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

codegen [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

⇒ generate code that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a schedule: maps iterations domain to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange i and j
{[i,j] -> [t1,t2] : t1 = j and t2 = i}

or {[i,j] -> [j,i]}

S := [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

codegen ({[i,j] -> [j,i]} *

intersect domain of map on the left with set on the right

S);



Basic Concepts and Operations Maps and Code Generation November 22, 2011 9 / 33

Code Generation, Schedules and Maps

codegen1,codegen2

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

codegen [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

⇒ generate code that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a schedule: maps iterations domain to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange i and j
{[i,j] -> [t1,t2] : t1 = j and t2 = i} or {[i,j] -> [j,i]}

S := [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

codegen ({[i,j] -> [j,i]} *

intersect domain of map on the left with set on the right

S);



Basic Concepts and Operations Maps and Code Generation November 22, 2011 9 / 33

Code Generation, Schedules and Maps

codegen1,codegen2

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

codegen [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

⇒ generate code that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a schedule: maps iterations domain to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange i and j
{[i,j] -> [t1,t2] : t1 = j and t2 = i} or {[i,j] -> [j,i]}

S := [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

codegen ({[i,j] -> [j,i]} *

intersect domain of map on the left with set on the right

S);



Basic Concepts and Operations Maps and Code Generation November 22, 2011 9 / 33

Code Generation, Schedules and Maps

codegen1,codegen2

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

codegen [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

⇒ generate code that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a schedule: maps iterations domain to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange i and j
{[i,j] -> [t1,t2] : t1 = j and t2 = i} or {[i,j] -> [j,i]}

S := [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

codegen ({[i,j] -> [j,i]} *

intersect domain of map on the left with set on the right

S);



Basic Concepts and Operations Maps and Code Generation November 22, 2011 10 / 33

Code Generation, Schedules and Maps

codegen3,codegen4

Generating code for more than one domain/statement

⇒ domains should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over domains with
different names

Examples:

S := [n] -> { A

(optional) name of space

[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);



Basic Concepts and Operations Maps and Code Generation November 22, 2011 10 / 33

Code Generation, Schedules and Maps

codegen3,codegen4

Generating code for more than one domain/statement

⇒ domains should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over domains with
different names

Examples:

S := [n] -> { A

(optional) name of space

[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);



Basic Concepts and Operations Maps and Code Generation November 22, 2011 10 / 33

Code Generation, Schedules and Maps

codegen3,codegen4

Generating code for more than one domain/statement

⇒ domains should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over domains with
different names

Examples:

S := [n] -> { A

(optional) name of space

[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);



Basic Concepts and Operations Maps and Code Generation November 22, 2011 10 / 33

Code Generation, Schedules and Maps

codegen3,codegen4

Generating code for more than one domain/statement

⇒ domains should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over domains with
different names

Examples:

S := [n] -> { A

(optional) name of space

[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);



Basic Concepts and Operations Maps and Code Generation November 22, 2011 10 / 33

Code Generation, Schedules and Maps

codegen3,codegen4

Generating code for more than one domain/statement

⇒ domains should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over domains with
different names

Examples:

S := [n] -> { A

(optional) name of space

[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);



Basic Concepts and Operations Maps and Code Generation November 22, 2011 10 / 33

Code Generation, Schedules and Maps

codegen3,codegen4

Generating code for more than one domain/statement

⇒ domains should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over domains with
different names

Examples:

S := [n] -> { A

(optional) name of space

[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);



Basic Concepts and Operations Maps and Code Generation November 22, 2011 10 / 33

Code Generation, Schedules and Maps

codegen3,codegen4

Generating code for more than one domain/statement

⇒ domains should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over domains with
different names

Examples:

S := [n] -> { A

(optional) name of space

[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);



Basic Concepts and Operations Access Relations and Polyhedral Model November 22, 2011 11 / 33

Access Relations and Polyhedral Model

model

Simple program with temporary array t:

for (i = 0; i < N; ++i)

S1: t[i] = f(a[i]);

for (i = 0; i < N; ++i)

S2: b[i] = g(t[N-i-1]);

An access relation maps an iteration to an array index
For example, the access relation for the read in S2:

[N] -> { S2[i] -> t[N-i-1] }

Polyhedral model of a program consists of
iteration domains
access relations (reads and writes)
schedule

M := parse_file("simple.c");

D := M[0]; W := M[1]; R := M[2]; S := M[3];



Basic Concepts and Operations Access Relations and Polyhedral Model November 22, 2011 11 / 33

Access Relations and Polyhedral Model

model

Simple program with temporary array t:

for (i = 0; i < N; ++i)

S1: t[i] = f(a[i]);

for (i = 0; i < N; ++i)

S2: b[i] = g(t[N-i-1]);

An access relation maps an iteration to an array index
For example, the access relation for the read in S2:

[N] -> { S2[i] -> t[N-i-1] }

Polyhedral model of a program consists of
iteration domains
access relations (reads and writes)
schedule

M := parse_file("simple.c");

D := M[0]; W := M[1]; R := M[2]; S := M[3];



Basic Concepts and Operations Dependence Analysis November 22, 2011 12 / 33

Lexicographic Optimization

lex1,lex2

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

What is the last iteration of the loop?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

lexmax

lexicographically last element of set

S;

When is a given array element accessed last?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

lexmax

lexicographically last image element

(Aˆ-1

inverse map

);



Basic Concepts and Operations Dependence Analysis November 22, 2011 12 / 33

Lexicographic Optimization

lex1,lex2

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

What is the last iteration of the loop?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

lexmax lexicographically last element of setS;

When is a given array element accessed last?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

lexmax

lexicographically last image element

(Aˆ-1

inverse map

);



Basic Concepts and Operations Dependence Analysis November 22, 2011 12 / 33

Lexicographic Optimization

lex1,lex2

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

What is the last iteration of the loop?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

lexmax lexicographically last element of setS;

When is a given array element accessed last?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

lexmax

lexicographically last image element

(Aˆ-1

inverse map

);



Basic Concepts and Operations Dependence Analysis November 22, 2011 12 / 33

Lexicographic Optimization

lex1,lex2

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

What is the last iteration of the loop?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

lexmax lexicographically last element of setS;

When is a given array element accessed last?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

lexmax

lexicographically last image element

(Aˆ-1 inverse map);



Basic Concepts and Operations Dependence Analysis November 22, 2011 12 / 33

Lexicographic Optimization

lex1,lex2

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

What is the last iteration of the loop?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

lexmax lexicographically last element of setS;

When is a given array element accessed last?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

lexmax

lexicographically last image element

(Aˆ-1 inverse map);



Basic Concepts and Operations Dependence Analysis November 22, 2011 13 / 33

Dependence Analysis

dep1

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
Last write: lexmax R;

In general: impose lexicographical order on shared iterators



Basic Concepts and Operations Dependence Analysis November 22, 2011 13 / 33

Dependence Analysis

dep1

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
Last write: lexmax R;

In general: impose lexicographical order on shared iterators



Basic Concepts and Operations Dependence Analysis November 22, 2011 13 / 33

Dependence Analysis

dep1

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
Last write: lexmax R;

In general: impose lexicographical order on shared iterators



Basic Concepts and Operations Dependence Analysis November 22, 2011 13 / 33

Dependence Analysis

dep1

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);

Last write: lexmax R;

In general: impose lexicographical order on shared iterators



Basic Concepts and Operations Dependence Analysis November 22, 2011 13 / 33

Dependence Analysis

dep1

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
Last write: lexmax R;

In general: impose lexicographical order on shared iterators



Basic Concepts and Operations Dependence Analysis November 22, 2011 13 / 33

Dependence Analysis

dep1

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
Last write: lexmax R;

In general: impose lexicographical order on shared iterators



Basic Concepts and Operations Dependence Analysis November 22, 2011 14 / 33

Dependence Analysis

dep2

In general:

last Write before Read under Schedule

Result: last write + set of reads without corresponding write

for (i = 0; i < n; ++i)

T: t[i] = a[i];

for (i = 0; i < n; ++i)

for (j = 0; j < n - i; ++j)

F: t[j] = f(t[j], t[j+1]);

for (i = 0; i < n; ++i)

B: b[i] = t[i];

M := parse_file("dep.c");

Write := M[1]; Read := M[2]; Sched := M[3];

last Write before Read under Sched;



Basic Concepts and Operations Dependence Analysis November 22, 2011 14 / 33

Dependence Analysis

dep2

In general:

last Write before Read under Schedule

Result: last write + set of reads without corresponding write

for (i = 0; i < n; ++i)

T: t[i] = a[i];

for (i = 0; i < n; ++i)

for (j = 0; j < n - i; ++j)

F: t[j] = f(t[j], t[j+1]);

for (i = 0; i < n; ++i)

B: b[i] = t[i];

M := parse_file("dep.c");

Write := M[1]; Read := M[2]; Sched := M[3];

last Write before Read under Sched;



Basic Concepts and Operations Transitive Closures November 22, 2011 15 / 33

Transitive Closures

trans

Given a graph (represented as an affine map)

M := { A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] };

A

B

What is the transitive closure?

⇒ Mˆ+;

A

B

Result:

({ B[] -> A[o0] : o0 <= 4 and o0 >= 3; B[] -> A[2];

A[i] -> A[o0] : i >= 0 and i <= 3 and o0 >= 1 and

o0 <= 4 and o0 >= 1 + i }, True

exact transitive closure

)



Basic Concepts and Operations Transitive Closures November 22, 2011 15 / 33

Transitive Closures

trans

Given a graph (represented as an affine map)

M := { A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] };

A

B

What is the transitive closure? ⇒ Mˆ+;

A

B

Result:

({ B[] -> A[o0] : o0 <= 4 and o0 >= 3; B[] -> A[2];

A[i] -> A[o0] : i >= 0 and i <= 3 and o0 >= 1 and

o0 <= 4 and o0 >= 1 + i }, True

exact transitive closure

)



Basic Concepts and Operations Transitive Closures November 22, 2011 15 / 33

Transitive Closures

trans

Given a graph (represented as an affine map)

M := { A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] };

A

B

What is the transitive closure? ⇒ Mˆ+;

A

B

Result:

({ B[] -> A[o0] : o0 <= 4 and o0 >= 3; B[] -> A[2];

A[i] -> A[o0] : i >= 0 and i <= 3 and o0 >= 1 and

o0 <= 4 and o0 >= 1 + i }, True

exact transitive closure

)



Basic Concepts and Operations Transitive Closures November 22, 2011 15 / 33

Transitive Closures

trans

Given a graph (represented as an affine map)

M := { A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] };

A

B

What is the transitive closure? ⇒ Mˆ+;

A

B

Result:

({ B[] -> A[o0] : o0 <= 4 and o0 >= 3; B[] -> A[2];

A[i] -> A[o0] : i >= 0 and i <= 3 and o0 >= 1 and

o0 <= 4 and o0 >= 1 + i }, True

exact transitive closure

)



Basic Concepts and Operations Transitive Closures November 22, 2011 16 / 33

Reachability Analysis

reach

double x[2][10];

int old = 0, new = 1, i, t;

for (t = 0; t<1000; t++) {

for (i = 0; i<10;i++)

x[new][i] = g(x[old][i]);

new = (new+1) %2; old = (old+1) %2;

}

Invariant between new and old?

T := {[new,old] -> [(new+1)%2,(old+1)%2]};

S0 := {[0,1]};

(Tˆ+)(S0);



Basic Concepts and Operations Transitive Closures November 22, 2011 16 / 33

Reachability Analysis

reach

double x[2][10];

int old = 0, new = 1, i, t;

for (t = 0; t<1000; t++) {

for (i = 0; i<10;i++)

x[new][i] = g(x[old][i]);

new = (new+1) %2; old = (old+1) %2;

}

Invariant between new and old?

T := {[new,old] -> [(new+1)%2,(old+1)%2]};

S0 := {[0,1]};

(Tˆ+)(S0);



Basic Concepts and Operations Basic Counting November 22, 2011 17 / 33

Cardinality

card1,card2,card3

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

card

number of elements in the set

S;

How many times is a given array element written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card

number of image elements

(Aˆ-1);

How many array elements are written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card (ran A);



Basic Concepts and Operations Basic Counting November 22, 2011 17 / 33

Cardinality

card1,card2,card3

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

card
number of elements in the set

S;

How many times is a given array element written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card

number of image elements

(Aˆ-1);

How many array elements are written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card (ran A);



Basic Concepts and Operations Basic Counting November 22, 2011 17 / 33

Cardinality

card1,card2,card3

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

card
number of elements in the set

S;

How many times is a given array element written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card

number of image elements

(Aˆ-1);

How many array elements are written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card (ran A);



Basic Concepts and Operations Basic Counting November 22, 2011 17 / 33

Cardinality

card1,card2,card3

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

card
number of elements in the set

S;

How many times is a given array element written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card number of image elements(Aˆ-1);

How many array elements are written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card (ran A);



Basic Concepts and Operations Basic Counting November 22, 2011 17 / 33

Cardinality

card1,card2,card3

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

card
number of elements in the set

S;

How many times is a given array element written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card number of image elements(Aˆ-1);

How many array elements are written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card (ran A);



Basic Concepts and Operations Basic Counting November 22, 2011 18 / 33

Quasipolynomials

card4

for (i = 1; i <= n; ++i)

for (j = 1; j <= n - 2 * i; ++j)

/* S */

How many times is S executed?

card [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= n - 2i };

Result:

[n] -> { ((-1/4 * n + 1/4 * nˆ2) - 1/2 * [(n)/2]

greatest integer part

) : n >= 3 }

That is,

−
n
4
+

n2

4
−

1
2

⌊n
2

⌋
if n ≥ 3.

Polynomial approximations
⇒ run iscc --polynomial-approximation



Basic Concepts and Operations Basic Counting November 22, 2011 18 / 33

Quasipolynomials

card4

for (i = 1; i <= n; ++i)

for (j = 1; j <= n - 2 * i; ++j)

/* S */

How many times is S executed?

card [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= n - 2i };

Result:

[n] -> { ((-1/4 * n + 1/4 * nˆ2) - 1/2 * [(n)/2]

greatest integer part

) : n >= 3 }

That is,

−
n
4
+

n2

4
−

1
2

⌊n
2

⌋
if n ≥ 3.

Polynomial approximations
⇒ run iscc --polynomial-approximation



Basic Concepts and Operations Basic Counting November 22, 2011 18 / 33

Quasipolynomials

card4

for (i = 1; i <= n; ++i)

for (j = 1; j <= n - 2 * i; ++j)

/* S */

How many times is S executed?

card [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= n - 2i };

Result:

[n] -> { ((-1/4 * n + 1/4 * nˆ2) - 1/2 * [(n)/2]

greatest integer part

) : n >= 3 }

That is,

−
n
4
+

n2

4
−

1
2

⌊n
2

⌋
if n ≥ 3.

Polynomial approximations
⇒ run iscc --polynomial-approximation



Basic Concepts and Operations Basic Counting November 22, 2011 18 / 33

Quasipolynomials

card4

for (i = 1; i <= n; ++i)

for (j = 1; j <= n - 2 * i; ++j)

/* S */

How many times is S executed?

card [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= n - 2i };

Result:

[n] -> { ((-1/4 * n + 1/4 * nˆ2) - 1/2 * [(n)/2]

greatest integer part

) : n >= 3 }

That is,

−
n
4
+

n2

4
−

1
2

⌊n
2

⌋
if n ≥ 3.

Polynomial approximations
⇒ run iscc --polynomial-approximation



Basic Concepts and Operations Computing Bounds November 22, 2011 19 / 33

Memory Requirements

bound

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p = malloc(i * j + i - N + 1);

/* ... */

free(p);

}

How much memory is needed?

ub [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};

Result:

([N] -> { max((1 - 2 * N + Nˆ2)) : N >= 1 }, True

bound is tight

)



Basic Concepts and Operations Computing Bounds November 22, 2011 19 / 33

Memory Requirements

bound

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p = malloc(i * j + i - N + 1);

/* ... */

free(p);

}

How much memory is needed?

ub [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};

Result:

([N] -> { max((1 - 2 * N + Nˆ2)) : N >= 1 }, True

bound is tight

)



Basic Concepts and Operations Computing Bounds November 22, 2011 19 / 33

Memory Requirements

bound

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p = malloc(i * j + i - N + 1);

/* ... */

free(p);

}

How much memory is needed?

ub [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};

Result:

([N] -> { max((1 - 2 * N + Nˆ2)) : N >= 1 }, True

bound is tight

)



Basic Concepts and Operations Computing Bounds November 22, 2011 19 / 33

Memory Requirements

bound

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p = malloc(i * j + i - N + 1);

/* ... */

free(p);

}

How much memory is needed?

ub [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};

Result:

([N] -> { max((1 - 2 * N + Nˆ2)) : N >= 1 }, True

bound is tight

)



Basic Concepts and Operations Weighted Counting November 22, 2011 20 / 33

Incremental Counting

sum1

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

direct computation

card [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

incremental computation

card [N] -> { [i] -> [j] : 0<=i<N and 0<=j<N-i };

Result:
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 }

sum

sum over all elements in domain

[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 };



Basic Concepts and Operations Weighted Counting November 22, 2011 20 / 33

Incremental Counting

sum1

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

direct computation

card [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

incremental computation

card [N] -> { [i] -> [j] : 0<=i<N and 0<=j<N-i };

Result:
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 }

sum

sum over all elements in domain

[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 };



Basic Concepts and Operations Weighted Counting November 22, 2011 20 / 33

Incremental Counting

sum1

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

direct computation

card [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

incremental computation

card [N] -> { [i] -> [j] : 0<=i<N and 0<=j<N-i };

Result:
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 }

sum

sum over all elements in domain

[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 };



Basic Concepts and Operations Weighted Counting November 22, 2011 20 / 33

Incremental Counting

sum1

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

direct computation

card [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

incremental computation

card [N] -> { [i] -> [j] : 0<=i<N and 0<=j<N-i };

Result:
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 }

sum

sum over all elements in domain
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 };



Basic Concepts and Operations Weighted Counting November 22, 2011 21 / 33

Total Memory Allocation

sum2

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j)

p[i][j] = malloc(i * j + i - N + 1);

/* ... */

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j)

free(p[i][j]);

How much memory allocated in total?

sum [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};



Basic Concepts and Operations Weighted Counting November 22, 2011 21 / 33

Total Memory Allocation

sum2

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j)

p[i][j] = malloc(i * j + i - N + 1);

/* ... */

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j)

free(p[i][j]);

How much memory allocated in total?

sum [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};



Basic Concepts and Operations Weighted Counting November 22, 2011 22 / 33

Weighted Counting

sum3,sum4

y

x2+y2

4

x

x

5+2x2

4

M : x → (x, y)

F := { [x,y] -> 1/4*xˆ2+1/4*yˆ2 : 1 <= x,y <= 2 };

D := dom F;

F(D);

⇒ sum of F over points in D
M := { [x] -> [x,y] };

F(M);

⇒ sum of F over image of M (alternative notation: M . F)



Basic Concepts and Operations Weighted Counting November 22, 2011 22 / 33

Weighted Counting

sum3,sum4

y

x2+y2

4

x

x

5+2x2

4

M : x → (x, y)

F := { [x,y] -> 1/4*xˆ2+1/4*yˆ2 : 1 <= x,y <= 2 };

D := dom F;

F(D);

⇒ sum of F over points in D
M := { [x] -> [x,y] };

F(M);

⇒ sum of F over image of M (alternative notation: M . F)



Basic Concepts and Operations Weighted Counting November 22, 2011 22 / 33

Weighted Counting

sum3,sum4

y

x2+y2

4

x

x

5+2x2

4

M : x → (x, y)

F := { [x,y] -> 1/4*xˆ2+1/4*yˆ2 : 1 <= x,y <= 2 };

D := dom F;

F(D);

⇒ sum of F over points in D

M := { [x] -> [x,y] };

F(M);

⇒ sum of F over image of M (alternative notation: M . F)



Basic Concepts and Operations Weighted Counting November 22, 2011 22 / 33

Weighted Counting

sum3,sum4

y

x2+y2

4

xx

5+2x2

4

M : x → (x, y)

F := { [x,y] -> 1/4*xˆ2+1/4*yˆ2 : 1 <= x,y <= 2 };

D := dom F;

F(D);

⇒ sum of F over points in D
M := { [x] -> [x,y] };

F(M);

⇒ sum of F over image of M (alternative notation: M . F)



Basic Concepts and Operations Weighted Counting November 22, 2011 22 / 33

Weighted Counting

sum3,sum4

y

x2+y2

4

xx

5+2x2

4
M : x → (x, y)

F := { [x,y] -> 1/4*xˆ2+1/4*yˆ2 : 1 <= x,y <= 2 };

D := dom F;

F(D);

⇒ sum of F over points in D
M := { [x] -> [x,y] };

F(M);

⇒ sum of F over image of M (alternative notation: M . F)



Basic Concepts and Operations Weighted Counting November 22, 2011 23 / 33

Compositions with Piecewise (Folds of)
Quasipolynomials

f . g;

f: D1 → D2 is a map
g: D2 → Q may be

I piecewise quasipolynomial
(result of counting problems)

⇒ take sum over intersection of ran f and dom g
I piecewise fold of quasipolynomials

(result of upper bound computation)

⇒ compute bound over intersection of ran f and dom g

(f . g): D1 → Q of same type as g

Note: if f is single-valued, then sum/bound is computed over a single point



Simple Applications November 22, 2011 24 / 33

Outline

1 Introduction

2 Basic Concepts and Operations
Sets and Iteration Domains
Maps and Code Generation
Access Relations and Polyhedral Model
Dependence Analysis
Transitive Closures
Basic Counting
Computing Bounds
Weighted Counting

3 Simple Applications
Pointer Conversion
Dynamic Memory Requirement Estimation
Reuse Distance Computation



Simple Applications Pointer Conversion November 22, 2011 25 / 33

Pointer Conversion

p = a;

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p += j * ((j-i)/4);

*p = hard_work(i,j);

}

Can we parallelize this code?

⇒ No, (false) dependency through p
⇒ Compute closed formula for p

p = a +
∑

(i′,j′)∈S
(i′,j′)4

lexicographically less than

(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }



Simple Applications Pointer Conversion November 22, 2011 25 / 33

Pointer Conversion

p = a;

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p += j * ((j-i)/4);

*p = hard_work(i,j);

}

Can we parallelize this code?

⇒ No, (false) dependency through p
⇒ Compute closed formula for p

p = a +
∑

(i′,j′)∈S
(i′,j′)4

lexicographically less than

(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }



Simple Applications Pointer Conversion November 22, 2011 25 / 33

Pointer Conversion

p = a;

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p += j * ((j-i)/4);

*p = hard_work(i,j);

}

Can we parallelize this code?

⇒ No, (false) dependency through p
⇒ Compute closed formula for p

p = a +
∑

(i′,j′)∈S
(i′,j′)4

lexicographically less than
(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }



Simple Applications Pointer Conversion November 22, 2011 26 / 33

Pointer Conversion

pointer

p = a +
∑

(i′,j′)∈S
(i′,j′)4(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }

S := [N] -> { [i,j] : 0 <= i < N and i <= j < N };

L := S <<=

map: (elements of) left set lexicographically smaller than right set

S;

INC := { [[i,j] -> [i’,j’]] -> j’ * [(j’-i’)/4] };

INC := INC * (wrap

embed map in a set

(Lˆ-1));

sum INC;

Note: if domain of argument to sum [ub] is an embedded map, then sum
[bound] is computed over range of embedded map



Simple Applications Pointer Conversion November 22, 2011 26 / 33

Pointer Conversion

pointer

p = a +
∑

(i′,j′)∈S
(i′,j′)4(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }

S := [N] -> { [i,j] : 0 <= i < N and i <= j < N };

L := S <<=

map: (elements of) left set lexicographically smaller than right set

S;

INC := { [[i,j] -> [i’,j’]] -> j’ * [(j’-i’)/4] };

INC := INC * (wrap

embed map in a set

(Lˆ-1));

sum INC;

Note: if domain of argument to sum [ub] is an embedded map, then sum
[bound] is computed over range of embedded map



Simple Applications Pointer Conversion November 22, 2011 26 / 33

Pointer Conversion

pointer

p = a +
∑

(i′,j′)∈S
(i′,j′)4(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }

S := [N] -> { [i,j] : 0 <= i < N and i <= j < N };

L := S <<=

map: (elements of) left set lexicographically smaller than right set

S;

INC := { [[i,j] -> [i’,j’]] -> j’ * [(j’-i’)/4] };

INC := INC * (wrap

embed map in a set

(Lˆ-1));

sum INC;

Note: if domain of argument to sum [ub] is an embedded map, then sum
[bound] is computed over range of embedded map



Simple Applications Pointer Conversion November 22, 2011 26 / 33

Pointer Conversion

pointer

p = a +
∑

(i′,j′)∈S
(i′,j′)4(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }

S := [N] -> { [i,j] : 0 <= i < N and i <= j < N };

L := S <<=

map: (elements of) left set lexicographically smaller than right set

S;

INC := { [[i,j] -> [i’,j’]] -> j’ * [(j’-i’)/4] };

INC := INC * (wrap

embed map in a set

(Lˆ-1));

sum INC;

Note: if domain of argument to sum [ub] is an embedded map, then sum
[bound] is computed over range of embedded map



Simple Applications Pointer Conversion November 22, 2011 26 / 33

Pointer Conversion

pointer

p = a +
∑

(i′,j′)∈S
(i′,j′)4(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }

S := [N] -> { [i,j] : 0 <= i < N and i <= j < N };

L := S <<=

map: (elements of) left set lexicographically smaller than right set

S;

INC := { [[i,j] -> [i’,j’]] -> j’ * [(j’-i’)/4] };

INC := INC * (wrap

embed map in a set

(Lˆ-1));

sum INC;

Note: if domain of argument to sum [ub] is an embedded map, then sum
[bound] is computed over range of embedded map



Simple Applications Dynamic Memory Requirement Estimation November 22, 2011 27 / 33

Dynamic Memory Requirement Estimation [CFGV2006]

mem1

How much memory is needed to execute the following program?

void m0(int m) {
for (c = 0; c < m; c++) {
m1(c); /*S1*/

B[] m2Arr = m2(2*m-c); /*S2*/

}

}

void m1(int k) {
for (i = 1; i <= k; i++) {
A a = new A(); /*S3*/

B[] dummyArr = m2(i); /*S4*/

}

}

B[] m2(int n) {
B[] arrB = new B[n]; /*S5*/

for (j = 1; j <= n; j++)
B b = new B(); /*S6*/

return arrB;
}

D := {

m0[m]->S1[c] : 0<=c<m;

m0[m]->S2[c] : 0<=c<m;

m1[k]->S3[i] : 1<=i<=k;

m1[k]->S4[i] : 1<=i<=k;

m2[n]->S5[];

m2[n]->S6[j] : 1<=j<=n

};

DM := (domain_map D)ˆ-1;



Simple Applications Dynamic Memory Requirement Estimation November 22, 2011 27 / 33

Dynamic Memory Requirement Estimation [CFGV2006]

mem1

How much memory is needed to execute the following program?

void m0(int m) {
for (c = 0; c < m; c++) {
m1(c); /*S1*/

B[] m2Arr = m2(2*m-c); /*S2*/

}

}

void m1(int k) {
for (i = 1; i <= k; i++) {
A a = new A(); /*S3*/

B[] dummyArr = m2(i); /*S4*/

}

}

B[] m2(int n) {
B[] arrB = new B[n]; /*S5*/

for (j = 1; j <= n; j++)
B b = new B(); /*S6*/

return arrB;
}

D := {

m0[m]->S1[c] : 0<=c<m;

m0[m]->S2[c] : 0<=c<m;

m1[k]->S3[i] : 1<=i<=k;

m1[k]->S4[i] : 1<=i<=k;

m2[n]->S5[];

m2[n]->S6[j] : 1<=j<=n

};

DM := (domain_map D)ˆ-1;



Simple Applications Dynamic Memory Requirement Estimation November 22, 2011 28 / 33

Dynamic Memory Requirement Estimation [CFGV2006]

mem2

How much (scoped) memory is needed?
⇒ compute for each method

retm size of memory returned by m

capm size of memory “captured” (not returned) by m

memRqm total memory requirements of m

memRqm = capm + max
p called by m

memRqp

B[] m2(int n) {

B[] arrB = new B[n];

for (j=1; j<=n; j++)

B b = new B();

return arrB;

}



Simple Applications Dynamic Memory Requirement Estimation November 22, 2011 28 / 33

Dynamic Memory Requirement Estimation [CFGV2006]

mem2

How much (scoped) memory is needed?
⇒ compute for each method

retm size of memory returned by m

capm size of memory “captured” (not returned) by m

memRqm total memory requirements of m

memRqm = capm + max
p called by m

memRqp

B[] m2(int n) {

B[] arrB = new B[n];

for (j=1; j<=n; j++)

B b = new B();

return arrB;

}



Simple Applications Dynamic Memory Requirement Estimation November 22, 2011 28 / 33

Dynamic Memory Requirement Estimation [CFGV2006]

mem2

How much (scoped) memory is needed?
⇒ compute for each method

retm size of memory returned by m

capm size of memory “captured” (not returned) by m

memRqm total memory requirements of m

memRqm = capm + max
p called by m

memRqp

B[] m2(int n) {

B[] arrB = new B[n];

for (j=1; j<=n; j++)

B b = new B();

return arrB;

}

ret_m2 := DM .

{ [m2[n] -> S5[]] -> n : n >= 0 };

cap_m2 := DM .

{ [m2[n] -> S6[j]] -> 1 };

req_m2 := cap_m2 +

{ m2[n] -> max(0) };



Simple Applications Dynamic Memory Requirement Estimation November 22, 2011 29 / 33

Dynamic Memory Requirement Estimation [CFGV2006]
void m1(int k) {

for (i = 1; i <= k; i++) {

A a = new A(); /* S3 */

B[] dummyArr = m2(i); /* S4 */

}

}

capm1(k) =
∑

1≤i≤k

(1 + retm2(i))

ret_m2 is a function of the arguments of m2
We want to use it as a function of the arguments and local variables of m1

⇒ define parameter binding

CB_m1 := { [m1[k] -> S4[i]] -> m2[i] };

cap_m1 := DM . ({ [m1[k]->S3[i]] -> 1 } + (CB_m1 . ret_m2));



Simple Applications Dynamic Memory Requirement Estimation November 22, 2011 29 / 33

Dynamic Memory Requirement Estimation [CFGV2006]
void m1(int k) {

for (i = 1; i <= k; i++) {

A a = new A(); /* S3 */

B[] dummyArr = m2(i); /* S4 */

}

}

capm1(k) =
∑

1≤i≤k

(1 + retm2(i))

ret_m2 is a function of the arguments of m2
We want to use it as a function of the arguments and local variables of m1
⇒ define parameter binding

CB_m1 := { [m1[k] -> S4[i]] -> m2[i] };

cap_m1 := DM . ({ [m1[k]->S3[i]] -> 1 } + (CB_m1 . ret_m2));



Simple Applications Dynamic Memory Requirement Estimation November 22, 2011 30 / 33

Dynamic Memory Requirement Estimation [CFGV2006]

mem3

void m1(int k) {

for (i = 1; i <= k; i++) {

A a = new A(); /* S3 */

B[] dummyArr = m2(i); /* S4 */

}

}

memRqm = capm + max
p called by m

memRqp

CB_m1 := { [m1[k] -> S4[i]] -> m2[i] };

ret_m1 := { m1[k] -> 0 };

cap_m1 := DM . ({ [m1[k]->S3[i]] -> 1 } + (CB_m1 . ret_m2));

req_m1 := cap_m1 + (DM . CB_m1 . req_m2);



Simple Applications Dynamic Memory Requirement Estimation November 22, 2011 31 / 33

Dynamic Memory Requirement Estimation [CFGV2006]

mem4

void m0(int m) {

for (c = 0; c < m; c++) {

m1(c); /* S1 */

B[] m2Arr = m2(2 * m - c); /* S2 */

}

}

CB_m0 := { [m0[m] -> S1[c]] -> m1[c];

[m0[m] -> S2[c]] -> m2[2 * m - c] };

ret_m0 := { m0[m] -> 0 };

cap_m0 := DM . CB_m0 . (ret_m1 + ret_m2);

req_m0 := cap_m0 + (DM . CB_m0 . (req_m1 .

combine reductions

req_m2));



Simple Applications Dynamic Memory Requirement Estimation November 22, 2011 31 / 33

Dynamic Memory Requirement Estimation [CFGV2006]

mem4

void m0(int m) {

for (c = 0; c < m; c++) {

m1(c); /* S1 */

B[] m2Arr = m2(2 * m - c); /* S2 */

}

}

CB_m0 := { [m0[m] -> S1[c]] -> m1[c];

[m0[m] -> S2[c]] -> m2[2 * m - c] };

ret_m0 := { m0[m] -> 0 };

cap_m0 := DM . CB_m0 . (ret_m1 + ret_m2);

req_m0 := cap_m0 + (DM . CB_m0 . (req_m1 .

combine reductions

req_m2));



Simple Applications Reuse Distance Computation November 22, 2011 32 / 33

Reuse Distance Computation
Given an access to a cache line `, how many distinct cache lines have
been accessed since the previous access to `?
⇒ Is the cache line still in the cache?

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

Assume A[i] in cache line bi/3c

i 0 1 2 3 4 5 6 7
r a b c a b c a b c a b c a b a b a b a b
r@i 0 7 0 1 6 2 2 5 4 3 4 6 4 3 5 2 6 1 7 0⌊
(r@i)/3

⌋
0 2 0 0 2 0 0 1 1 1 1 2 1 1 1 0 2 0 2 0

distance 0 0 2 1 2 2 1 0 1 1 1 3 2 1 1 3 3 2 2 2



Simple Applications Reuse Distance Computation November 22, 2011 32 / 33

Reuse Distance Computation
Given an access to a cache line `, how many distinct cache lines have
been accessed since the previous access to `?
⇒ Is the cache line still in the cache?

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

Assume A[i] in cache line bi/3c

i 0 1 2 3 4 5 6 7
r a b c a b c a b c a b c a b a b a b a b
r@i 0 7 0 1 6 2 2 5 4 3 4 6 4 3 5 2 6 1 7 0⌊
(r@i)/3

⌋
0 2 0 0 2 0 0 1 1 1 1 2 1 1 1 0 2 0 2 0

distance 0 0 2 1 2 2 1 0 1 1 1 3 2 1 1 3 3 2 2 2



Simple Applications Reuse Distance Computation November 22, 2011 32 / 33

Reuse Distance Computation
Given an access to a cache line `, how many distinct cache lines have
been accessed since the previous access to `?
⇒ Is the cache line still in the cache?

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

Assume A[i] in cache line bi/3c

i 0 1 2 3 4 5 6 7
r a b c a b c a b c a b c a b a b a b a b
r@i 0 7 0 1 6 2 2 5 4 3 4 6 4 3 5 2 6 1 7 0⌊
(r@i)/3

⌋
0 2 0 0 2 0 0 1 1 1 1 2 1 1 1 0 2 0 2 0

distance 0 0 2 1 2 2 1 0 1 1 1 3 2 1 1 3 3 2 2 2



Simple Applications Reuse Distance Computation November 22, 2011 33 / 33

Reuse Distance Computation

brd

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

domain
cache

time

A

S

M

NEXT

Assume A[i] in cache line bi/3c

D := { a[i] : 0 <= i <= 7; b[i] : 0 <= i <= 7; c[i] : 0 <= i <= 3 };

C := { A[i] -> L[j] : exists a = [i/3] : j = a };

A := ({ a[i] -> A[i]; b[i] -> A[7-i]; c[i] -> A[2i] } . C) * D;

S := { a[i] -> [i,0]; b[i] -> [i,1]; c[i] -> [i,2] } * D;

TIME := ran S; LT := TIME << TIME; LE := TIME <<= TIME;

T := ((Sˆ-1) . A . (Aˆ-1) . S) * LT;

M := lexmin T;

NEXT := S . M . (Sˆ-1); # map to next access to same cache line

AFTER_PREV := (NEXTˆ-1) . (S . LE . (Sˆ-1));

BEFORE := S . (LEˆ-1) . (Sˆ-1);

card ((AFTER_PREV * BEFORE) . A);



Simple Applications Reuse Distance Computation November 22, 2011 33 / 33

Reuse Distance Computation

brd

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

domain
cache

time

A

S

M

NEXT

Assume A[i] in cache line bi/3c

D := { a[i] : 0 <= i <= 7; b[i] : 0 <= i <= 7; c[i] : 0 <= i <= 3 };

C := { A[i] -> L[j] : exists a = [i/3] : j = a };

A := ({ a[i] -> A[i]; b[i] -> A[7-i]; c[i] -> A[2i] } . C) * D;

S := { a[i] -> [i,0]; b[i] -> [i,1]; c[i] -> [i,2] } * D;

TIME := ran S; LT := TIME << TIME; LE := TIME <<= TIME;

T := ((Sˆ-1) . A . (Aˆ-1) . S) * LT;

M := lexmin T;

NEXT := S . M . (Sˆ-1); # map to next access to same cache line

AFTER_PREV := (NEXTˆ-1) . (S . LE . (Sˆ-1));

BEFORE := S . (LEˆ-1) . (Sˆ-1);

card ((AFTER_PREV * BEFORE) . A);



Simple Applications Reuse Distance Computation November 22, 2011 33 / 33

Reuse Distance Computation

brd

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

domain
cache

time

A

S

M

NEXT

Assume A[i] in cache line bi/3c

D := { a[i] : 0 <= i <= 7; b[i] : 0 <= i <= 7; c[i] : 0 <= i <= 3 };

C := { A[i] -> L[j] : exists a = [i/3] : j = a };

A := ({ a[i] -> A[i]; b[i] -> A[7-i]; c[i] -> A[2i] } . C) * D;

S := { a[i] -> [i,0]; b[i] -> [i,1]; c[i] -> [i,2] } * D;

TIME := ran S; LT := TIME << TIME; LE := TIME <<= TIME;

T := ((Sˆ-1) . A . (Aˆ-1) . S) * LT;

M := lexmin T;

NEXT := S . M . (Sˆ-1); # map to next access to same cache line

AFTER_PREV := (NEXTˆ-1) . (S . LE . (Sˆ-1));

BEFORE := S . (LEˆ-1) . (Sˆ-1);

card ((AFTER_PREV * BEFORE) . A);


	Introduction
	Basic Concepts and Operations
	Sets and Iteration Domains
	Maps and Code Generation
	Access Relations and Polyhedral Model
	Dependence Analysis
	Transitive Closures
	Basic Counting
	Computing Bounds
	Weighted Counting

	Simple Applications
	Pointer Conversion
	Dynamic Memory Requirement Estimation
	Reuse Distance Computation


