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Abstract

We study stochastic variance reduction-based
Langevin dynamic algorithms, SVRG-LD
and SAGA-LD (Dubey et al., 2016), for
sampling from non-log-concave distributions.
Under certain assumptions on the log den-
sity function, we establish the convergence
guarantees of SVRG-LD and SAGA-LD in 2-
Wasserstein distance. More specifically, we
show that both SVRG-LD and SAGA-LD re-
quire Õ

(
n+n3/4/ε2+n1/2/ε4

)
·exp

(
Õ(d+γ)

)
stochastic gradient evaluations to achieve ε-
accuracy in 2-Wasserstein distance, which
outperforms the Õ

(
n/ε4

)
· exp

(
Õ(d + γ)

)
gradient complexity achieved by Langevin
Monte Carlo Method (Raginsky et al., 2017).
Experiments on synthetic data and real data
back up our theory.

1 INTRODUCTION

In the past decade, there has been an increasing inter-
est in applying gradient based Markov Chain Monte
Carlo (MCMC) methods for sampling from posterior
distributions in Bayesian machine learning (Neal et al.,
2011; Welling and Teh, 2011; Ahn et al., 2012; Chen
et al., 2014; Ma et al., 2015; Cheng et al., 2018). In
detail, this class of MCMC methods is based on the
Langevin dynamics, which is described by the follow-
ing stochastic differential equation (SDE)

dX(t) = −∇F (X(t))dt+
√

2/γdB(t), (1.1)

where γ > 0 is the inverse temperature parameter
and {B(t)}t≥0 is the standard Brownian motion in Rd.
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Under certain assumptions on the drift term ∇F (x),
the distribution of X(t) can be described by Fokker-
Planck equation, and is able to converge to an invari-
ant stationary distribution π ∝ exp

(
− γF (x)

)
(Chi-

ang et al., 1987). In Bayesian inference, one aims
to sample the target distribution with the form π ∝
exp

(
− γF (x)

)
, and a typical way is to apply Euler-

Maruyama discretization (Kloeden and Platen, 1992)
to (1.1), which gives rise to the celebrated Langevin
Monte Carlo (LMC) method (Roberts and Tweedie,
1996a),

Xk+1 = Xk −∇F (Xk)η +
√

2η/γεk, (1.2)

where εk follows a standard multivariate normal dis-
tribution, and η > 0 denotes the step size. When the
target distribution is strongly log-concave, i.e., func-
tion F (x) is strongly convex, the convergence property
of LMC has been widely studied based on total vari-
ation (Durmus and Moulines, 2015, 2016; Dalalyan,
2017b) and 2-Wasserstein (Dalalyan, 2017a; Dalalyan
and Karagulyan, 2017) distances. On the other hand,
for many machine learning problems involving ex-
tremely large amount of data, the function F (x) on
the drift term of (1.1) can be written as an average of
n component functions

F (x) =
1

n

n∑
i=1

fi(x),

where fi(x) : Rd → R is the negative log likelihood
function on the i-th example. When the data sam-
ple size n is enormous, the computation of the full
gradient ∇F (X) in LMC is often very expensive. To
overcome this computational burden, one resorts to us-
ing stochastic gradient to approximate the drift term
in (1.1), which gives rise to the celebrated stochastic
gradient Langevin dynamics (SGLD) method (Welling
and Teh, 2011). In practice, the SGLD algorithm has
achieved great success in Bayesian learning (Welling
and Teh, 2011; Ahn et al., 2012) and Bayesian deep
learning (Chaudhari et al., 2016; Ye et al., 2017). How-
ever, the SGLD algorithm requires more iteration steps
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to achieve a high sampling precision compared with
LMC due to the large variance of stochastic gradients.
In order to alleviate this issue as well as save the gra-
dient computation, Dubey et al. (2016) incorporated
the idea of variance reduction (Johnson and Zhang,
2013; Reddi et al., 2016) into SGLD, and proposed
two types of stochastic variance reduced algorithms
based on gradient Langevin dynamics, namely SVRG-
LD and SAGA-LD. Recently, Chatterji et al. (2018)
proved the convergence rate of SVRG-LD and SAGA-
LD in 2-Wasserstein distance when the target distri-
bution is strongly log-concave, which characterizes the
feasible regime where SVRG-LD and SAGA-LD out-
perform LMC and SGLD. The convergence rate of
SVRG-LD was further improved by Zou et al. (2018b)
recently. However, the current convergence analyses
(Chatterji et al., 2018; Zou et al., 2018b) of stochas-
tic variance-reduced gradient Langevin dynamics are
mostly restricted to the strongly log-concave distribu-
tions, except Dubey et al. (2016); Chen et al. (2017).
Nevertheless, Dubey et al. (2016); Chen et al. (2017)
only investigated the mean square error of the sample
path average. It is of more interest to establish the
nonasymptotic convergence guarantee in terms of cer-
tain distance between the target distribution and that
of the current iterate, which provides a fine-grained
characterization of the sampling algorithms.

In this paper, we provide convergence analyses of
SVRG-LD and SAGA-LD in 2-Wasserstein distance
for non-log-concave target distributions. Different
from the analysis of sampling from strongly log-
concave distributions, the contraction property of
2-Wasserstein distance along the Langevin diffusion
(1.1) no longer holds, which poses a great challenge
for our analysis and makes existing proof techniques
(Chatterji et al., 2018) for strongly log-concave dis-
tribution not applicable to our case. To address this
challenge, we provide a new proof technique by extend-
ing the idea of Raginsky et al. (2017) for analyzing
SGLD in nonconvex optimization. More specifically,
our proof technique is based on a coupled Brownian
motion between the discrete-time Markov chain and
a continuous-time Markov chain generated by (1.1)
and decomposes the 2-Wasserstein distance between
the target distribution and that of the current iterate
into two parts: the 2-Wasserstein distance between dis-
tributions of the current iterate and the corresponding
continuous-time Markov Chain, and the distance be-
tween the distribution of the position in the coupled
Markov chain and its stationary distribution, i.e., the
target distribution π.

Our Contributions The major contributions of this
paper are highlighted as follows.

• We study the SVRG-LD and SAGA-LD methods

for sampling from non-log-concave distributions
and prove their nonasymptotic convergence to the
target distribution in terms of 2-Wasserstein dis-
tance. Specifically, we show that both SVRG-LD
and SAGA-LD require Õ

(
n+n3/4/ε2 +n1/2/ε4

)
·

exp
(
Õ(d+ γ)

)
stochastic gradient evaluations to

achieve ε-accuracy, where n is the number of sam-
ples, γ is the inverse temperature and d is the
problem dimension, which outperforms the gradi-
ent complexities of LMC and SGLD.

• We conduct experiments on both synthetic
and real-world data to compare different first-
order Langevin methods (SVRG-LD, SAGA-LD,
SGLD, LMC) for sampling from non-log-concave
distributions. The comparison suggests that the
SVRG-LD and SAGA-LD have similar perfor-
mance, and attain faster mixing time and perform
better than their counterparts even when the tar-
get distribution is non-log-concave.

Notation We denote a deterministic vector by lower
case bold symbol x and a random vector by upper
case italicized bold symbol X. We also use Xk (with
subscript k) to denote the iterate of a discrete-time
algorithm and X(t) (with index t in a parenthesis)
to denote the continuous-time random process. For
a vector x ∈ Rd, we denote by ‖x‖2 the Euclidean
norm. For a matrix X, we denote ‖X‖F as the Frobe-
nius norm.For a random vector X ∈ Rd, we denote
its probability distribution function by P (X). We de-
note by Eu(X) the expectation ofX under probability
measure u. We denote the 2-Wasserstein distance be-
tween two probability measures u and v as

W2
2 (u, v) = inf

ζ∈Γ(u,v)

∫
Rd×Rd

‖Xu −Xv‖22dζ(Xu,Xv),

where the infimum is over all joint distributions ζ with
u and v being its marginal distributions. We denote
by KL(p1||p2) the KL-divergence between probability
measures p1 and p2. We use an = O(bn) to denote
that an ≤ Cbn for some universal constant C > 0, and
use an = Õ(bn) to hide some logarithmic terms of bn.
We also use a ∧ b to denote min{a, b}.

2 RELATED WORK

In this section, we review the literature on generic
Langevin dynamics based algorithms.

Langevin Monte Carlo (LMC) (1.2) have been widely
used for approximate sampling. Dalalyan (2017b)
proved that the distribution of the last iterate in
LMC converges to the stationary distribution within
O(d/ε2) iterations in variation distance. Durmus and
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Moulines (2015) improved the results by showing the
same result holds for any starting point and in Wasser-
stein distance. Recently Dalalyan (2017a) improved
the existing results in terms of the 2-Wasserstein dis-
tance and provided further insights on the close re-
lation between approximate sampling and optimiza-
tion. Bubeck et al. (2015) analyzed sampling from log-
concave distributions with compact support via pro-
jected LMC. Brosse et al. (2017) proposed a proximal
LMC algorithm. The Euler discretization on SDEs
introduces a bias, and might fail to converge to the
target distribution (Roberts and Tweedie, 1996a,b).
An effective way to address this issue is incorporating
the metropolis hasting correction step (Hastings, 1970)
into LMC, which gives rise to metropolis adjusted
Langevin algorithm (MALA) (Roberts and Rosenthal,
1998). Following this line of research, Bou-Rabee and
Hairer (2012) provided nonasymptotic bounds on the
mixing time of MALA, but the explicit dependence
on the dimension d and target accuracy remains im-
plicit. Eberle et al. (2014) established a clearer mixing
time bound of MALA in terms of a modified Wasser-
stein distance for log-concave densities. Dwivedi et al.
(2018) investigated MALA for strongly log-concave
densities, and proved a linear rate of convergence in
total variation distance.

Due to the increasing amount of data in mod-
ern machine learning problems, stochastic gradient
Langevin dynamics (SGLD) (Welling and Teh, 2011;
Ahn et al., 2012; Ma et al., 2015) has received ex-
tensive attentions. Vollmer et al. (2016) analyzed
the nonasymptotic bias and variance of SGLD using
Poisson equations. Dalalyan and Karagulyan (2017)

proved Õ(dσ2/ε2) convergence rate for SGLD in 2-
Wasserstein distance when the target distribution is
strongly log-concave. Moreover, Neal et al. (2011) in-
troduced fictitious momentum term in Hamilton dy-
namics, which gives rise to Hamiltonian Monte Carlo
(HMC). Similar to SGLD, stochastic gradient Hamil-
tonian Monte Carlo (SGHMC) (Chen et al., 2014) was
proposed to overcome the limitation of gradient evalu-
ation on large datasets, and demonstrated better per-
formance in learning Bayesian neural networks and on-
line Bayesian matrix factorization (Chen et al., 2014).
Under a similar framework, Chen et al. (2014) stud-
ied the stochastic MCMC method with higher-order
integrator in terms of the MSE of the average sample
path. Cheng et al. (2018) proposed the underdamped
MCMC method and proved its convergence guaran-
tee in 2-Wasserstein distance for strongly log-concave
distribution. Despite the great success of SGLD and
SGHMC, the large variance of stochastic gradient may
lead to unavoidable bias due to the lack of metropo-
lis hasting (MH) correction. To overcome this, Teh
et al. (2016) proposed to decrease the step size to alle-

viate the bias and proved the asymptotic rate of SGLD
in terms of MSE. Betancourt (2015) pointed out that
SGHMC may also lead to poor sampling performance,
and there exists a tradeoff between the step size and
acceptance probability in MH correction. This issue
has been addressed by Dang et al. (2017) where they
proposed a modified HMC algorithm that uses a sub-
set of data to estimate both the dynamics and the
subsequent MH acceptance probability.

Another way to alleviate the variance of stochastic
gradient and save gradient computation is applying
variance-reduction technique. Dubey et al. (2016) pro-
posed a variance-reduced stochastic gradient Langevin
dynamics for Bayesian posterior inference, and proved
that it improves the mean square error upon SGLD.
Baker et al. (2017) applied zero variance control vari-
ates to stochastic MCMC method, and showed that
it is able to reduce the computational cost of SGM-
CMC to O(1). Chatterji et al. (2018) studied two
variants of variance-reduced stochastic Langevin dy-
namics proposed in Dubey et al. (2016), and proved
their convergence guarantees for strongly log-concave
distributions. Moreover, by replacing the full gradi-
ent in the outer loop of SVRG-LD with a subsampled
one, Chen et al. (2017) and Zou et al. (2018b) studied
the convergence rate of subsampled SVRG-LD method
in MSE and 2-Wasserstein distance respectively. The
variance-reduced HMC has also been investigated re-
cently in Zou et al. (2018a); Li et al. (2018).

There is also a line of work that utilize Langevin dy-
namics to design better algorithms for nonconvex opti-
mization. In particular, Raginsky et al. (2017); Zhang
et al. (2017) studied the nonasymptotic convergence
of SGLD to global and local minimum of nonconvex
functions. Xu et al. (2018) studied the global conver-
gence of a family of Langevin dynamics based algo-
rithm. Chen et al. (2019) studied the algorithm that
swaps between two Langevin diffusions with different
temperatures.

In Table 1, we summarize the gradient complex-
ity1 of LMC, SGLD, SVRG-LD and SAGA-LD in 2-
Wasserstein distance for sampling from strongly log-
concave and non-log-concave densities. To the best
of our knowledge, there is no convergence result in
2-Wasserstein distance for sampling from general log-
concave densities using Langevin dynamics based al-
gorithms. It should be noted that for sampling from
a non-log-concave the dependence on dimension d is
inevitably exponential. In fact, it is proved in Bovier
et al. (2004) that the lower bound of metastable exit
time of SDE is exponential in d when the nonconvex
function F in (1.2) has multiple local minima.

1Gradient complexity is defined as the number of
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Table 1: Gradient complexities to converge to the stationary distribution in 2-Wasserstein distance. Note that
Raginsky et al. (2017) shows that SGLD dose not converge in 2-Wasserstein distance for non-log-concave densities.

Strongly log-concave2 Non-log-concave

LMC Õ
(
nd1/2

ε

)
(Dalalyan, 2017a) Õ

(
n
ε4

)
· eÕ(d)(Raginsky et al., 2017)

SGLD Õ
(
d
ε2

)
(Dalalyan, 2017a) −

SVRG-LD Õ
(
n+ n1/2d1/2

ε

)
(Zou et al., 2018b) Õ

(
n+ n3/4

ε2 + n1/2

ε4

)
· eÕ(d)(This paper)

SAGA-LD Õ
(
n+ n1/2d1/2

ε

)
(Chatterji et al., 2018) Õ

(
n+ n3/4

ε2 + n1/2

ε4

)
· eÕ(d)(This paper)

Algorithm 1 Stochastic Variance-Reduced Gradient
Langevin Dynamics (SVRG-LD)

1: input: step size η > 0; batch size B; epoch length
m; inverse temperature parameter γ > 0

2: initialization: X0 = 0, X̃(0) = X0

3: for s = 0, 1, . . . , (K/m) do

4: G̃ = ∇F (X̃(s))
5: for ` = 0, . . . ,m− 1 do
6: k = sm+ `
7: randomly pick a subset Ik from {1, . . . , n} of

size |Ik| = B; randomly draw εk ∼ N(0, Id×d)

8: ∇̃k = 1
B

∑
ik∈Ik

(
∇fik(Xk)−∇fik(X̃(s))+G̃

)
9: Xk+1 = Xk − η∇̃k +

√
2η/γεk

10: end for
11: X̃(s+1) = X(s+1)m

12: end for

3 REVIEW OF SVRG-LD AND
SAGA-LD

In this section, we review the SVRG-LD and SAGA-
LD algorithms, which incorporates the variance reduc-
tion technique into the Langevin based algorithm.

Algorithm 1 displays the detail of SVRG-LD, which
consists of multiple epochs. In the beginning of the

s-th epoch, we compute the full gradient of F (X̃(s))
by scanning all samples

G̃ = ∇F (X̃(s)) =
1

n

n∑
i=1

∇fi(X̃(s)).

Regarding the l-th inner iteration in the s-th epoch
(the k-th update in the total iteration sequence), the

semi-stochastic gradient ∇̃k is computed based on the
snapshot gradient G̃ and a new minibatch of samples
Ik, which yields

∇̃k =
1

B

∑
ik∈Ik

(
∇fik(Xk)−∇fik(X̃(s)) + G̃

)
,

where ik is uniformly sampled from [n] = {1, 2, . . . , n},
and |Ik| = B denotes the minibatch size. Then we per-

stochastic gradient evaluations.

Algorithm 2 Stochastic Average Gradient Langevin
Dynamics (SAGA-LD)

1: input: step size η > 0; batch size B; epoch length
m; inverse temperature parameter γ > 0

2: initialization: X0 = 0, G̃ =
[∇f1(X0), . . . ,∇fn(X0)]

3: for k = 0, 1, . . . ,K do
4: g̃k = n−1

∑n
i=1 G̃i, where G̃i denotes the i-th

column of Matrix G̃
5: randomly pick a subset Ik from {1, . . . , n} of size

|Ik| = B; randomly draw εk ∼ N(0, Id×d)

6: ∇̃k = 1
B

∑
ik∈Ik

(
∇fik(Xk)− G̃ik + g̃k

)
7: Xk+1 = Xk − η∇̃k +

√
2η/γεk

8: G̃ik = ∇fik(Xk) for ik ∈ Ik
9: end for

form the following update based on the semi-stochastic
gradient with an injected Gaussian noise εk,

Xk+1 = Xk − η∇̃k +
√

2η/γεk.

At the end of the epoch, we use the last iterate as

the starting point of the next epoch, i.e., X̃(s+1) =
X(s+1)m.

Now we present SAGA-LD in Algorithm 2. Compared
with SVRG-LD, SAGA-LD requires higher memory
cost, since it explicitly stores n stochastic gradients in
memory, which formulates n columns of a matrix G̃.
G̃ is initialized as [∇f1(X0), . . . ,∇fn(X0)]. In the k-
th update, we first compute the average of the column
vectors in G̃, i.e., g̃k = n−1

∑n
i=1 G̃i as a snapshot

gradient, where G̃i is the i-th column of G̃. Then an
index set Ik is uniformly generated from [n] to com-
pute the following approximated gradient

∇̃k =
1

B

∑
ik∈Ik

(
∇fik(Xk)− G̃ik + g̃k

)
,

where B = |Ik| is the size of index set Ik. Then we
apply such approximated gradient to perform one-step
update on the iterate Xk, as shown in the line 7 of

2LMC, SVRG-LD and SAGA-LD require hessian Lips-
chitz assumption in the strongly log-concave regime.
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Algorithm 2. At the end of each iteration, we update
the columns in G̃ whose indexes belong to Ik with the
stochastic gradients computed in the current iteration,
i.e., we set G̃ik = ∇fik(Xk) for all ik ∈ Ik.

Algorithms 1 and 2 stem from Dubey et al. (2016).
However, they only analyzed the mean square er-
ror of averaged the sample path based on all iter-
ates {Xk}Kk=0, while we aim at developing a non-
asymptotic analyses of SVRG-LD and SAGA-LD in
terms of 2-Wasserstein distance and Algorithms 1 and
2 only require the last iterate XK .

4 MAIN THEORY

In this section, we present our main theoretical results,
which characterize the convergence rates of SVRG-LD
and SAGA-LD for sampling from non-log-concave dis-
tributions. We first lay out the assumptions that are
necessary for our theory.

Assumption 4.1 (Smoothness). The function fi(x)
is M -smooth with M > 0, i.e., for any x,y ∈ Rd,
i = 1, . . . , n, we have

‖∇fi(x)−∇fi(y)‖2 ≤M‖x− y‖2.

The smoothness assumption is also known as gradient
Lipschitzness in the literature.

Assumption 4.2 (Dissipative). There exist constants
a, b > 0, such that for all x ∈ Rd we have

〈∇F (x),x〉 ≥ b‖x‖22 − a.

It is worthy noting that the smoothness assumption
is made on all component function fi(x), while the
dissipative assumption is only made on the average of
the component functions. Assumption 4.2 is a typi-
cal assumption for the ergodicity analysis of stochas-
tic differential equations (SDE) and diffusion approx-
imation (Mattingly et al., 2002; Vollmer et al., 2016;
Raginsky et al., 2017; Zhang et al., 2017). It means
that, starting from a position that is sufficiently far
away from the origin, the Markov process defined by
(1.1) moves towards the origin on average. Note that
the class of distribution satisfying dissipative assump-
tion covers many densities of interest such as Gaussian
mixture model (Lee et al., 2018).

4.1 Convergence Guarantee for SVRG-LD

Now we present our main theoretical results on the
nonasymptotic convergence of SVRG-LD.

Theorem 4.3. Under Assumptions 4.1 and 4.2, con-
sider {Xk}k=0,1,...,K generated by Algorithm 1 with

initial point X0 = 0. The 2-Wasserstein distance be-
tween the distribution of Xk and the target distribu-
tion π is bounded by

W2

(
P (Xk), π

)
≤ D1

[
D2

(m2

B
+ 1
)
kη3 +D3

(m
B

+ 1
)
kη2

]1/4

+D4e
− kη
γD5 , (4.1)

where the parameters are defined as

D1 = 4
√

3/2 + (2b+ d/γ)kη,

D2 = 3γM2
(
2M2(1 + 1/b)(a+G2 + d/γ) +G2

)
,

D3 = M2d,

and G = maxi∈[n] ‖fi(0)‖2. Moreover, B is the batch
size, m is inner loop length of Algorithm 1, and param-
eters D4, D5 are both in the order of exp(O(d+ γ)).

Based on Theorem 4.3, we are able to characterize
the gradient complexity of Algorithm 1 as well as the
choices of hyper parameters including η, m and B. We
state these results in the following corollary.

Corollary 4.4. Under the identical assumptions in
Theorem 4.3, in order to guarantee that the target
accuracy satisfies W2

(
P (xk), π

)
≤ ε, we set mB =

O(n), η = Õ(ε2B3/2/n2 ∧ ε4B2/n) · exp
(
− Õ(γ + d)

)
.

Then the gradient complexity of Algorithm 1 is

Tg = Õ
(nB−1/2

ε2
+
n/B +B

ε4
+ n

)
· exp

(
Õ(γ + d)

)
.

Moreover, if we set B = O
(
n1/2

)
and η = Õ

(
ε2/n1/4∧

ε4
)
· exp

(
− Õ(γ + d)

)
, the gradient complexity is

Tg = Õ
(
n+

n3/4

ε2
+
n1/2

ε4

)
· exp

(
Õ(γ + d)

)
.

Remark 4.5. Under identical assumptions in The-
orem 4.3, LMC achieves ε-accuracy in 2-Wasserstein
distance after Tg = Õ

(
n/ε4

)
· exp

(
Õ(d+ γ)

)
stochas-

tic gradient evaluations (Raginsky et al., 2017). It is
obvious that SVRG-LD requires less stochastic gradi-
ent evaluations to achieve ε-accuracy than LMC.

4.2 Convergence Guarantee for SAGA-LD

Next, we present the following theorem that spells out
the convergence rate of SAGA-LD.

Theorem 4.6. Under Assumptions 4.1 and 4.2, con-
sider {Xk}k=0,1,...,K generated by Algorithm 2 with
initial point X0 = 0. The 2-Wasserstein distance be-
tween the distribution of Xk and the target distribu-
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tion π is bounded by

W2

(
P (Xk), π

)
≤ D1

[
D2

(
48n2

B3
+ 1

)
kη3 +D3

(
4n

B2
+ 1

)
kη2

]1/4

+D4e
− kη
γD5 , (4.2)

where G = maxi∈[n] ‖fi(0)‖2, B is the batch size, pa-
rameters D1, D2, D3, D4 and D5 are identical to those
in Theorem 4.3.

Based on Theorem 4.6, we present the gradient com-
plexity of SAGA-LD in the following corollary.

Corollary 4.7. Under the same assumptions as in
Theorem 4.6, in order to guarantee that the target
accuracy satisfies W2

(
P (xk), π

)
≤ ε, we set η =

Õ(ε2B3/2/n2 ∧ ε4B2/n) · exp
(
− Õ(γ + d)

)
, and the

gradient complexity of Algorithm 2 is

Tg = Õ
(nB−1/2

ε2
+
n/B +B

ε4
+ n

)
· exp

(
Õ(γ + d)

)
.

Moreover, if we set B = O
(
n1/2

)
and η = Õ

(
ε2/n1/4∧

ε4
)
·exp

(
−Õ(γ+d)

)
, the gradient complexity becomes

Tg = Õ
(
n+

n3/4

ε2
+
n1/2

ε4

)
· exp

(
Õ(d+ γ)

)
.

Remark 4.8. It can be clearly observed that the gra-
dient complexities of SVRG-LD and SAGA-LD are es-
sentially identical when we set mB = O(n) in SVRG-
LD. This observation also matches the result in Dubey
et al. (2016) and Zou et al. (2018b), where the former
focuses on the mean squared error of sample path av-
erage and the latter only establishes the convergence
guarantees for strongly log-concave densities.

Remark 4.9. It is worth noting that our analyses on
SVRG-LD and SAGA-LD do not imply the conver-
gence rate of SGLD. However, the convergence rate of
SGLD in 2-Wasserstein distance is similar to Equation
(3.2) in Raginsky et al. (2017). Based on the argument
in Raginsky et al. (2017), the SGLD algorithm cannot
be guaranteed to converge to the target distribution
if the batch size is not carefully specified. However,
empirical study shows that SGLD converges in most
cases, which indicates a gap between the theory and
the experiment. In particular, we found that SGLD
actually converge to the target distribution in our ex-
periment, even when the batch size is set to be 1, and
enjoys faster rate than LMC.

5 EXPERIMENTS

In order to explore the behavior of SVRG-LD and
SAGA-LD for sampling from non-log-concave densi-
ties, we carry out numerical experiments on both

synthetic and real dataset in this section. Specifi-
cally, we compare the SVRG-LD and SAGA-LD algo-
rithms with LMC and SGLD for sampling from non-
log-concave density, independent component analysis
(ICA) and Bayesian logistic regression.

5.1 Sampling for Gaussian Mixture
Distribution

We first compare the performances of SVRG-LD,
SAGA-LD, LMC and SGLD on synthetic data. In par-
ticular, we consider the target distribution with form
π ∝ exp(−F (x)) = exp

(
−
∑n
i=1 fi(x)/n

)
, where each

component exp(−fi(x)) is defined as

exp(−fi(x)) = e−‖x−ai‖
2
2/2 + e−‖x+ai‖22/2, ai ∈ Rd.

It is easy to verify that exp(−fi(x)) is proportion to
the PDF of a Gaussian mixture distribution. The func-
tion fi(x) and its gradient can be further simplified as

fi(x) =
1

2
‖x− ai‖22 − log

(
1 + exp(−2x>ai)

)
,

∇fi(x) = x− ai +
2ai

1 + exp(2x>ai)
.

According to Dalalyan (2017b); Dwivedi et al. (2018),
when the parameter ai is chosen such that ‖ai‖22 > 1,
function fi(x) defined as above is nonconvex. More-
over, it can be seen that

〈∇fi(x),x〉 = ‖x‖22 +
1− exp(2x>ai)

1 + exp(2x>ai)
〈ai,x〉

≥ 1

2
‖x‖22 −

1

2
‖ai‖22,

which suggests that function fi(x) satisfies Dissipative
Assumption 4.2 with b = 1/2 and a = ‖ai‖22/2 and
further implies that F (x) is also dissipative. Then
we set sample size n = 500 and dimension d = 10,
and randomly generate parameters ai ∼ N(µ,Σ) with
µ = (2, . . . , 2)> and Σ = Id×d. Since it takes a
large number of samples to characterize the distri-
bution, which makes repeated experiments computa-
tionally expensive, we instead follow Bardenet et al.
(2017) to use iterates along one Markov chain to visu-
alize the distribution of iterates obtained by MCMC
algorithms. Specifically, we run all four algorithms
for 2 × 104 data passes, and make use of the iter-
ates in the last 104 data passes to visualize distri-
butions, where the batch sizes for SGLD, SVRG-LD
and SAGA-LD are all set to be 10. In Figures 1(a) -
1(d), We compare the distributions generated by LMC,
SGLD, SVRG-LD and SAGA-LD while using MCMC
with Metropolis-Hasting correction as a reference. It
can be observed that both SVRG-LD and SAGA-LD
can well approximate the target distribution within
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Figure 1: 2D projection of the kernel densities of random samples generated after 104 data passes. (a) - (d)
represent 4 different algorithms.
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Figure 2: Experiment results for independent components analysis, where x axis indicates the number of data
pass and y axis shows the negative log-likelihood on the test data. (a)-(b) Experiment results for SVRG-LD
with different batch size. (c)-(d) Experiment results for SAGA-LD with different batch size.
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Figure 3: Experiment results of ICA for different al-
gorithms.

2 × 104 datapass, while the distributions generated
by LMC and SGLD have obvious deviation from the
true one. This suggests that SVRG-LD and SAGA-LD
enjoy faster convergence rate than LMC and SGLD,
which verifies our theory. However, if we run SGLD
and LMC for more iterations, SGLD and LMC can
both well approximate the target distribution. More
interestingly, we find that SGLD actually requires less
gradient evaluations than LMC to well approximate
the target distribution, which does not well align with
the existing theory.

5.2 Independent Components Analysis

We further apply the SVRG-LD and SAGA-LD algo-
rithms to a Bayesian Independent Component Analy-
sis (ICA) model, and compare their performance with
LMC and SGLD. In the ICA model, we are given a
dataset with n examples X = {xi}i=1,...,n. The prob-

ability of samples xi given the model matrix W can
be written as follows (Welling and Teh, 2011; Dubey
et al., 2016)

p(xi|W ) = |det(W)|
∏
i

p(w>i xi),

where p(w>i xi) = 1/(4 cosh2(w>i xi/2)). We consider
Gaussian prior over W, i.e., p(W) ∼ N (0, λ−1I).
Then we formulate the log-posterior as the average of
n component functions, i.e.,

∑n
i=1 fi(W)/n, where

fi(W) = −n
[

log(|det(W)|)

+ 2
d∑
i=1

log
(

cosh(w>i xi/2)
)]

+ λ‖W‖2F .

We perform the ICA algorithm on EEG dataset3,
which contains 125337 samples with 34 channels. In
this experiment, we consider two regimes with different
sample size n. To achieve this, we extract two subsets
with size 500 and 5000 from the original dataset, and
extract 5000 samples from the rest dataset for test.
Follow the same procedures in Welling and Teh (2011);
Chen et al. (2014); Zou et al. (2018a), we discard the
first 50 iterates as burnin and compute the sample path
average to estimate the model matrix parameter W.
We first run SVRG-LD and SAGA-LD with different
batch sizes B = 1, B = 10, B = 20 and B = 50 (the
epoch length is set to be m = 2n/B for SVRG-LD),

3https://mmspg.epfl.ch/cms/page-58322.html



Sampling from Non-Log-Concave Distributions via SVRG-LD/SAGA-LD

0 2 4 6 8 10 12 14 16 18 20

0.5

0.55

0.6

0.65

0.7

0.75

0.8

LMC
SGLD
SVRG-LD
SAGA-LD

(a) pima

0 2 4 6 8 10 12 14 16 18 20

0.35

0.4

0.45

0.5

0.55

0.6

LMC
SGLD
SVRG-LD
SAGA-LD

(b) a3a

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

10-1

100

LMC
SGLD
SVRG-LD
SAGA-LD

(c) gisette

0 2 4 6 8 10 12 14 16 18 20

10-3

10-2

10-1

100

LMC
SGLD
SVRG-LD
SAGA-LD

(d) mushroom

Figure 4: Experiment results for Bayesian logistic regression, where x axis indicates the number of data pass
and y axis shows the negative log-likelihood on the test dataset. (a) - (d) represent 4 different datasets.

and plot the negative log-likelihood on test dataset
with respect to the number of effective data pass in
Figures 2(a)-2(d). It can be seen that both SVRG-LD
and SAGA-LD algorithms have the best performance
when the batch size is B = 10. Next, we set batch size
to be B = 10 for both SVRG-LD and SAGA-LD, and
compare their convergence performances with those of
LMC and SGLD, which are displayed in Figures 3(a)-
3(b). It should be noted that in the first epoch, SVRG-
LD and SAGA-LD compute the full gradient using all
n samples, thus the curves of SVRG-LD and SAGA-
LD should start from the first data pass. Moreover, we
observe that SVRG-LD and SAGA-LD have compara-
ble performance and both converge faster than SGLD
and LMC, this supports our theory.

5.3 Bayesian Logistic Regression

We also apply LMC, SGLD, SVRG-LD and SAGA-
LD to a Bayesian logistic regression problem. In
this problem, n i.i.d samples {xi, yi}i=1,...,n are ob-
served, where xi ∈ Rd and yi ∈ {−1, 1} denote the
feature and the corresponding label of the i-th sam-
ple. In Bayesian logistic model, the likelihood func-
tion takes the form p(yi|xi,β) = 1/

(
1+exp(−yix>i β)

)
where β is the regression parameter that requires to
be trained. In order to evaluate the performance of
SVRG-LD and SAGA-LD when dealing with non-log-
concave densities, we consider Gamma prior p(β) ∝
‖β‖−λ2 exp(−θ‖β‖2). Then we formulate the logarith-
mic posterior distribution as follows,

log
[
p(β|x1, . . . ,xn; y1, . . . , yn)

]
∝ − 1

n

n∑
i=1

fi(β),

where fi(β) = n log
(
1 + e−yix

>
i β
)

+ λ log(‖β‖2) +
θ‖β‖2. We compare SVRG-LD and SAGA-LD with
the baseline algorithms on four datasets from UCI4

and Libsvm5 libraries, which are pima, a3a, gisette,
and mushroom. Since pima and mushroom do not

4https://archive.ics.uci.edu/ml/
5https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/

have test data, we manually split the whole dataset
into training and test parts. Again, we compute the
sample path average to estimate the regression pa-
rameter β. The comparison between different algo-
rithms for different datasets are displayed in Figure
4(a) - 4(d). Similarly, SVRG-LD and SAGA-LD start
from the first data pass. It can be observed that the
performances of SVRG-LD and SAGA-LD are quite
similar, and both converge faster than another two
baseline algorithms, which suggests that the SVRG-
LD and SAGA-LD methods serve as better choices for
Bayesian logistic regression with non-log-concave prior
compared with LMC and SGLD.

6 CONCLUSIONS AND FUTURE
WORK

We studied the SVRG-LD and SAGA-LD methods for
sampling from non-log-concave densities, and proved
the corresponding convergence rate as well as the gra-
dient complexity when the sampling error is mea-
sured as 2-Wasserstein distance. Experimental results
showed that SVRG-LD and SAGA-LD achieve sim-
ilar performance, and converge faster than LMC and
SGLD when the target distribution is non-log-concave,
which is consistent with our theory.

There are many possible future directions that demand
to be explored, such as the convergence rate of SGLD
in Wasserstein distance when the target distribution
is non-log-concave. In addition, it is also of interest to
investigate whether the metropolis hasting step can be
applied to further improve the current results.
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A Proof of the Main Results

Let {Xk}k=0,1,...,K be the discrete-time time-inhomogeneous Markov chain generated by Algorithm 1, and let
X(kη) be the Langevin dynamics (1.1) at time kη, which satisfies X(0) = X0. Consider the target distribution
π = exp(−γF (x))/

∫
exp(−γF (x))dx, we decompose the 2-Wasserstein distanceW2

(
P (Xk), π

)
into the following

two terms based on triangle inequality.

W2

(
P (Xk), π

)
≤ W2

(
P (Xk), P (X(kη))

)
+W2

(
P (X(kη), π)

)
. (A.1)

The first term in (A.1) stands for the discretization error between the continuous-time Langevin dynamics at time
kη and the k-th iteration of SVRG-LD in 2-Wasserstein distance. The second term describes the convergence
of the probability density of Markov process {X(kη)}t≥0 to its stationary distribution, and is referred to as the
ergordicity of a Markov process. In what follows, we aim at establishing upper bounds for these two terms,
respectively.

A.1 Proof of Theorem 4.3

We first study the discretization error between the distribution of continuous Markov process at time kη and
that of the discrete iterate at the k-th update in Algorithm 1.

Lemma A.1. Under Assumptions 4.1 and 4.2, consider {Xk}k=0,1,...,K generated by Algorithm 1 with initial
point X0 = 0. The 2-Wasserstein distance between distributions of the iterate Xk in Algorithm 1 and the point
X(kη) in the Langevin dynamic sequence (1.1) is upper bounded by

W2

(
P (Xk), P (X(kη))

)
≤ DA

[(
6γm2M2(n−B)

B(n− 1)
+ 3γM2

)
(M2D2

B +G2)kη3 +

(
2dmM2(n−B)

B(n− 1)
+M2d

)
kη2

]1/4

,

where DA = 4
√

3/2 + (2b+ d/γ)kη and DB =
√

2(1 + 1/b)(a+G2 + d/γ).

In what follows, we show that the continuous-time process {X(t)}t≥0 converges to its stationary distribution
with linear rate.

Lemma A.2. Under Assumptions 4.1 and 4.2, the continuous-time Markov chain X(t) generated by Langevin
dynamics (1.1) converges exponentially to the stationary distribution π, i.e.,

W2

(
P (X(t), π)

)
≤ D4e

− t
γD5 ,

where both D4 and D5 are in the order of exp
(
Õ(γ + d)

)
.

It can be seen that the 2-Wasserstein distance diminishes exponentially fast, and the crucial factor that determines
the rate is the parameter in the exponential term, i.e., D5. It is worth noting that D5 has an exponential
dependence on γ and d.

Proof of Theorem 4.3. In previous parts, we have shown the upper bounds on termsW2

(
P (Xk), P (X(kη))

)
and

W2

(
P (X(kη), π)

)
in (A.1), thus we are ready to prove the main theorem 4.3. It can be seen that by combining

Lemmas A.1 and A.2, together with the triangle inequality and the fact that (n−B)/(n− 1) ≤ 1, we have

W2

(
P (Xk), π

)
≤ W2

(
P (xk), P (X(kη))

)
+W2

(
P (X(kη), π)

)
≤ D1

[
D2

(
2m2

B
+ 1

)
kη3 +D3

(
2m

B
+ 1

)
kη2

]1/4

+D4e
− kη
γD5 ,

where

D1 = DA = 4
√

3/2 + (2b+ d/γ)kη,

D2 = 3γM2(M2D2
B +G2) = 3γM2

(
2M2(1 + 1/b)(a+G2 + d/γ) +G2

)
,

D3 = M2d.

This completes the proof.
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A.2 Proof of Theorem 4.6

Similar to the proof of SVRG-LD, we first present the following lemma that characterizes the discretization error
between the continuous Markov process at time kη and the discrete iterate at the k-th update in Algorithm 2.

Lemma A.3. Under Assumptions 4.1 and 4.2, consider {Xk}k=0,1,...,K generated by Algorithm 2 with initial
point X0 = 0. The 2-Wasserstein distance between distributions of the iterate Xk in Algorithm 1 and the point
X(kη) in the Langevin dynamic sequence (1.1) is upper bounded by

W2

(
P (Xk), P (X(kη))

)
≤ DA

[(
144n2(n−B)M2

B3(n− 1)
+ 3M2

)
(M2D2

B +G2)γkη3 +

(
4n(n−B)M2d

B2(n− 1)
+M2d

)
kη2

]1/4

,

where DA = 4
√

3/2 + (2b+ d/γ)kη and DB =
√

2(1 + 1/b)(a+G2 + d/γ).

In terms of the sequence of continuous-time Langevin dynamics {X(t)}t≥0, Lemma A.2 is also applicable. Thus
we are able to complete the proof by combining Lemmas A.2 and A.3.

Proof of Theorem 4.6. Straightforwardly, combining Lemmas A.3 and A.2 together with triangle inequality, and
use the fact that (n−B)/(n− 1) ≤ 1, we obtain

W2

(
P (Xk), π

)
≤ W2

(
P (Xk), P (X(kη))

)
+W2

(
P (X(kη), π)

)
≤ D1

[
D2

(
48n2

B3
+ 1

)
kη3 +D3

(
4n

B2
+ 1

)
kη2

]1/4

+D4e
− kη
γD5 ,

where D1, D2, D3, D4 and D5 are identical to those in Theorem 4.3. This completes the proof.

B Proof of Corollaries

In this section, we provide the proofs of our corollaries in Section 4.

Proof of Corollary 4.4. In order to ensure the ε-accuracy in 2-Wasserstein distance, we set

D1

[
D2

(2m2

B
+ 1
)
kη3 +D3

(2m

B
+ 1
)
kη2

]1/4

=
ε

2
,

D4e
− kη
γD5 =

ε

2
. (B.1)

Based on the second equation in (B.1), it can be derived that

T , kη = γD5 log
(2D4

ε

)
.

Then, note that if we have a + b = c for positive constants a, b and c, it either follows that c ≤ 2a or c ≤ 2b.
Then we have the following according to the first equation in (B.1),

η ≥ min

{√
ε4

32D4
1D2(2m2/B + 1)T

,
ε4

32D4
1D3(2m/B + 1)T

}
.

Combine the above two results, we have

k =
T

η
≤ γD5 log

(2D4

ε

)(√32D4
1D2(2m2/B + 1)T

ε4
+

32D4
1D3(2m/B + 1)T

ε4

)
.

From Lemma A.2, we know that D5 = exp
(
Õ(γ + d)

))
, thus the required iteration number k exponentially

depends on dimension d and inverse temperature γ. Then, we focus on figuring out dependence on ε. Ignoring
constants that have no dependence in ε and only polynomially depends on γ and d, we have

k = Õ
(m/B1/2 + 1

ε2
+
m/B + 1

ε4

)
· exp

(
Õ(γ + d)

)
.
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Note that we have to compute full gradient for k/m times, thus the total gradient complexity is

Tg ≤ kB + n(k/m ∨ 1) ≤ kB +
kn

m
+ n.

Obviously, minimizing Tg requires mB = n. Then, the gradient complexity becomes

Tg ≤ 2kB + n = Õ
(nB−1/2

ε2
+
n/B +B

ε4
+ n

)
· exp

(
Õ(γ + d)

)
.

Let B = O(n1/2), we straightforwardly obtain

Tg = Õ
(
n+

n3/4

ε2
+
n1/2

ε4

)
· exp

(
Õ(γ + d)

)
,

which completes the proof.

Proof of Corollary 4.7. Analogous to the proof of Corollary 4.4, we set

D1

[
D2

(
48n2

B3
+ 1

)
kη3 +D3

(
4n

B2
+ 1

)
kη2

]1/4

=
ε

2

D4e
− kη
γD5 =

ε

2
.

From the second equation, we obtain

kη = γD5 log

(
2D4

ε

)
.

Let T = kη, the first equation yields that

η ≥ min

{√
ε4

32D4
1D2(48n2/B3 + 1)T

,
ε4

32D4
1D3(4n/B2 + 1)T

}
.

Then the required number of iterations satisfies

k =
T

η
≤ γD5 log

(
2D4

ε

)(√
32D4

1D2(48n2/B3 + 1)T

ε4
+

32D4
1D3(4n/B2 + 1)T

ε4

)
.

From Lemma A.2, we know that D5 = exp
(
Õ(γ + d)

))
, the complexity k must exponentially depends on

dimension d and inverse temperature γ. Then, we focus on figuring out the dependence on ε. Ignoring constants
that have no dependence in ε, we have

k = Õ

(
n/B3/2 + 1

ε2
+
n/B2 + 1

ε4

)
.

Then the corresponding gradient complexity is

Tg = n+ kB = Õ

(
n+

n/B1/2

ε2
+
n/B +B

ε4

)
.

Plugging the dependence on d and γ, we complete the proof.

C Proof of Technical Lemmas

In this section, we prove the technical lemmas in Appendix A.
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C.1 Proof of Lemma A.1

We first lay out the following 5 lemmas which is useful for proving Lemma A.1.

Lemma C.1. For all x ∈ Rd and i = 1, . . . , n, we have

‖∇fi(x)‖2 ≤M‖x‖2 +G.

Moreover, it follows that

‖∇fi(x)‖22 ≤ 2M‖x‖22 + 2G.

Lemma C.2. Under Assumptions 4.1 and 4.2, for sufficiently small step size η, suppose the initial point is
chosen at X0 = 0, the expectation of the `2 norm of the iterates generated by Algorithm 1 is bounded by

E[‖Xk‖22] ≤ 2

(
1 +

1

b

)(
a+G2 +

d

γ

)
, DB .

Lemma C.3. (Bolley and Villani, 2005) For any two probability measures P and Q, if they have finite second
moments, the following holds,

W2(Q,P ) ≤ Λ(
√
DKL(Q||P ) + 4

√
DKL(Q||P )),

where Λ = 2 infλ>0

√
1/λ(3/2 + logEP [eλ‖x‖

2
2 ]), where x satisfies probability measure P .

Lemma C.4. Under Assumptions 4.1 and 4.2, for sufficiently small step size η and β ≥ 2/m, we have

logE[exp(‖X(t)‖22)] ≤ ‖X0‖22 + (2b+ d/γ)kη,

where we consider the fact that η ≤ 1, and require that γ > 4.

Lemma C.5. Under Assumption 4.1, we have the following upper bound on the variance of semi-stochastic
gradient ∇̃k in the SVRG-LD update,

E[‖∇̃k −∇F (Xk)‖22] ≤ M2(n−B)

B(n− 1)
E‖Xk − X̃‖22.

In order to analyze the long-time behaviour of the error between the discrete-time algorithm and continuous-
time Langevin dynamics, we follow the similar technique used in Dalalyan (2017b); Raginsky et al. (2017); Xu
et al. (2018), in which a continuous-time Markov process {D(t)}t≥0 is introduced to describe the numerical
approximation sequence {Xk}k=0,1,...,K . Define

dD(t) = −b(D(t))dt+
√

2γ−1dB(t), (C.1)

where b(D(t)) =
∑∞
k=0 ∇̃k1{t ∈

[
ηk, η(k + 1)

)
}. Integrating (C.1) on interval

[
ηk, η(k + 1)

)
yields

D(η(k + 1)) = D(ηk)− η∇F (D(ηk)) +
√

2ηγ−1 · εk,

where εk ∼ N(0, Id×d) and ∇̃k is the semi-stochastic gradient at k-th iteration of VR-SGLD. This implies that
the distribution of random vector (X1, . . . ,Xk, . . .) is equivalent to that of (D(η), . . . ,D(ηk), . . .). Note that
(C.1) is not a time-homogeneous Markov chain since the semi-stochastic gradient b(D(t)) also depends on some
historical iterates. However, Gyöngy (1986) showed that one can construct an alternative Markov chain which
enjoys the same one-time marginal distribution as that of D(t), which is formulated as follows,

dD̃(t) = −b̃(D̃(t))dt+
√

2γ−1dB(t),

where b̃(D̃(t)) = E[b(D(t))|D̃(t) = D(t)]. Then we let Pt denote the distribution of D̃(t), which is identical to
that of D(t). Recall the SDE of Langevin dynamics, i.e.,

dX(t) = −q(X(t))dt+
√

2γ−1dB(t),
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where q(X(t)) = ∇F (X(t)) and define by Qt the distribution of X(t). Now, we have constructed two continuous
continuous process. Thus, the Radon-Nykodim derivative of Pt with respective to Qt can be obtained by the
Girsanov formula

dPt
dQt

(D̃(s)) = exp

{∫ t

0

(q(D̃(s))− b(D̃(s)))>dB(s)− γ

4

∫ t

0

‖q(D̃(s))− b(D̃(s))‖22ds
}
.

This suggests that the KL divergence between Pt and Qt has the following form

DKL(Qt||Pt) = −E
[

log

(
dPt
dQt

(D̃(s))

)]
=
γ

4

∫ t

0

E
[
‖q(D̃(s))− b(D̃(s))‖22

]
ds. (C.2)

This result gives us an opportunity to estimate the 2-Wasserstein distance W2

(
P (Xk, P (X(kη))

)
, since we are

able to apply KL divergence DKL(Qkη||Pkη) to generate an upper bound based on Lemma C.3. Now, we are
going to complete the proof for Lemma A.1 in the following.

Proof of Lemma A.1. Denote Pk, Qk as the probability density functions of Xk and X(kη) respectively. By
Lemma C.3, we know that the 2-Wasserstein distance is upper bounded as follows,

W2(Qk, Pk) ≤ Λ(
√
DKL(Qk||Pk) + 4

√
DKL(Qk||Pk)).

Moreover, by data-processing theorem in terms of KL divergence, we have

DKL(Qk||Pk) ≤ DKL(Qkη||Pkη) =
γ

4

∫ kη

0

E
[
‖q(D̃(s))− b(D̃(s))‖22

]
ds

=
γ

4

∫ kη

0

E
[
‖q(D(s))− b(D(s))‖22

]
ds,

where the second equality holds due to the fact that D̃(s) and D(s) have same one-time distribution. Note that
D(kη) is generated based on Xk. By definition, we know that b(D(s)) is a step function and remains constant
when s ∈ [ηk, η(k + 1)) for any k, and q(D(s)) is a continuous function for any s. Based on this observation, it
follows that ∫ ηk

0

E
[
‖q(D(s))− b(D(s))‖22

]
ds

=

k−1∑
v=0

∫ η(v+1)

vη

E
[
‖∇̃v −∇F (D(s))‖22

]
ds

≤ 2η

k−1∑
v=0

E
[
‖∇̃v −∇F (Xv)‖22

]
+ 2

k−1∑
v=0

∫ η(v+1)

vη

E
[
‖∇F (D(vη))−∇F (D(s))‖22

]
ds,

where the second inequality is due to Jensen’s inequality and the convexity of function ‖ · ‖22, and ∇F (Xv) =
∇F (D(vη)) denotes the gradient of F (·) at Xv. Combine the above results we obtain

DKL(Qk||Pk) ≤ γη

2

k−1∑
v=0

E[‖∇̃v −∇F (Xv)‖22]

+
γ

2

k−1∑
v=0

∫ η(v+1)

vη

E
[
‖∇F (D(vη))−∇F (D(s))‖22

]
ds, (C.3)

where the first term on the R.H.S. can be further bounded by

γη

2

k−1∑
v=0

E[‖∇̃v −∇F (Xv)‖22] ≤ γη

2

s∑
i=0

m−1∑
j=0

E[‖∇̃im+j −∇F (Xim+j)‖22],
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where we use the fact that k = sm+ ` ≤ (s+ 1)m for some ` = 0, 1, . . . ,m− 1. Applying Lemma C.5, the inner
summation satisfies

m−1∑
j=0

E[‖∇̃im+j −∇F (Xim+j)‖22] ≤
m−1∑
j=0

M2(n−B)

B(n− 1)
E
∥∥Xim+j − X̃(i)

∥∥2

2
. (C.4)

Note that we have

E
∥∥Xim+j − X̃(i)

∥∥2

2

= E
∥∥∥∥ j−1∑
u=0

η
(
∇fiim+u

(Xim+u)−∇fiim+u
(X̃(i)) +∇F (X̃(i))

)
−
j−1∑
u=0

√
2η

γ
εj

∥∥∥∥2

2

≤ j
j−1∑
u=0

E
[
2η2
∥∥∇fiim+u

(Xim+u)−∇fiim+u
(X̃(i)) +∇F (X̃(i))

∥∥2

2

]
+

j−1∑
u=0

4ηd

γ

≤ j
j−1∑
u=0

E
[
6η2
(
‖∇fiim+u(Xim+u)‖22 + ‖∇fiim+u(X̃(i))‖22 + ‖∇F (X̃(i)

)
‖22)
]

+

j−1∑
u=0

4ηd

γ

≤ 36j2η2(M2D2
B +G2) +

4jηd

γ
, (C.5)

where the first and second inequalities follow from Young’s inequality and the last one follows from Lemma C.1
and Lemma C.2, and DB =

√
2(1 + 1/b)(a+G2 + d/γ). Submit (C.5) back into (C.4) we have

m−1∑
j=0

E[‖∇̃im+j −∇F (Xim+j)‖22] ≤
m−1∑
j=0

4M2(n−B)

B(n− 1)

(
9j2η2(M2D2

B +G2) +
jηd

γ

)

≤ 4M2(n−B)

B(n− 1)

(
3m3η2(M2D2

B +G2) +
m2ηd

γ

)
. (C.6)

Submitting (C.6) into (C.3) yields

k−1∑
v=0

E[‖∇̃v −∇F (Xv)‖22] ≤ 4kM2(n−B)

B(n− 1)

(
3m2η2(M2D2

B +G2) +
mηd

γ

)
. (C.7)

Next, we are going to upper bound the second term on the R.H.S of (C.3). According to the smoothness
assumption on F (x), we have

E[‖∇F (D(vη))−∇F (D(s))‖22] ≤M2E[‖D(s)−D(vη)‖22],

which yields that

k−1∑
v=0

∫ η(v+1)

vη

E
[
‖∇F (Xv)−∇F (N(s))‖22

]
ds

≤
k−1∑
v=0

∫ η(v+1)

vη

M2E
[
‖D(s)−D(vη)‖22

]
ds

=

k−1∑
v=0

∫ η(v+1)

vη

M2

(
(s− vη)2E[‖∇̃v‖22] +

2(s− vη)d

γ

)
ds

≤ M2η3

3

k−1∑
v=0

E[‖∇̃v‖22] +
2kM2η2d

γ
. (C.8)
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By Lemma C.1, we know that

E[‖∇̃v‖22] = E
[∥∥∥∥1/B

∑
ik∈Ik

(
∇fik(Xv)−∇fik(X̃(s)) +∇F (X̃(s)

))∥∥∥∥2

2

]
≤ 3E

[
(M‖Xv‖2 +G)2 + 2(M‖X̃(s)‖2 +G)2

]
≤ 6M2E[‖Xv‖22] + 12N2E[‖X̃(s)‖22] + 18G2

≤ 18M2D2
B + 18G2,

where DB =
√

2(1 + 1/b)(a+G2 + d/γ) is defined in Lemma C.2, and the last second inequality follows from
the fact that (M‖Xv‖2 +G)2 ≤ 2M2‖Xv‖22 + 2G2. Thus, combining (C.3), (C.8), (C.7), we arrive at

DKL(Qk||Pk) ≤ 2kηγM2(n−B)

B(n− 1)

(
3m2η2(M2D2

B +G2) +
mηd

γ

)
+
γ

2

(
6M2kη3(M2D2

B +G2) +
2kM2η2d

γ

)
=

(
6m2M2(n−B)

B(n− 1)
+ 3γM2

)
(M2D2

B +G2)kη3

+

(
2dmM2(n−B)

B(n− 1)
+M2d

)
kη2 (C.9)

Combining (C.9) and Lemma C.3, assume that DKL(Qk||Pk) ≤ 1, and choose λ = 1 in Lemma C.3 we obtain

W2

(
P (Xk), P (X(kη))

)
≤ DA

[(
6γm2M2(n−B)

B(n− 1)
+ 3γM2

)
(M2D2

B +G2)kη3 +

(
2dmM2(n−B)

B(n− 1)
+M2d

)
kη2

]1/4

,

where DA = 2Λ = 4
√

3/2 + (2b+ d/γ)kη since ‖X0‖2 = 0.

C.2 Proof of Lemma A.2

In the following, we adopt the method in Bakry et al. (2013) to show the exponential ergodicity of Langevin
diffusion (1.1). In detail, following Bakry et al. (2013), we show the exponential decay in terms of KullbackLeibler
divergence (KL divergence) between the probability measure P tL(·) and the stationary distribution π, characterize
the convergence rate of Langevin dynamics, and link the 2-Wasserstein distance and KL divergence using Otto-
Villani theorem (Bakry et al., 2013). We first present the following lemma, which is necessary for the estimation
of constant D3 in Lemma A.2.

Lemma C.6. (Raginsky et al. (2017)) Consider Langevin diffusion (1.1), under Assumptions 4.1 and 4.2, its
stationary distribution π satisfies the logarithmic Sobolev inequality with constant C, i.e., for any function h
such that

∫
Rd h| log h|dπ <∞ and

∫
Rd h

2dπ = 1, we have∫
Rd

2h2 log hdπ ≤ 2Γ ·
∫ d

R
‖∇h‖22dπ, (C.10)

where Γ = exp
(
Õ(γ + d)

)
.

Proof of Lemma A.2. By Lemma C.6, the stationary distribution π satisfies logarithmic Sobolev inequality with
constant Γ. According to Bakry et al. (2013) (Theorem 5.2.1), we know that for Langevin diffusion (1.1), the
KL divergence between probability measure of X(t) and the stationary distribution π satisfies the following
inequality for any t ≥ 0,

D
(
P tL(·)‖π

)
≤ D

(
P 0
L(·)‖π

)
e−

2t
γΓ . (C.11)

where Γ is the constant in logarithmic Sobolev inequality. It can be seen that the above result gives the form
of exponential decay, and the corresponding rate relies on the constant Γ, which is specified in Lemma C.6.
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Moreover, according to Bakry et al. (2013) (Theorem 9.6.1), it can be seen that if (C.10) holds for stationary
distribution π with constant Γ, we have the following hold for probability measure P tL(·),

W2(P tL(·), π) ≤
√

2Γ ·D
(
P tL(·)‖π

)
, (C.12)

where W2(u, v) is the 2-Wasserstein distance between probability measures u and v. Submit (C.12) into (C.11),
we have the following

W2(P tL(·), π) ≤
√

2Γ ·D
(
P 0
L(·)‖π

)
e−

t
γΓ .

Let D4 =
√

2Γ ·D
(
P (X(0)))‖π

)
and D5 = Γ, we have

W2(P tL(·), π) ≤ D4e
− t
γD5 ,

which completes the proof.

C.3 Proof of Lemma A.3

We first lay out the following Lemmas which will be used to prove Lemma A.3

Lemma C.7. Under Assumptions 4.1 and 4.2, for sufficiently small step size η, suppose the initial point is
X0 = 0, the expectation of the squared `2 norm of the iterates generated by Algorithm 2 is bounded by

E[‖Xk‖22] ≤ 2

(
1 +

1

b

)(
a+G2 +

d

γ

)
= DB .

Lemma C.8. Under Assumption 4.1, we have the following upper bound on the variance of semi-stochastic
gradient ∇̃k in the SAGA-LD update,

E[‖∇̃k −∇F (Xk)‖22] ≤ n−B
B(n− 1)

E‖∇fik(Xk)− G̃ik‖22.

Similar to the proof of Lemma A.1, we have two continuous Markov chains, one of them is generated by the
Langevin dynamics, i.e.,

dX(t) = −q(X(t))dt+
√

2γ−1dB(t),

where q(X(t)) = ∇f(X(t)), and the other one, denoted as {H(t)}t≥0, follows from the iterate sequence
{Xk}k=0,1,...,K generated by Algorithm 2, and takes the following form

dH(t) = −h(H(t))dt+
√

2γ−1dB(t),

where the drift term h(H(t)) = ∇̃k is defined in Algorithm 2. Similar to the proof of SVRG-LD, {H(t)}t≥0

does not form a Markov Chain since the drift term h(H(t)) depends on some history iterates {H(τ), τ ≤ t}.
However, we can again construct a Markov chain {H̃(t)}t≥0 which possesses the identical one-time distribution

of {H(t)}t≥0. {H̃(t)}t≥0 is defined by the following SDE

dH̃(t) = −h̃(H̃(t))dt+
√

2γ−1dB(t),

where h̃(H̃(t)) = E[h(H(t))|H̃(t) = H(t)]. Let Pt and Qt denote the distributions of H̃(t) andX(t) respectively.
Using the Radon-Nykodim derivative of Pt with respect to Qt, we obtain the following formula in terms of the
KL divergence between Pt and Qt,

DKL(Qt||Pt) = −E
[

log

(
dPt
dQt

(H̃(t))

)]
=
γ

4

∫ t

0

E
[
‖q(H̃(s))− h(H̃(s)‖

]
.

Then we are going to complete the proof.
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Proof of Lemma A.3. Note that h(H(s)) is a step function and remains constant when s ∈ [vη, (v+ 1)η] for any
v, then we have∫ kη

0

E
[
‖q(H̃(s))− h(H̃(s))‖22

]
=

∫ kη

0

E
[
‖q(H(s))− h(H(s))‖22

]
=

k−1∑
v=0

∫ (v+1)η

vη

E
[
‖∇̃v −∇F (H(s))‖22

]
≤ 2

k−1∑
v=0

∫ (v+1)η

vη

E
[
‖∇̃v −∇F (Xv)‖22

]
+ 2

k−1∑
v=0

∫ (v+1)η

vη

E
[
‖∇F (H(vη))−∇F (H(s))‖22

]
, (C.13)

where the first equality holds since H̃(s) and H(s) has identical distribution, and the inequality is by Young’s
inequality and the fact that Xv = H(vη). In terms of the first term on the R.H.S of the above inequality, the
following holds according to Lemma C.8,

E
[
‖∇̃v −∇F (Xv)‖22

]
≤ n−B
B(n− 1)

E
[
‖∇fiv (Xv)− G̃iv‖22

]
.

Note that G̃iv = ∇fiv (Xu) for some u satisfying 0 ≤ u < v. Then we have

E
[
‖∇̃v −∇F (Xv)‖22

]
=

(n−B)

B(n− 1)
E
[
‖∇fiv (Xv)−∇fiv (Xu)‖22

]
≤ (n−B)M2

B(n− 1)
E[‖Xv −Xu‖22]. (C.14)

Note that

E[‖Xu −Xv‖22|u] = E
[∥∥∥∥ v−1∑

j=u

η∇̃j +

v−1∑
j=u

√
2η

γ
εj

∥∥∥∥2

2

]

≤ 2(u− v)

v−1∑
j=u

E[‖∇̃j‖22] +
4(u− v)ηd

γ

≤ 36(u− v)2η2(M2D2
B +G2) +

4(u− v)ηd

γ
,

where the first inequality follows from Jensen’s inequality, and the second inequality is by Young’s inequality
and Lemma C.7, where DB =

√
2(1 + 1/b)(a+G2 + d/γ). Then we have

E[‖Xv −Xu‖22] = EE[‖Xu −Xv‖22|u, v] ≤ E
[
36(u− v)2η2(M2D2

B +G2) +
4(u− v)ηd

γ

]
.

Let q = 1− (1− 1/n)B be the probability of choosing a particular index, then

E[‖Xv −Xu‖22] ≤ 36η2(M2D2
B +G2)E[(u− v)2] +

4ηd

γ
E[(u− v)]

= 36η2(M2D2
B +G2)

v−1∑
t=0

(v − t)2(1− q)v−t−1q +
4ηd

γ

v−1∑
t=0

(v − t)(1− q)v−t−1q

≤ 36η2(M2D2
B +G2)

∞∑
t=0

t2(1− q)t−1q +
4ηd

γ

∞∑
t=0

t(1− q)t−1q

≤ 72η2(M2D2
B +G2)

q2
+

4ηd

qγ
.
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From Dubey et al. (2016) we know that q = 1− (1− 1/n)B ≥ B/(2n), thus

E[‖Xv −Xu‖22] ≤ 288n2η2(M2D2
B +G2)

B2
+

8nηd

Bγ
. (C.15)

In the following, we are going to bound the second term on the R.H.S of (C.13). Based on the definition of
H(s), the following holds,∫ (v+1)η

vη

E
[
‖∇F (N(vη))−∇F (H(s))‖22

]
ds ≤

∫ (v+1)η

vη

M2E[‖H(s)−H(vη)‖22]ds

=

∫ (v+1)η

vη

M2

(
(s− vη)2E[‖∇̃v‖22] +

2(s− vη)d

γ

)
ds

≤ M2η3

3
E[‖∇̃v‖22] +

2M2η2d

γ

≤ 6M2η3(M2D2
B +G2) +

2M2η2d

γ
. (C.16)

where the last inequality follows from Lemma C.7. Then, plugging (C.16), (C.15), (C.14) into (C.13), we arrive
at

DKL(Qk||Pk) ≤ γ

4

∫ kη

0

E
[
‖q(H(s)− h(H(s))‖22

]
≤ γ

2

[
kη2n(n−B)M2

B2(n− 1)

(
288nη(M2D2

B +G2)

B
+

8d

γ

)
+ kη2M2

(
6η(M2D2

B +G2) +
2d

γ

)]
=

(
144n2(n−B)M2

B3(n− 1)
+ 3M2

)
(M2D2

B +G2)γkη3 +

(
4n(n−B)M2d

B2(n− 1)
+M2d

)
kη2.

Apply Lemma C.3, and choose λ = 1 in Lemma C.3 we obtain

W2

(
P (Xk), P (X(kη))

)
≤ DA

[(
144n2(n−B)M2

B3(n− 1)
+ 3M2

)
(M2D2

B +G2)γkη3 +

(
4n(n−B)M2d

B2(n− 1)
+M2d

)
kη2

]1/4

,

where DA = 4
√

3/2 + (2b+ d/γ)kη.

D Proof of Auxiliary Lemmas in Appendix C

In this section, we prove the technical lemmas in Appendix C.

D.1 Proof of Lemma C.1

Proof. Let G = maxi=1,...,n ‖fi(0)‖, then we have

‖∇fi(x)‖2 ≤ ‖∇fi(x)−∇fi(0)‖2 + ‖∇fi(0)‖2 ≤M‖x‖2 +G,

where the first inequality follows from triangle inequality and the second inequality follows from Assumption 4.1.
This completes the proof.

D.2 Proof of Lemma C.2

Proof. We prove the bound for E[‖Xk‖22] by mathematical induction. Since ∇̃k = 1/B
∑
ik∈Ik

(
∇fik(Xk) −

∇fik(X̃(s)) +∇F (X̃(s))
)
, we have

E[‖Xk+1‖22] = E[‖Xk − η∇̃k‖22] +

√
8η

γ
E[〈Xk − η∇̃k, εk〉] +

2η

γ
E[‖εk‖22]

= E[‖Xk − η∇̃k‖22] +
2ηd

γ
, (D.1)
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where the second equality follows from the fact that εk is independent of Xk and standard Gaussian.

We prove it by induction. First, consider the case when k = 1. Since we choose the initial point at X0 = 0, we
immediately have

E[‖X1‖22] = E[‖X0 − η∇̃0‖22] +

√
8η

γ
E[〈X0 − η∇̃0, ε0〉] +

2η

γ
E[‖ε0‖22]

= η2E[‖∇F (X0)‖22] +
2ηd

γ

≤ η2G2 +
2ηd

γ
,

where the second equality holds due to the fact that ∇̃0 = ∇F (X0) and the inequality follows from Lemma C.1.
For sufficiently small η we can easily make the conclusion holds for E[‖X1‖22].

Now assume that the conclusion holds for all iteration from 1 to k, then for the (k+ 1)-th iteration, by (D.1) we
have,

E[‖Xk+1‖22] = E[‖Xk − η∇̃k‖22] +
2ηd

γ
, (D.2)

For the first term on the R.H.S of (D.2) we have

E[‖Xk − η∇̃k‖22] = E[‖Xk − η∇F (Xk)‖22] + 2ηE〈Xk − η∇F (Xk),∇F (Xk)− ∇̃k〉

+ η2E[‖∇F (Xk)− ∇̃k‖22]

= E[‖Xk − η∇F (Xk)‖22]︸ ︷︷ ︸
T1

+ η2E[‖∇F (Xk)− ∇̃k‖22]︸ ︷︷ ︸
T2

, (D.3)

where the second equality holds due to the fact that E[∇̃k] = ∇F (Xk). For term T1, we can further bound it by

E[‖Xk − η∇F (Xk)‖22] = E[‖Xk‖22]− 2ηE[〈Xk,∇F (Xk)〉] + η2E[‖∇F (Xk)‖22]

≤ E[‖Xk‖22] + 2η(a− bE[‖Xk‖22]) + 2η2(M2E[‖Xk‖22] +G2)

= (1− 2ηb+ 2η2M2)E[‖Xk‖22] + 2ηa+ 2η2G2, (D.4)

where the inequality follows from Lemma C.1 and triangle inequality. For term T2, by Lemma C.5 we have

E‖∇F (Xk)− ∇̃k‖22 ≤
M2(n−B)

B(n− 1)
E
∥∥Xk − X̃(s)

∥∥2

2
≤ 2M2(n−B)

B(n− 1)

(
E
∥∥Xk

∥∥2

2
+ E

∥∥X̃(s)
∥∥2

2

)
.

Submit the above bound back into (D.1) we have

E[‖Xk+1‖22] ≤
(

1− 2ηb+ 2η2M2
(

1 +
n−B
B(n− 1)

))
E[‖Xk‖22]

+
2η2M2(n−B)

B(n− 1)
E
∥∥X̃(s)

∥∥2

2
+ 2ηa+ 2η2G2 +

2ηd

γ
. (D.5)

Note that by assumption we have E
∥∥Xj

∥∥2

2
≤ Cψ for all j = 1, . . . , k where Cψ = 2

(
1 + 1/b

)(
a+G2 + d/γ

)
, thus

(D.5) can be further bounded as:

E[‖Xk+1‖22] ≤
(

1− 2ηb+ 2η2M2
(

1 +
2(n−B)

B(n− 1)

))
︸ ︷︷ ︸

Cλ

Cψ + 2ηa+ 2η2G2 +
2ηd

γ
. (D.6)

For sufficient small η that satisfies

η ≤ min

(
1,

b

2M2
(
1 + 2(n−B)/(B(n− 1))

)),
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there are only two cases we need to take into account:
If Cλ ≤ 0, then from (D.6) we have

E[‖Xk+1‖22] ≤ 2ηa+ 2η2G2 +
2ηd

γ
(D.7)

≤ 2

(
a+G2 +

d

γ

)
.

If 0 < Cλ ≤ 1, then iterate (D.6) and we have

E[‖Xk+1‖22] ≤ Ck+1
λ ‖X0‖22 +

ηa+ η2G2 + ηd
γ

ηb− η2M2
(

1 + 2(n−B)
B(n−1)

) (D.8)

≤ 2

b

(
a+G2 +

d

γ

)
.

Combining (D.7) and (D.8), we have

E[‖Xk+1‖22] ≤ 2

(
1 +

1

b

)(
a+G2 +

d

γ

)
.

Thus we show that when E[‖Xj‖22], j = 1, . . . , k are bounded, E[‖Xk+1‖22] is also bounded. By mathematical
induction we complete the proof.

D.3 Proof of Lemma C.5

Proof. Since by Algorithm 1 we have ∇̃k = (1/B)
∑
ik∈Ik

(
∇fik(Xk)−∇fik(X̃(s)) +∇F (X̃(s))

)
, therefore,

E[‖∇̃k −∇F (Xk)‖22] = E
∥∥∥∥ 1

B

∑
ik∈Ik

(
∇fik(Xk)−∇fik(X̃(s)) +∇F (X̃(s))−∇F (Xk)

)∥∥∥∥2

2

.

Let vi = ∇F (xk)−∇F (x̃(s))−
(
∇fik(xk)−∇fik(x̃(s))

)
.

E
∥∥∥∥ 1

B

∑
i∈Ik

vi(x)

∥∥∥∥2

2

=
1

B2
E
[ ∑
i 6=i′,{i,i′}∈Ik

vi(x)>vi′(x)

]
+

1

B
E‖vi(x)‖22

=
B − 1

Bn(n− 1)
E
[∑
i 6=i′

vi(x)>vi′(x)

]
+

1

B
E‖vi(x)‖22

=
B − 1

Bn(n− 1)
E
[∑
i,i′

vi(x)>vi′(x)

]
− B − 1

B(n− 1)
E‖vi(x)‖22 +

1

B
E‖vi(x)‖22

=
n−B
B(n− 1)

E‖vi(x)‖22, (D.9)

where the last equality is due to the fact that 1
n

∑n
i=1 vi(x) = 0.

Therefore, we have

E[‖∇̃k −∇F (xk)‖22] ≤ n−B
B(n− 1)

E‖vi‖22

=
n−B
B(n− 1)

E‖∇fik(xk)−∇fik(x̃)− E[∇fik(xk)−∇fik(x̃)]‖22

≤ n−B
B(n− 1)

E‖∇fik(xk)−∇fik(x̃)‖22

≤ M2(n−B)

B(n− 1)
E‖xk − x̃‖22, (D.10)

where the second inequality holds due to the fact that E[‖x− E[x]‖22] ≤ E[‖x‖22] and the last inequality follows
from Assumption 4.1. This completes the proof.
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D.4 Proof of Lemma C.6

Although the similar proof has been shown in Raginsky et al. (2017), we provide a refined version to make this
paper self-contained.

In order to prove Lemma C.6, we need the following three lemmas.

Lemma D.1. (Raginsky et al. (2017)) In terms of the Langevin dynamics (1.1), under Assumption 4.2, we have
the following upper bound on the expectation E[‖X(t)‖22]

E
[
‖X(t)‖22

]
≤ e−2bt‖X(0)‖22 +

a+ d/γ

b
(1− e−2bt).

Lemma D.2. ( Bakry et al. (2008)). Suppose that there exists constants k0, λ0 > 0, R ≥ 0 and a C2 function
V : Rd → [1,∞) such that

LV (w) ≤ −λ0V (w) + k01{‖w‖2 ≤ R},

where the operator L is Itô differential operator. Then the stationary distribution, i.e., π, satisfies a Poincaré
inequality with constant

cp ≤
1

λ0

(
1 + Cpk0R

2eOscR(g)

)
,

where Cp > 0 is a universal constant and OscR(f) := max‖w‖2≤R f(w)−min‖w‖2≤R f(w).

Lemma D.3. (Cattiaux et al. (2010)) Suppose the following conditions hold:

1. There exist constants k, λ > 0 and a C2 function V : Rd → [1,∞) such that

LV (w)

V (w)
≤ k − λ‖w‖22

for all w ∈ Rd.

2. π satisfies a Poincaré inequality with constant cp.

3. There exists some constant K ≥ 0, such that ∇2f ≥ −KI.

Let C̃1 and C̃2 be defined, for some ε > 0, by

C̃1 =
2

λ

(
1

ε
+
K

2

)
+ ε and C̃2 =

2

λ

(
1

ε
+
K

2

)(
K + λ

∫
Rd
‖w‖22dπ

)
.

Then π satisfies a logarithmic Sobolev inequality with constant Γ = C̃1 + (C̃2 + 2)cp.

Based on the above two lemmas, we are able to complete the proof.

Proof of Lemma C.6. We first give the upper bound of the constant cp in Poincaré inequality. Following from
Lemma D.2, we can establish a Lyapunov function V (w) and then derive a upper bound of cp. In this proof, we

apply the same Lyapunov as Raginsky et al. (2017). Let V (w) = e−bγ‖w‖
2
2/4, and we have

LV (w) = −γ〈∇V ,∇F 〉+∇2V : I

=

(
− bγ2

2
〈w,∇F 〉+

bγd

2
+

(bγ)2

4
‖w‖22

)
V

≤
(
bγ(d+ aγ)

2
− (bγ)2

4
‖w‖22

)
V, (D.11)

where the last inequality follows from Assumption 4.2. Thus, let R2 = 4(d+ aγ)/(bγ), we have

LV (w) ≤ −bγ(d+ aγ)

2
V (w) + max

‖w‖2≤R

(
bγ(d+ aγ)

2
− (bγ)2

4
‖w‖22

)
V (w)1{‖w‖2 ≤ R}.
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Let

λ0 =
bγ(d+ aγ)

2
, and k0 =

bγ(d+ aγ)ebγR
2/4

2
,

we immediately have

LV (w) ≤ −λ0V (w) + k01{‖w‖2 ≤ R}.

Under Assumption 4.1, it follows that

F (x)− F (y) ≤ 〈∇F (y),x− y〉+
M

2
‖x− y‖22,

for any x,y ∈ Rd. By taking y = 0, we obtain that there exists a constant K0 > 0, such that

F (x) ≤ F (0) + 〈∇F (0),x〉+
M

2
‖x‖22 ≤ K0(1 + ‖x‖22), (D.12)

where

K0 = max

{
F (0) +

1

2
‖∇F (0)‖22,

M + 1

2

}
.

By (D.12), we have

OscR(γF ) ≤ 2γK0(1 +R2).

Thus, based on Lemma D.2, the stationary distribution π satisfies a Poincaré inequality with constant

cp ≤
1

bγ(d+ aγ)
+

4Cp(d+ aγ)

bγ
exp

(
2γK0 +

(8K0 + b)(d+ aγ)

b

)
.

Next, we are going to prove the upper bound of constant Γ in logarithmic Sobolev inequality. According to
(D.11), we know that

LV (w)

V (w)
≤ k − λ‖w‖22

holds with

k =
bγ(d+ aγ)

2
, and λ =

(bγ)2

4
.

In addition, for function f(x) = γF (x), we have ∇2f ≥ −MγI according to Assumption 4.1. Then substitute
the above parameters into Lemma D.3, choose ε = 2

M , we obtain

C̃1 =
2b2 + 8M2

Mγb2
.

Moreover, from Lemma D.1, constant C̃2 is bounded by

C̃2 ≤
6M(d+ aγ)

b
,

Submitting C̃1 and C̃2 back to Lemma D.3, we have

C ≤ 2b2 + 8M2

b2Mγ
+ cp

(
6M(d+ aγ)

b
+ 2

)
,

note that cp = eÕ(γ+d), we also have Γ = eÕ(γ+d), which completes the proof.
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D.5 Proof of Lemma C.7

Proof of Lemma C.7. The proof for Lemma C.7 is quite similar to that for Lemma C.2. Based on the update
form of Xk in Algorithm 2, we have

E[‖Xk+1‖22] = E[‖Xk − η∇̃k +
√

2η/γεk‖22] = E[‖Xk − η∇̃k‖22] +
2ηd

γ
.

Similar to (D.3), we further have

E[‖Xk − η∇̃k‖22] = E[‖Xk − η∇F (Xk)‖22] + η2E[‖∇F (Xk)− ∇̃k‖22]. (D.13)

Compared with the argument in (D.3), the first term on the R.H.S of the above inequality can be upper bounded
in the same way as we did in (D.4), which is stated as follows,

E[‖Xk − η∇F (Xk)‖22] ≤ (1− 2ηb+ 2η2M2)E[‖Xk‖22] + 2ηa+ 2η2G2.

Regarding the second term on the R.H.S of (D.13), we have the following based on Lemma C.5

E[‖∇F (Xk)− ∇̃k‖22] ≤ n−B
B(n− 1)

E[‖∇fik(Xk)− G̃ik‖22] =
n−B
B(n− 1)

E[‖∇fik(Xk)−∇fik(Xu)‖22],

where u is an index satisfying u < k. Applying smoothness assumption we have

E[‖∇F (Xk)− ∇̃k‖22] ≤ (n−B)M2

B(n− 1)
E[‖Xk −Xu‖22]

≤ 2
(
E[‖Xk‖22] + E[‖Xu‖22]

)
,

where the second inequality follows from Young’s inequality and the fact that B ≥ 1. Now, we are able to upper
bound E[‖Xk+1‖22] as follows

E[‖Xk+1‖22] ≤ (1− 2ηb+ 2η2M2)E[‖Xk‖22] + 2ηa+ 2η2G2 + 2η2(E[‖Xk‖22] + E[‖Xu‖22]) +
2ηd

γ

≤
(
1− 2ηb+ 2η2(M2 + 4)

)
max{E[‖Xk‖22],E[‖Xu‖22]}+ 2η(a+ d/γ) + 2η2G2

Then we apply induction to prove that E[‖Xk‖22] ≤ 2(1+1/b)(a+G2+d/γ). It is easy to verify that E[‖X0‖22] = 0
satisfies the argument. Then we assume that the argument holds for all iterates from 0 to k. Note that u < k,
which implies that

max{E[‖Xk‖22],E[‖Xu‖22]} ≤ 2

(
1 +

1

b

)(
a+G2 +

d

γ

)
.

Then, for sufficiently small η such that

η ≤ min

{
1,

b

2(M2 + 4)

}
,

it follows that

E[‖Xk+1‖22] ≤ 2

[
(1− ηb)

(
1 +

1

b

)
+ η

](
a+G2 +

d

γ

)
≤ 2

(
1 +

1

b
− ηb

)(
a+G2 +

d

γ

)
≤ 2

(
1 +

1

b

)(
a+G2 +

d

γ

)
,

which indicates that E[‖Xk+1‖22] also satisfies the argument. Thus we are able to complete the proof.
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D.6 Proof of Lemma C.8

Proof. Since by Algorithm 2 we have ∇̃k = 1
B

∑
ik∈Ik

(
∇fik(Xk)− G̃ik + g̃k

)
, therefore,

E[‖∇̃k −∇F (Xk)‖22] = E
∥∥∥∥ 1

B

∑
ik∈Ik

(
∇fik(Xk)− G̃ik + g̃k −∇F (Xk)

)∥∥∥∥2

2

.

Let vi = ∇fik(Xk)− G̃ik + g̃k −∇F (Xk), following the same procedure in (D.9) we have

E
∥∥∥∥ 1

B

∑
i∈Ik

vi(x)

∥∥∥∥2

2

=
n−B
B(n− 1)

E‖vi(x)‖22.

Therefore, we have

E[‖∇̃k −∇F (xk)‖22] =
n−B
B(n− 1)

E‖vi‖22

=
n−B
B(n− 1)

E‖∇fik(Xk)− G̃ik − (∇F (Xk)− g̃k)‖22

≤ n−B
B(n− 1)

E‖∇fik(Xk)− G̃ik‖22,

where the inequality holds due to the fact that E[‖x− E[x]‖22] ≤ E[‖x‖22], which completes the proof.


