iscc Tutorial

Sven Verdoolaege

Team ALCHEMY, INRIA Saclay, France
Sven.Verdoolaege@inria.fr

November 22, 2011

Outline

(1) Introduction
(2) Basic Concepts and Operations

- Sets and Iteration Domains
- Maps and Code Generation
- Access Relations and Polyhedral Model
- Dependence Analysis
- Transitive Closures
- Basic Counting
- Computing Bounds
- Weighted Counting
(3) Simple Applications
- Pointer Conversion
- Dynamic Memory Requirement Estimation
- Reuse Distance Computation

Outline

(1) Introduction

(2) Basic Concepts and Operations

- Sets and Iteration Domains
- Maps and Code Generation
- Access Relations and Polyhedral Model
- Dependence Analysis
- Transitive Closures
- Basic Counting
- Computing Bounds
- Weighted Counting
(3) Simple Applications
- Pointer Conversion
- Dynamic Memory Requirement Estimation
- Reuse Distance Computation

Introduction

- What is iscc?
\Rightarrow interactive interface to the barvinok counting library
\Rightarrow also provides interface to the CLooG code generation library, to the pet polyhedral model extractor and to some operations of the isl integer set library
\Rightarrow inspired by Omega Calculator from the Omega Project

Introduction

- What is iscc?
\Rightarrow interactive interface to the barvinok counting library
\Rightarrow also provides interface to the CLooG code generation library, to the pet polyhedral model extractor and to some operations of the isl integer set library
\Rightarrow inspired by Omega Calculator from the Omega Project
- Where to get iscc?
\Rightarrow currently distributed as part of barvinok package
\Rightarrow available from http://freecode.com/projects/barvinok/

Introduction

- What is iscc?
\Rightarrow interactive interface to the barvinok counting library
\Rightarrow also provides interface to the CLooG code generation library, to the pet polyhedral model extractor and to some operations of the isl integer set library
\Rightarrow inspired by Omega Calculator from the Omega Project
- Where to get iscc?
\Rightarrow currently distributed as part of barvinok package
\Rightarrow available from http://freecode.com/projects/barvinok/
- How to run iscc?
\Rightarrow compile and install barvinok following the instructions in README
\Rightarrow run iscc
Note: iscc currently does not use readline, so you may want to use a readline front-end: rlwrap iscc

Introduction

- What is iscc?
\Rightarrow interactive interface to the barvinok counting library
\Rightarrow also provides interface to the CLooG code generation library, to the pet polyhedral model extractor and to some operations of the isl integer set library
\Rightarrow inspired by Omega Calculator from the Omega Project
- Where to get iscc?
\Rightarrow currently distributed as part of barvinok package
\Rightarrow available from http://freecode.com/projects/barvinok/
- How to run iscc?
\Rightarrow compile and install barvinok following the instructions in README
\Rightarrow run iscc
Note: iscc currently does not use readline, so you may want to use a readline front-end: rlwrap iscc

Examples from polyhedral model for program analysis and transformation

Interaction with Libraries

isl: manipulates parametric affine sets and relations barvinok: counts elements in parametric affine sets and relations CLooG: generates code to scan elements in parametric affine sets pet: extracts polyhedral model

Interaction with Libraries

isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations CLooG: generates code to scan elements in parametric affine sets pet: extracts polyhedral model

Future work:

- remove dependence on PolyLib and NTL

Interaction with Libraries

isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations CLooG: generates code to scan elements in parametric affine sets pet: extracts polyhedral model

Future work:

- remove dependence on PolyLib and NTL

Interaction with Libraries

isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations CLooG: generates code to scan elements in parametric affine sets pet: extracts polyhedral model

Future work:

- remove dependence on PolyLib and NTL
- merge barvinok into isl

Outline

Introduction

(2) Basic Concepts and Operations

- Sets and Iteration Domains
- Maps and Code Generation
- Access Relations and Polyhedral Model
- Dependence Analysis
- Transitive Closures
- Basic Counting
- Computing Bounds
- Weighted Counting

Simple Applications

- Pointer Conversion
- Dynamic Memory Requirement Estimation
- Reuse Distance Computation

Iteration Domains and Sets

$$
\begin{aligned}
\text { for } & (\mathrm{i}=1 ; \mathrm{i}<=5 ;++\mathrm{i}) \\
& \text { for }(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{i} ;++\mathrm{j}) \\
& / * S * /
\end{aligned}
$$

Iteration Domains and Sets

for
(i = 1; i <= 5; ++i)
for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$) /* S */

Iteration Domains and Sets

for (i = 1; i <= 5; ++i) for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$) /* S */

$$
\{[\mathrm{i}, \mathrm{j}]: 1<=\mathrm{i}<=5 \text { and } 1<=\mathrm{j}<=\mathrm{i}\}
$$

Iteration Domains and Sets

for (i = 1; i <= 5; ++i) for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$) /* S */
set variables

$\{\llbracket i, j \rrbracket: 1<=i<=5$ and $1<=j<=i\}$

Iteration Domains and Sets

for (i = 1; i <= 5; ++i) for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$) /* S */
set variables

$\{[i, j]: 1<=\mathrm{i}<=5$ and $1<=\mathrm{j}<=\mathrm{i}\}$
Presburger formula

Iteration Domains and Sets

for
(i = 1; i <= n; ++i)
for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$)

$$
/ * S * /
$$

set variables

[n] $->\{[i, j]: 1<=i<=n$ and $1<=j<=i\}$
Presburger formula

Iteration Domains and Sets

for
(i = 1; i <= n; ++i)
for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$) /* S */
set variables

[n] -> $\{\mathrm{i}, \mathrm{j}]: 1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{i}\}$
parameters
Presburger formula

Set Variables and Parameters

- set variables
- local to set
- identified by position
- parameters (symbolic constants)
- global
- identified by name

Set Variables and Parameters

- set variables
- local to set
- identified by position
- parameters (symbolic constants)
- global
- identified by name

$$
\text { [n] -> }\{[i, j]: 1<=i<=n \text { and } 1<=j<=i\}
$$

is equal to
[n] -> \{ [a,b] : $1<=\mathrm{a}<=\mathrm{n}$ and $1<=\mathrm{b}<=\mathrm{a}\}$
but not equal to
[n] -> \{ [j,i] : 1 <= i <= n and $1<=$ j <= i \}
or
[m] -> \{ [i,j] : $1<=\mathrm{i}<=\mathrm{m}$ and $1<=\mathrm{j}<=\mathrm{i}\}$

Code Generation, Schedules and Maps

for (i = 1; i <= n; ++i)
for ($\mathrm{j}=1$; j <= i ; ++j) /* S */
codegen [n] -> \{ [i,j] : 1 <= i <= n and 1 <= j <= i$\}$;
\Rightarrow generate code that visits elements in lexicographic order

Code Generation, Schedules and Maps

for (i = 1; i <= n; ++i)
for ($\mathrm{j}=1$; j <= i ; ++j) /* S */
codegen [n] -> \{ [i,j] : 1 <= i <= n and $1<=\mathrm{j}<=\mathrm{i}\}$;
\Rightarrow generate code that visits elements in lexicographic order
What if a different order is needed?
\Rightarrow apply a schedule: maps iterations domain to multi-dimensional time
\Rightarrow multi-dimensional time is ordered lexicographically
Example: interchange i and j
\{[i,j] -> [t1, t2] : t1 = j and t2 = i\}

Code Generation, Schedules and Maps

for (i = 1; i <= n; ++i)
for ($\mathrm{j}=1$; j <= i ; ++j) /* S */
codegen [n] -> \{ [i,j] : 1 <= i <= n and $1<=\mathrm{j}<=\mathrm{i}\}$;
\Rightarrow generate code that visits elements in lexicographic order
What if a different order is needed?
\Rightarrow apply a schedule: maps iterations domain to multi-dimensional time
\Rightarrow multi-dimensional time is ordered lexicographically
Example: interchange i and j
$\{[\mathrm{i}, \mathrm{j}]$-> [$\mathrm{t} 1, \mathrm{t} 2]$: $\mathrm{t} 1=\mathrm{j}$ and $\mathrm{t} 2=\mathrm{i}\}$ or $\{[\mathrm{i}, \mathrm{j}]$-> $[\mathrm{j}, \mathrm{i}]\}$

Code Generation, Schedules and Maps

for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; ++i)

$$
\text { for }(j=1 ; j<=i ;++j)
$$

$$
/ * S * /
$$

codegen [n] -> \{ [i,j] : $1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{i}\} ;$
\Rightarrow generate code that visits elements in lexicographic order
What if a different order is needed?
\Rightarrow apply a schedule: maps iterations domain to multi-dimensional time
\Rightarrow multi-dimensional time is ordered lexicographically
Example: interchange i and j
$\{[i, j]$-> [t1, t2] : t1 = j and $t 2=i\}$ or $\{[i, j]->[j, i]\}$
S := [n] -> \{ [i,j] : $1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{i}\} ;$
codegen (\{[i,j] -> [j,i]\} * S);

Code Generation, Schedules and Maps

for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; ++i)

$$
\text { for }(j=1 ; j<=i ;++j)
$$

$$
/ * S * /
$$

codegen [n] -> \{ [i,j] : $1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{i}\} ;$
\Rightarrow generate code that visits elements in lexicographic order
What if a different order is needed?
\Rightarrow apply a schedule: maps iterations domain to multi-dimensional time
\Rightarrow multi-dimensional time is ordered lexicographically
Example: interchange i and j
$\{[i, j]->[t 1, t 2]: ~ t 1=j$ and $t 2=i\}$ or $\{[i, j]->[j, i]\}$
S := [n] -> \{ [i,j] : $1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{i}\} ;$
codegen (\{[i,j] -> [j,i]\} *S);
intersect domain of map on the left with set on the right

Code Generation, Schedules and Maps

Generating code for more than one domain/statement
\Rightarrow domains should be named to distinguish them from each other
\Rightarrow schedule is required because no ordering defined over domains with different names

Code Generation, Schedules and Maps

Generating code for more than one domain/statement
\Rightarrow domains should be named to distinguish them from each other
\Rightarrow schedule is required because no ordering defined over domains with different names

Examples:
$\mathrm{S}:=[\mathrm{n}]->\{\mathrm{A}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}$; $\mathrm{B}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}\}$;
M := \{ A[i] -> [0,i]; B[i] -> [1,i] \};
codegen (M * S);

Code Generation, Schedules and Maps

Generating code for more than one domain/statement
\Rightarrow domains should be named to distinguish them from each other
\Rightarrow schedule is required because no ordering defined over domains with different names
(optional) name of space
Examples:
$\mathrm{S}:=[\mathrm{n}]->\{\mathrm{A}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}$; $\mathrm{B}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}\}$;
M := \{ A[i] -> [0,i]; B[i] -> [1,i] \};
codegen (M * S);

Code Generation, Schedules and Maps

Generating code for more than one domain/statement
\Rightarrow domains should be named to distinguish them from each other
\Rightarrow schedule is required because no ordering defined over domains with different names
(optional) name of space disjunction
Examples:
$S:=[n]->\{A[i]: 0<=i<=n ; B[i]: 0<=i<=n\} ;$
$M:=\{A[i]->[0, i] ; B[i]->[1, i]\} ;$
codegen $(M * S) ;$

Code Generation, Schedules and Maps

Generating code for more than one domain/statement
\Rightarrow domains should be named to distinguish them from each other
\Rightarrow schedule is required because no ordering defined over domains with different names
(optional) name of space disjunction
Examples:
$S:=[n]->\{A[i]: Q<=i<=n ; B[i]: 0<=i<=n\} ;$
$M:=\{A[i]->[0, i] ; B[i]->[1, i]\} ;$
codegen $(M * S) ;$

all elements of A before any element of B

Code Generation, Schedules and Maps

Generating code for more than one domain/statement
\Rightarrow domains should be named to distinguish them from each other
\Rightarrow schedule is required because no ordering defined over domains with different names
(optional) name of space disjunction
Examples:
$\mathrm{S}:=[\mathrm{n}]$-> $\{\mathrm{A}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n} ; \mathrm{B}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}\}$;
M := \{ A[i] -> [0,i]; B[i] -> [1,i] \};
codegen (M * S);
all elements of A before any element of B
S := [n] -> \{ $\mathrm{A}[\mathrm{i}]$: $0<=\mathrm{i}<=\mathrm{n}$; B[i] : $0<=\mathrm{i}<=\mathrm{n}\} ;$
M := \{ A[i] -> [i,1]; B[i] -> [i,0] \};
codegen (M * S);

Code Generation, Schedules and Maps

Generating code for more than one domain/statement
\Rightarrow domains should be named to distinguish them from each other
\Rightarrow schedule is required because no ordering defined over domains with different names
(optional) name of space disjunction
Examples:
$\mathrm{S}:=[\mathrm{n}]$-> $\{\mathrm{A}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n} ; \mathrm{B}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}\} ;$
M := \{ A[i] -> [0,i]; B[i] -> [1,i] \};
codegen (M * S);
all elements of A before any element of B
S := [n] -> \{ $\mathrm{A}[\mathrm{i}]$: $0<=\mathrm{i}<=\mathrm{n}$; B[i] : $0<=\mathrm{i}<=\mathrm{n}\} ;$
M := \{ A[i] -> [i,1]; B[i] -> [i,0] \};
codegen (M * S);
each element of A after corresponding element of B

Access Relations and Polyhedral Model

Simple program with temporary array t :

```
for (i = 0; i < N; ++i)
S1: t[i] = f(a[i]);
for (i = 0; i < N; ++i)
S2: b[i] = g(t[N-i-1]);
```

An access relation maps an iteration to an array index For example, the access relation for the read in S2:
[N] -> \{ S2[i] -> t[N-i-1] \}

Access Relations and Polyhedral Model

Simple program with temporary array t:

```
for (i = 0; i < N; ++i)
S1: t[i] = f(a[i]);
for (i = 0; i < N; ++i)
S2: b[i] = g(t[N-i-1]);
```

An access relation maps an iteration to an array index For example, the access relation for the read in S2:
[N] -> \{ S2[i] -> t[N-i-1] \}
Polyhedral model of a program consists of

- iteration domains
- access relations (reads and writes)
- schedule

M := parse_file("simple.c");
D := M[0]; W := M[1]; R := M[2]; S := M[3];

Lexicographic Optimization

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i})$
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$) $a[i+j]=f(a[i+j]) ;$

- What is the last iteration of the loop?
S := [N] -> \{ [i,j] : $0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\} ;$
lexmax S;

Lexicographic Optimization

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i})$
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$) $a[i+j]=f(a[i+j]) ;$

- What is the last iteration of the loop?
$\mathrm{S}:=[\mathrm{N}]->\{[\mathrm{i}, \mathrm{j}]: 0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\} ;$
lexmax S; lexicographically last element of set

Lexicographic Optimization

$$
\begin{gathered}
\text { for }(i=0 ; i<N ;++i) \\
f o r \quad(j=0 ; j<N-i ;++j) \\
a[i+j]=f(a[i+j]) ;
\end{gathered}
$$

- What is the last iteration of the loop?

S := [N] -> \{ [i,j] : $0<=i<N$ and $0<=j<N-i \quad\} ;$ lexmax S; lexicographically last element of set

- When is a given array element accessed last?
$A:=[N]->\{[i, j]->a[i+j]: 0<=i<N$ and $0<=j<N-i\} ;$
lexmax ($\mathrm{A}^{\wedge}-1$);

Lexicographic Optimization

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i})$
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)
$a[i+j]=f(a[i+j])$;

- What is the last iteration of the loop?
S := [N] -> \{ [i,j] : $0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\} ;$ lexmax S; lexicographically last element of set
- When is a given array element accessed last?
$A:=[N]->\{[i, j]->a[i+j]: 0<=i<N$ and $0<=j<N-i\} ;$
lexmax (${ }^{\wedge}-1$);

Lexicographic Optimization

$$
\begin{gathered}
\text { for }(i=0 ; i<N ;++i) \\
\quad \text { for }(j=0 ; j<N-i ;++j) \\
a[i+j]=f(a[i+j]) ;
\end{gathered}
$$

- What is the last iteration of the loop?
$\mathrm{S}:=[\mathrm{N}]->\{[\mathrm{i}, \mathrm{j}]: 0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\} ;$ lexmax S; lexicographically last element of set
- When is a given array element accessed last?

lexicographically last image element

Dependence Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
W: Write(a[i]);
```


Dependence Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
W: Write(a[i]);
```


Dependence Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; ++i)

$$
\text { for }(j=0 ; j<N-i ;++j)
$$

F: $\quad a[i+j]=f(a[i+j])$;
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; ++i)
W: Write(a[i]);
Access relations:

$$
\begin{aligned}
& A 1:=[N]->\{F[i, j]->a[i+j]: 0<=i<N \text { and } 0<=j<N-i\} ; \\
& A 2:=[N]->\{W[i]->a[i]: 0<=i<N\} ;
\end{aligned}
$$

Dependence Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; ++i)

$$
\text { for }(j=0 ; j<N-i ;++j)
$$

F: $\quad a[i+j]=f(a[i+j])$;
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; ++i)

W: Write(a[i]);
Access relations:
A1:=[N]->\{F[i,j]->a[i+j]: $0<=i<N$ and $0<=j<N-i\} ;$ A2:=[N]->\{W[i] -> a[i] : 0 <= i < N \};
Map to all writes: R := A2 . (A1^-1);

Dependence Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; ++i)

$$
\text { for (} \mathrm{j}=0 ; \mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j} \text {) }
$$

F: $\quad a[i+j]=f(a[i+j])$;
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; ++i)

W: Write(a[i]);
Access relations:
A1:=[N]->\{F[i,j]->a[i+j]: $0<=i<N$ and $0<=j<N-i\} ;$
A2:=[N]->\{W[i] -> a[i] : 0 <= i < N \};
Map to all writes: R := A2 . (A1^-1);
Last write: lexmax R;

Dependence Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; ++i)

$$
\text { for (} \mathrm{j}=0 ; \mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j} \text {) }
$$

F: $\quad a[i+j]=f(a[i+j])$;
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; ++i)

W: Write(a[i]);
Access relations:
$A 1:=[N]->\{F[i, j]->a[i+j]: 0<=i<N$ and $0<=j<N-i\}$;
A2:=[N]->\{W[i] -> a[i] : 0 <= i < N \};
Map to all writes: R := A2 . (A1^-1);
Last write: lexmax R ;
In general: impose lexicographical order on shared iterators

Dependence Analysis

In general:
last Write before Read under Schedule
Result: last write + set of reads without corresponding write

Dependence Analysis

In general:
last Write before Read under Schedule
Result: last write + set of reads without corresponding write

```
for (i = 0; i < n; ++i)
T: t[i] = a[i];
for (i = 0; i < n; ++i)
    for ( \(\mathrm{j}=0\); j < \(\mathrm{n}-\mathrm{i}\); + j )
F: \(\quad t[j]=f(t[j], t[j+1])\);
for (i = 0; i < n; ++i)
B: b[i] = t[i];
M := parse_file("dep.c");
Write := M[1]; Read := M[2]; Sched := M[3];
last Write before Read under Sched;
```


Transitive Closures

Given a graph (represented as an affine map)
M := \{ A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] \};

What is the transitive closure?

Transitive Closures

Given a graph (represented as an affine map)
M := \{ A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] \};

What is the transitive closure? $\Rightarrow M^{\wedge}+$;

Transitive Closures

Given a graph (represented as an affine map)
M := \{ A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] \};

What is the transitive closure? $\Rightarrow M^{\wedge}+$;

Result:
(\{ B[] -> $\mathrm{A}[\mathrm{OD}]$: $\mathrm{OQ}<=4$ and $\mathrm{OD}>=3$; B[] -> $\mathrm{A}[2]$;
$\mathrm{A}[\mathrm{i}]$-> $\mathrm{A}[00]$: $\mathrm{i}>=0$ and $\mathrm{i}<=3$ and $00>=1$ and $O 0<=4$ and $O Q>=1+i$ \}, True)

Transitive Closures

Given a graph (represented as an affine map)
M := \{ A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] \};

What is the transitive closure? $\Rightarrow M^{\wedge}+$;

Result:
(\{ B[]$->\mathrm{A}[00]$: $\mathrm{OO}<=4$ and $\mathrm{O} 0>=弓$; B[] -> $\mathrm{A}[2]$; $A[i] ~->A[O 0]$: $i>=0$ and $i<=3$ and $00>=1$ and $O 0<=4$ and $O 0>=1+i$ \}, True

Reachability Analysis

```
double x[2][10];
int old = 0, new = 1, i, t;
for (t = 0; t<1000; t++) {
    for (i = 0; i<10;i++)
    x[new][i] = g(x[old][i]);
    new = (new+1) %2; old = (old+1) %2;
}
```

Invariant between new and old?

Reachability Analysis

```
double x[2][10];
int old = 0, new = 1, i, t;
for (t = 0; t<1000; t++) {
    for (i = 0; i<10;i++)
        x[new][i] = g(x[old][i]);
        new = (new+1) %2; old = (old+1) %2;
}
```

Invariant between new and old?

T := \{[new,old] -> [(new+1)\%2,(old+1)\%2]\};
S0 := \{[0,1]\};
(T^+)(SQ);

Cardinality

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)

$$
a[i+j]=f(a[i+j]) ;
$$

- How many times is the statement executed?

$$
\begin{aligned}
& S:=[N]->\{[i, j]: 0<=i<N \text { and } 0<=j<N-i\} ; \\
& \text { card } S ;
\end{aligned}
$$

Cardinality

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)

$$
a[i+j]=f(a[i+j]) ;
$$

- How many times is the statement executed?

$$
\begin{aligned}
& \mathrm{S}:=[\mathrm{N}]->\{[\mathrm{i}, \mathrm{j}]: 0<=\mathrm{i}<\mathrm{N} \text { and } 0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\} ; \\
& \text { card } \mathrm{S} ; \\
&
\end{aligned}
$$

Cardinality

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)

$$
a[i+j]=f(a[i+j]) ;
$$

- How many times is the statement executed?

$$
\begin{aligned}
& \mathrm{S}:=[\mathrm{N}]->\{[\mathrm{i}, \mathrm{j}]: \mathrm{Q}<=\mathrm{i}<\mathrm{N} \text { and } 0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\} ; \\
& \text { card } \mathrm{S} ; \\
& \text { number of elements in the set }
\end{aligned}
$$

- How many times is a given array element written?
$A:=[N]->\{[i, j]->a[i+j]: 0<=i<N$ and $0<=j<N-i\} ;$
card (A^-1);

Cardinality

for (i = 0; $\mathrm{i}<\mathrm{N}$; ++i)

$$
a[i+j]=f(a[i+j]) ;
$$

- How many times is the statement executed?

$$
\begin{aligned}
& \mathrm{S}:=[\mathrm{N}]->\{[\mathrm{i}, \mathrm{j}]: 0<=\mathrm{i}<\mathrm{N} \text { and } 0<=\mathbf{j}<\mathrm{N}-\mathrm{i}\} ; \\
& \text { card } \mathrm{S} ; \\
& \text { number of elements in the set }
\end{aligned}
$$

- How many times is a given array element written?

$$
\begin{aligned}
& A:=[N]->\{[i, j]->a[i+j]: 0<=i<N \text { and } 0<=j<N-i\} ; \\
& \operatorname{card}\left(A^{\wedge}-1\right) ; \text { number of image elements }
\end{aligned}
$$

Cardinality

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)
$a[i+j]=f(a[i+j])$;

- How many times is the statement executed?

$$
\begin{aligned}
& S:=[N]->\{[i, j]: 0<=i<N \text { and } 0<=j<N-i\} ; \\
& \text { card } S ; \\
& \text { number of elements in the set }
\end{aligned}
$$

- How many times is a given array element written?
$A:=[N]->\{[i, j]->a[i+j]: 0<=i<N$ and $0<=j<N-i\} ;$
card (A^-1);
- How many array elements are written?
$A:=[N]->\{[i, j]->a[i+j]: 0<=i<N$ and $0<=j<N-i\} ;$
card (ran A);

Quasipolynomials

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<=n ;++\mathrm{i}) \\
& \quad \text { for }(j=1 ; j<=n-2 * i ;++j) \\
& \quad / * S *
\end{aligned}
$$

How many times is S executed?
card [n] -> \{ [i,j] : $1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{n}-2 \mathrm{i}\}$;

Quasipolynomials

for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; ++i)
for ($\mathrm{j}=1$; $\mathrm{j}<=\mathrm{n}-2$ * i ; ++j) /* S */

How many times is S executed?
card [n] -> \{ [i,j] : $1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{n}-2 \mathrm{i}\}$;
Result:
[n] -> \{ ($\left.\left.\left(-1 / 4 * \mathrm{n}+1 / 4 * \mathrm{n}^{\wedge} 2\right)-1 / 2 *[(\mathrm{n}) / 2]\right): \mathrm{n}>=3\right\}$
That is,

$$
-\frac{n}{4}+\frac{n^{2}}{4}-\frac{1}{2}\left\lfloor\frac{n}{2}\right\rfloor \quad \text { if } n \geq 3
$$

Quasipolynomials

for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; ++i)
for ($\mathrm{j}=1$; $\mathrm{j}<=\mathrm{n}-2$ * i ; ++j) /*S */

How many times is S executed?
card [n] -> \{ [i,j] : $1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{n}-2 \mathrm{i}\}$;
Result:
greatest integer part
$[\mathrm{n}]->\left\{\left(\left(-1 / 4 * \mathrm{n}+1 / 4 * \mathrm{n}^{\wedge} 2\right)-1 / 2 *[(\mathrm{n}) / 2]\right): \mathrm{n}>=3\right\}$
That is,

$$
-\frac{n}{4}+\frac{n^{2}}{4}-\frac{1}{2}\left\lfloor\frac{n}{2}\right\rfloor \quad \text { if } n \geq 3
$$

Quasipolynomials

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<=n ;++\mathrm{i}) \\
& \quad \text { for }(j=1 ; j<=n-2 * i ;++j) \\
& / * S * /
\end{aligned}
$$

How many times is S executed?
card [n] -> \{ [i,j] : $1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{n}-2 \mathrm{i}\}$;
Result:
$[\mathrm{n}]->\left\{\left(\left(-1 / 4 * \mathrm{n}+1 / 4 * \mathrm{n}^{\wedge} 2\right)-1 / 2 *[(\mathrm{n}) / 2]\right): \mathrm{n}>=3\right\}$
That is,

$$
-\frac{n}{4}+\frac{n^{2}}{4}-\frac{1}{2}\left\lfloor\frac{n}{2}\right\rfloor \quad \text { if } n \geq 3
$$

Polynomial approximations
\Rightarrow run iscc --polynomial-approximation

Memory Requirements

```
for (i = 0; i < N ; ++i)
for ( \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) ) \{
    \(\mathrm{p}=\) malloc (i * \(\mathrm{j}+\mathrm{i}-\mathrm{N}+1\) );
    /* ... */
    free(p);
    \}
```

How much memory is needed?

Memory Requirements

```
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{N}\); ++i)
for ( \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) ) \{
    \(\mathrm{p}=\) malloc(i * \(\mathrm{j}+\mathrm{i}-\mathrm{N}+1)\);
    /* ... */
    free (p) ;
    \}
```

How much memory is needed? ub [N] -> \{[i,j] -> i*j+i-N+1: $0<=\mathrm{i}<\mathrm{N}$ and $\mathrm{i}<=\mathrm{j}<\mathrm{N}\}$;

Memory Requirements

```
for (i = 0 ; \(\mathrm{i}<\mathrm{N}\); ++i)
for (j \(=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) ) \{
    \(\mathrm{p}=\operatorname{malloc}(\mathrm{i} * \mathrm{j}+\mathrm{i}-\mathrm{N}+1)\);
    /* ... */
    free (p) ;
    \}
```

How much memory is needed?
ub [N] -> \{[i,j] -> i*j+i-N+1: $0<=\mathrm{i}<\mathrm{N}$ and $\mathrm{i}<=\mathrm{j}<\mathrm{N}\}$;
Result:
([N] -> $\left\{\max \left(\left(1-2 * N+N^{\wedge} 2\right)\right): N>=1\right\}$, True)

Memory Requirements

```
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{N}\); ++i)
for (j \(=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) ) \{
    \(\mathrm{p}=\operatorname{malloc}(\mathrm{i} * \mathrm{j}+\mathrm{i}-\mathrm{N}+1)\);
    /* ... */
    free (p) ;
    \}
```

How much memory is needed?
ub [N] -> \{[i,j] -> i*j+i-N+1: $0<=\mathrm{i}<\mathrm{N}$ and $\mathrm{i}<=\mathrm{j}<\mathrm{N}\}$;
Result:

$$
\left([N]->\left\{\max \left(\left(1-2 * N+N^{\wedge} 2\right)\right): N>=1\right\},\right. \text { True) }
$$

Incremental Counting

$$
\begin{gathered}
\text { for }(i=0 ; i<N ;++i) \\
\text { for }(j=0 ; j<N-i ;++j) \\
a[i+j]=f(a[i+j]) ;
\end{gathered}
$$

How many times is the statement executed?

- direct computation
card [N] -> \{ [i,j] : $0<=i<N$ and $0<=j<N-i \quad\} ;$

Incremental Counting

$$
\begin{gathered}
\text { for }(i=0 ; i<N ;++i) \\
f \text { for }(j=0 ; j<N-i ;++j) \\
a[i+j]=f(a[i+j]) ;
\end{gathered}
$$

How many times is the statement executed?

- direct computation
card [N] -> \{ [i,j] : $0<=i<N$ and $0<=j<N-i \quad\} ;$
- incremental computation

$$
\text { card [N] -> \{ [i] -> [j] : } 0<=i<N \text { and } 0<=j<N-i \quad\} ;
$$

Incremental Counting

$$
\begin{gathered}
\text { for }(i=0 ; i<N ;++i) \\
f \text { for }(j=0 ; j<N-i ;++j) \\
a[i+j]=f(a[i+j]) ;
\end{gathered}
$$

How many times is the statement executed?

- direct computation
card [N$]$-> $\{[\mathrm{i}, \mathrm{j}]$: $0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\}$;
- incremental computation
card [N] -> \{ [i] -> [j] : $0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\}$;
Result:

$$
\begin{aligned}
& {[\mathrm{N}]->\{[\mathrm{i}]->(\mathrm{N}-\mathrm{i}): \mathrm{i}<=-1+N \text { and } \mathrm{i}>=0\}} \\
& \text { sum }[\mathrm{N}]->\{[\mathrm{i}]->(\mathrm{N}-\mathrm{i}): \mathrm{i}<=-1+\mathrm{N} \text { and } \mathrm{i}>=0\} ;
\end{aligned}
$$

Incremental Counting

$$
\begin{gathered}
\text { for }(i=0 ; i<N ;++i) \\
f \text { for }(j=0 ; j<N-i ;++j) \\
a[i+j]=f(a[i+j]) ;
\end{gathered}
$$

How many times is the statement executed?

- direct computation
card [N] -> \{ [i,j] : $0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\}$;
- incremental computation

$$
\text { card [N] -> \{ [i] -> [j] : } 0<=i<N \text { and } 0<=j<N-i \quad\} ;
$$

Result:

$$
\begin{aligned}
& {[\mathrm{N}]->\{[\mathrm{i}]->(\mathrm{N}-\mathrm{i}): \mathrm{i}<=-1+\mathrm{N} \text { and } \mathrm{i}>=0\}} \\
& \text { sum [N] -> \{[i] }->(\mathrm{N}-\mathrm{i}): i<=-1+\mathrm{N} \text { and } \mathrm{i}>=0\} ; \\
& \text { sum over all elements in domain }
\end{aligned}
$$

Total Memory Allocation

```
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{N}\); ++i)
        for (j = i; \(\mathrm{j}<\mathrm{N}\); ++j)
        \(\mathrm{p}[\mathrm{i}][\mathrm{j}]=\operatorname{malloc}(\mathrm{i} * \mathrm{j}+\mathrm{i}-\mathrm{N}+1)\);
/* ... */
for (i = 0; \(\mathrm{i}<\mathrm{N} ;++\mathrm{i})\)
        for ( \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) )
        free (p[i][j]);
```

How much memory allocated in total?

Total Memory Allocation

```
for (i = 0; \(\mathrm{i}<\mathrm{N}\); ++i)
        for ( \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) )
        \(\mathrm{p}[\mathrm{i}][\mathrm{j}]=\operatorname{malloc}(\mathrm{i} * \mathrm{j}+\mathrm{i}-\mathrm{N}+1)\);
/* ... */
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{N} ;++\mathrm{i})\)
        for ( \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) )
        free(p[i][j]);
```

How much memory allocated in total?
sum [N] -> $\{[\mathrm{i}, \mathrm{j}]$-> $\mathrm{i} * \mathrm{j}+\mathrm{i}-\mathrm{N}+1: \mathrm{O}<=\mathrm{i}<\mathrm{N}$ and $\mathrm{i}<=\mathrm{j}<\mathrm{N}\}$;

Weighted Counting

Weighted Counting

Weighted Counting

Weighted Counting

$$
\mathrm{F}:=\left\{[\mathrm{x}, \mathrm{y}]->1 / 4 * \mathrm{x}^{\wedge} 2+1 / 4 * y^{\wedge} 2: 1<=\mathrm{x}, \mathrm{y}<=2\right\} ;
$$

D := dom F;
F(D) ;
\Rightarrow sum of F over points in D
M := \{ [x] -> [x,y] \};

Weighted Counting

$$
\mathrm{F}:=\left\{[\mathrm{x}, \mathrm{y}]->1 / 4 * \mathrm{x}^{\wedge} 2+1 / 4 * y^{\wedge} 2: 1<=\mathrm{x}, \mathrm{y}<=2\right\} ;
$$

D := dom F;
F(D) ;
\Rightarrow sum of F over points in D
M := \{ [x] -> [x,y] \};
F (M) ;
\Rightarrow sum of F over image of M (alternative notation: M . F)

Compositions with Piecewise (Folds of) Quasipolynomials

f. g;

- $\mathrm{f}: D_{1} \rightarrow D_{2}$ is a map
- $\mathrm{g}: D_{2} \rightarrow \mathbb{Q}$ may be
- piecewise quasipolynomial (result of counting problems)
\Rightarrow take sum over intersection of ran f and dom g
- piecewise fold of quasipolynomials (result of upper bound computation)
\Rightarrow compute bound over intersection of ran f and dom g
- ($\mathrm{f} . \mathrm{g}$): $D_{1} \rightarrow \mathbb{Q}$ of same type as g

Note: if f is single-valued, then sum/bound is computed over a single point

Outline

(1) Introduction

2) Basic Concepts and Operations

- Sets and Iteration Domains
- Maps and Code Generation
- Access Relations and Polyhedral Model
- Dependence Analysis
- Transitive Closures
- Basic Counting
- Computing Bounds
- Weighted Counting
(3) Simple Applications
- Pointer Conversion
- Dynamic Memory Requirement Estimation
- Reuse Distance Computation

Pointer Conversion

$$
\}
$$

Can we parallelize this code?

$$
\begin{aligned}
& \text { p = a; } \\
& \text { for (i = 0; } \mathrm{i}<\mathrm{N} ;++\mathrm{i}) \\
& \text { for (j = i; } j<N ;++j \text {) \{ } \\
& \text { p += j * (}(j-i) / 4) \text {; } \\
& \text { *p = hard_work(i,j); }
\end{aligned}
$$

Pointer Conversion

$$
\begin{aligned}
& \text { p = a; } \\
& \text { for (i = 0; i < N ; ++i) } \\
& \text { for (} \mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;+\mathrm{j} \text {) \{ } \\
& \text { p += j * ((j-i)/4); } \\
& \text { *p = hard_work(i,j); } \\
& \text { \} }
\end{aligned}
$$

Can we parallelize this code?
\Rightarrow No, (false) dependency through p
\Rightarrow Compute closed formula for p

$$
p=a+\sum_{\substack{\left(i^{\prime}, j^{\prime}\right) \in S \\\left(i^{\prime}, j^{\prime}\right)<(i, j)}} j^{\prime}\left[\frac{j^{\prime}-i^{\prime}}{4}\right]
$$

with $S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\}$

Pointer Conversion

Can we parallelize this code?
\Rightarrow No, (false) dependency through p
\Rightarrow Compute closed formula for p

$$
\left(i^{\prime}, j^{\prime} \leqslant\langle i, j)\right.
$$

with $S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\}$

$$
p=a+\sum_{\left(i^{\prime}, j^{\prime}\right) \in S} j^{\prime}\left[\frac{j^{\prime}-i^{\prime}}{4}\right\rfloor
$$

$$
\begin{aligned}
& \text { p = a; } \\
& \text { for (i = 0; i < N ; ++i) } \\
& \text { for (} \mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;+\mathrm{j} \text {) \{ } \\
& \text { p += j * ((j-i)/4); } \\
& \text { *p = hard_work(i,j); } \\
& \text { \} }
\end{aligned}
$$

Pointer Conversion

$$
\left.p=a+\sum_{\substack{\left(i^{\prime}, j^{\prime}\right) \in S \\\left(i^{\prime}, j^{\prime}\right) \leqslant(i, j)}} j^{\prime} \left\lvert\, \frac{j^{\prime}-i^{\prime}}{4}\right.\right]
$$

with $S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\}$

Pointer Conversion

$$
\begin{aligned}
& \qquad p=a+\sum_{\substack{\left(i^{\prime}, j^{\prime}\right) \in S \\
\left(i^{\prime}, j^{\prime}\right) \leqslant(i, j)}} j^{\prime}\left[\frac{j^{\prime}-i^{\prime}}{4}\right] \\
& \text { with } S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\} \\
& S:=[N]->\{[i, j]: 0<=i<N \text { and } i<=j<N\} ; \\
& \text { L }:=S \ll=S ; \\
& \text { INC }:=\{[[i, j]->[i \prime, j ’]]->j \prime *[(j \prime-i \prime) / 4]\} ; \\
& \text { INC } \left.:=\text { INC * (wrap }\left(L^{\wedge}-1\right)\right) ; \\
& \text { sum INC; }
\end{aligned}
$$

Pointer Conversion

$$
p=a+\sum_{\substack{\left(i^{\prime}, j^{\prime}\right) \in S \\\left(i^{\prime}, j^{\prime}\right) \preccurlyeq(i, j)}} j^{\prime}\left[\frac{j^{\prime}-i^{\prime}}{4}\right]
$$

with $S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\}$
map: (elements of) left set lexicographically smaller than right set
S := [N] -> \{ [i,j]: 0 <= $i<N$ and $i<=j<N$ \};
$\mathrm{L}:=\mathrm{S} \ll=\mathrm{S}$;
INC := \{ [[i,j] -> [i’,j’]] -> j’ * [(j'-i’)/4] \};
INC := INC * (wrap (L^-1));
sum INC;

Pointer Conversion

$$
p=a+\sum_{\substack{\left(i^{\prime}, j^{\prime}\right) \in S \\\left(i^{\prime}, j^{\prime}\right) \preccurlyeq(i, j)}} j^{\prime}\left[\frac{j^{\prime}-i^{\prime}}{4}\right\rfloor
$$

with $S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\}$
map: (elements of) left set lexicographically smaller than right set
$S:=[N]->\{[i, j]: \sigma<=i<N$ and $i<=j<N\} ;$
$\mathrm{L}:=\mathrm{S} \ll=\mathrm{S}$;
INC := \{[[i,j] -> [i’,j’]] -> j’ * [(j'-i’)/4] \};
INC := INC $*$ wrap $\left.\left(L^{\wedge}-1\right)\right)$;
sum INC;
embed map in a set

Pointer Conversion

$$
\left.p=a+\sum_{\substack{\left(i^{\prime}, j^{\prime}\right) \in S \\\left(i^{\prime}, j^{\prime}\right) \leqslant(i, j)}} j^{\prime} \left\lvert\, \frac{j^{\prime}-i^{\prime}}{4}\right.\right]
$$

with $S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\}$
map: (elements of) left set lexicographically smaller than right set
S := [N] -> \{ [i,j]: 0 <= $i<N$ and $i<=j<N$ \};
L := S <<= S;
INC := \{[[i,j] -> [i’,j’]] -> j’ * [(j’-i’)/4] \};
INC := INC * (wrap (L^-1));
sum INC;

embed map in a set

Note: if domain of argument to sum [ub] is an embedded map, then sum [bound] is computed over range of embedded map

Dynamic Memory Requirement Estimation [CFGV2006]

 How much memory is needed to execute the following program?```
void m@(int m) {
 for (c = 0; c < m; c++) {
 m1(c)
 /*S1*/
 B[] m2Arr = m2(2*m-c); /*S2*/
 }
}
void m1(int k) {
 for (i = 1; i <= k; i++) {
 A a = new A(); /*S3*/
 B[] dummyArr = m2(i); /*S4*/
 }
}
B[] m2(int n) {
 B[] arrB = new B[n]; /*S5*/
 for (j = 1; j <= n; j++)
 B b = new B(); /*S6*/
 return arrB;
}
```


## Dynamic Memory Requirement Estimation [CFGV2006]

 How much memory is needed to execute the following program?```
void m@(int m) {
    for (c = 0; c < m; c++) {
        m1(c); /*S1*/
        B[] m2Arr = m2(2*m-c); /*S2*/
    }
}
void m1(int k) {
    for (i = 1; i <= k; i++) {
        A a = new A(); /*S3*/
        B[] dummyArr = m2(i); /*S4*/
    }
}
B[] m2(int n) {
    B[] arrB = new B[n]; /*S5*/
    for (j = 1; j <= n; j++)
        B b = new B(); /*S6*/
        D := {
m@[m]->S1[c] : 0<=c<m;
m@[m]->S2[c] : 0<=c<m;
m1[k]->S3[i] : 1<=i<=k;
m1[k]->S4[i] : 1<=i<=k;
m2[n]->S5[];
m2[n]->S6[j] : 1<=j<=n
};
DM := (domain_map D)^-1;
    return arrB;
```

\}

Dynamic Memory Requirement Estimation [CFGV2006]

How much (scoped) memory is needed?
\Rightarrow compute for each method
ret $_{m}$ size of memory returned by m
$c^{c} p_{m}$ size of memory "captured" (not returned) by m $\mathrm{memRq}_{\mathrm{m}}$ total memory requirements of m

$$
\operatorname{memRq}_{\mathrm{m}}=\mathrm{cap}_{\mathrm{m}}+\max _{\mathrm{p} \text { called by } \mathrm{m}} \operatorname{memRq}_{\mathrm{p}}
$$

Dynamic Memory Requirement Estimation [CFGV2006]

How much (scoped) memory is needed?
\Rightarrow compute for each method
ret $_{m}$ size of memory returned by m
cap $_{m}$ size of memory "captured" (not returned) by m $\mathrm{memRq}_{\mathrm{m}}$ total memory requirements of m

$$
\operatorname{memRq}_{\mathrm{m}}=\text { cap }_{\mathrm{m}}+\max _{\mathrm{p} \text { called by } \mathrm{m}} \operatorname{memRq}_{\mathrm{p}}
$$

```
B[] m2(int n) {
    B[] arrB = new B[n];
    for (j=1; j<=n; j++)
        B b = new B();
    return arrB;
}
```


Dynamic Memory Requirement Estimation [CFGV2006]

How much (scoped) memory is needed?
\Rightarrow compute for each method
ret $_{m}$ size of memory returned by m
cap $_{\mathrm{m}}$ size of memory "captured" (not returned) by m memRq q_{m} total memory requirements of m

$$
\operatorname{memRq}_{\mathrm{m}}=\mathrm{cap}_{\mathrm{m}}+\underset{\mathrm{p} \text { called by } \mathrm{m}}{\max } \operatorname{memRq}_{\mathrm{p}}
$$

```
B[] m2(int n) {
    B[] arrB = new B[n];
    for (j=1; j<=n; j++)
        B b = new B();
    return arrB;
}
```

```
ret_m2 := DM .
    { [m2[n] -> S5[]] -> n : n >= 0 };
cap_m2 := DM .
    { [m2[n] -> S6[j]] -> 1 };
req_m2 := cap_m2 +
    { m2[n] -> max(0) };
```


Dynamic Memory Requirement Estimation [CFGV2006]

```
void m1(int k) {
    for (i = 1; i <= k; i++) {
        A a = new A(); /* S3 */
    B[] dummyArr = m2(i); /* S4 */
    }
}
```

$$
\operatorname{cap}_{\mathrm{m} 1}(k)=\sum_{1 \leq i \leq k}\left(1+\operatorname{ret}_{\mathrm{m} 2}(i)\right)
$$

ret_m2 is a function of the arguments of $m 2$
We want to use it as a function of the arguments and local variables of m 1

Dynamic Memory Requirement Estimation [CFGV2006]

 void m1(int k) \{$$
\begin{aligned}
& \text { for (i = 1; i <= k; i++) \{ } \\
& \text { A a = new A(); /* S3 */ } \\
& \text { B[] dummyArr = m2(i); /* S4 */ }
\end{aligned}
$$

\}
\}

$$
\operatorname{cap}_{\mathrm{m} 1}(k)=\sum_{1 \leq i \leq k}\left(1+\operatorname{ret}_{\mathrm{m} 2}(i)\right)
$$

ret_m2 is a function of the arguments of $m 2$
We want to use it as a function of the arguments and local variables of m 1
\Rightarrow define parameter binding

```
CB_m1 := { [m1[k] -> S4[i]] -> m2[i] };
cap_m1 := DM . ({ [m1[k]->S3[i]] -> 1 } + (CB_m1 . ret_m2));
```


Dynamic Memory Requirement Estimation [CFGV2006]

 void m1(int k) \{$$
\text { for (} \mathrm{i}=1 \text {; } \mathrm{i}<=\mathrm{k} ; \mathrm{i}++ \text {) \{ }
$$

$$
\text { A a }=\text { new } \mathrm{A}() ; \quad 1 * S 3 \text {;/ }
$$

$$
\text { B[] dummyArr }=\mathrm{m} 2(\mathrm{i}) ; \quad 1 * \text { S4 */ }
$$

\}
\}

$$
\operatorname{memRq}_{\mathrm{m}}=\operatorname{cap}_{\mathrm{m}}+\max _{\mathrm{p} \text { called by m}} \operatorname{memRq}_{\mathrm{p}}
$$

```
CB_m1 := { [m1[k] -> S4[i]] -> m2[i] };
ret_m1 := { m1[k] -> 0 };
cap_m1 := DM . ({ [m1[k]->S3[i]] -> 1 } + (CB_m1 . ret_m2));
req_m1 := cap_m1 + (DM . CB_m1 . req_m2);
```


Dynamic Memory Requirement Estimation [CFGV2006]

```
void m0(int m) {
    for (c = 0; c < m; c++) {
        m1(c); /* S1 */
        B[] m2Arr = m2(2 * m - c); /* S2 */
    }
}
CB_m| := { [m0[m] -> S1[c]] -> m1[c];
        [m0[m] -> S2[c]] -> m2[2 * m - c] };
ret_m0 := { m0[m] -> 0 };
cap_m0 := DM . CB_m0 . (ret_m1 + ret_m2);
req_m| := cap_m| + (DM . CB_m0 . (req_m1 . req_m2));
```


Dynamic Memory Requirement Estimation [CFGV2006]

```
void m|(int m) {
    for (c = 0; c < m; c++) {
        m1(c); /* S1 */
        B[] m2Arr = m2(2 * m - c); /* S2 */
    }
}
CB_m| := { [m0[m] -> S1[c]] -> m1[c];
        [m0[m] -> S2[c]] -> m2[2 * m - c] };
ret_m0 := { m0[m] -> 0 };
cap_m0 := DM . CB_m0 . (ret_m1 + ret_m2);
req_m0 := cap_m0 + (DM . CB_m0 . (req_m1 & req_m2));
```


Reuse Distance Computation

Given an access to a cache line ℓ, how many distinct cache lines have been accessed since the previous access to ℓ ?
\Rightarrow Is the cache line still in the cache?

Reuse Distance Computation

Given an access to a cache line ℓ, how many distinct cache lines have been accessed since the previous access to ℓ ?
\Rightarrow Is the cache line still in the cache?

```
for (i = 0; i <= 7; ++i) {
    A[i]; //reference a
    A[7-i]; //reference b
    if (i <= 3)
    A[2*i]; //reference c
```

\}

Assume A[i] in cache line \i/3」

Reuse Distance Computation

Given an access to a cache line ℓ, how many distinct cache lines have been accessed since the previous access to ℓ ?
\Rightarrow Is the cache line still in the cache?

```
for (i = 0; i <= 7; ++i) {
    A[i]; //reference a
    A[7-i]; //reference b
    if (i <= 3)
    A[2*i]; //reference c
```

\}

Assume A[i] in cache line [i/3」

i		0			1			2			3								7		
r	a	b	c	a	b	c	a	b	c	a	b	c	a	b	a	b	a	b	a	b	
r@i	0	7	0	1	6	2	2	5	4	3	4	6	4	3	5	2	6	1	7	0	
[(r@i)/3」	0	2	0	0	2	0	0	1	1	1	1	2	1	1	1	0	2	0	2	0	0
distance	0	0	2	1	2	2	1	0	1	1	1	3	2	1	1	3	3	2	2		

Reuse Distance Computation

```
for (i = 0; i <= 7; ++i) {
    A[i]; //reference a
    A[7-i]; //reference b
    if (i <= 3)
        A[2*i]; //reference c
}
```

Assume A [i] in cache line $\lfloor i / 3\rfloor$

Reuse Distance Computation

```
for (i = 0; i <= 7; ++i) {
    A[i]; //reference a
    A[7-i]; //reference b
    if (i <= 3)
        A[2*i]; //reference c
```



```
}
Assume A[i] in cache line Li/3」
\(\mathrm{D}:=\{\mathrm{a}[\mathrm{i}]: 0<=\mathrm{i}<=7\); \(\mathrm{b}[\mathrm{i}]: 0<=\mathrm{i}<=7\); \(\mathrm{c}[\mathrm{i}]: 0<=\mathrm{i}<=3\);
C := \{ A[i] -> L[j] : exists a = [i/3] : j = a \};
\(\mathrm{A}:=(\{\mathrm{a}[\mathrm{i}]->\mathrm{A}[\mathrm{i}] ; \mathrm{b}[\mathrm{i}]->\mathrm{A}[7-\mathrm{i}] ; \mathrm{c}[\mathrm{i}]->\mathrm{A}[2 \mathrm{i}]\}\). C) * D;
S := \{ a[i] -> [i,0]; b[i] -> [i,1]; c[i] -> [i,2] \} * D;
```


Reuse Distance Computation

```
for (i = 0; i <= 7; ++i) {
    A[i]; //reference a
    A[7-i]; //reference b
    if (i <= 3)
    A[2*i]; //reference c
}
```

Assume A[i] in cache line [i/3」

```
D := { a[i] : 0 <= i <= 7; b[i] : 0 <= i <= 7; c[i] : Q <= i <= 3 };
C := { A[i] -> L[j] : exists a = [i/3] : j = a };
A := ({ a[i] -> A[i]; b[i] -> A[7-i]; c[i] -> A[2i] } . C) * D;
S := { a[i] -> [i,0]; b[i] -> [i,1]; c[i] -> [i,2] } * D;
TIME := ran S; LT := TIME << TIME; LE := TIME <<= TIME;
T := ((S^-1) . A . (A^-1) . S) * LT;
M := lexmin T;
NEXT := S . M . (S^-1); # map to next access to same cache line
AFTER_PREV := (NEXT^-1) . (S . LE . (S^-1));
BEFORE := S . (LE^-1) . (S^-1);
card ((AFTER_PREV * BEFORE) . A);
```

