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Abstract

Locality Preserving Indexing (LPI) has been
quite successful in tackling document anal-
ysis problems, such as clustering or classi-
fication. The approach relies on the Local-
ity Preserving Criterion, which preserves the
locality of the data points. However, LPI
takes every word in a data corpus into ac-
count, even though many words may not
be useful for document clustering. To over-
come this problem, we propose an approach
called Locality Preserving Feature Learning
(LPFL), which incorporates feature selection
into LPI. Specifically, we aim to find a sub-
set of features, and learn a linear transforma-
tion to optimize the Locality Preserving Cri-
terion based on these features. The result-
ing optimization problem is a mixed integer
programming problem, which we relax into
a constrained Frobenius norm minimization
problem, and solve using a variation of Al-
ternating Direction Method (ADM). ADM,
which iteratively updates the linear transfor-
mation matrix, the residue matrix and the
Lagrangian multiplier, is theoretically guar-
anteed to converge at the rate O( 1t ). Ex-
periments on benchmark document datasets
show that our proposed method outperforms
LPI, as well as other state-of-the-art docu-
ment analysis approaches.

1 Introduction

Document representation plays an important role in
solving text mining problems, such as document clus-
tering and classification. The vector space model
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(VSM) [18] is one of the most popular models for doc-
ument representation. In VSM, each document is rep-
resented as a bag of words. For a high dimensional
vector space model, a dimensionality reduction phase
is often applied first to reduce the size of the docu-
ment representation. This avoids over-fitting, and the
process of dimensionality reduction constructs a latent
semantic representation of the document.

Latent Semantic Indexing (LSI) [8] was proposed as
an approach for dimensionality reduction. LSI aims to
find a subspace which best preserves the variance of the
data, yielding an optimal representation in the sense
that the global geometric structure of the documents is
maintained. However, recent studies have shown that
many real world datasets have a distribution which
lies near a low-dimensional manifold, embedded in a
high-dimensional ambient space [1] [23].

This characteristic of real world data serves as a moti-
vation for Locality Preserving Indexing (LPI) [4]. LPI,
originally proposed in [15], is based on the Locality
Preserving Criterion [1], which says if two data points
are close, their mappings should be close as well. LPI
aims to find a subspace in which the local geometric
structure of the document corpus is well preserved.
It has been quite successful at document representa-
tion, and many variations of LPI have been proposed
in the past decade [3] [5] [6]. However, one disadvan-
tage of LPI is that it uses all of the discovered features
to learn the projection. In reality, it is rare that ev-
ery feature is useful for learning, and this is in fact
a common problem among existing subspace learning
methods [20]. Another method has been proposed in
response to this problem, called Laplacian Score [14],
which is a feature selection method based on Locality
Preserving Criterion. Rather than seeking a particu-
lar subspace, Laplacian Score searches for a subset of
features, which preserves the locality of the data. Al-
though Laplacian Score can eliminate irrelevant and
redundant features, it does not do any feature combi-
nation —that is done in LPI —which limits its perfor-
mance.
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We can see that LPI suffers from a problem that is
fixed in Laplacian score, while Laplacian score simi-
larly suffers from a problem that does not affect LPI.
Intuitively, Laplacian score and LPI can be thought
of as complementary to each other, as each approach
accounts for one issue, and ignores the other. There-
fore, what we would like is an approach that integrates
the feature selection of Laplacian score and the feature
combination of LPI.

In this paper, we propose just such an approach, called
Locality Preserving Feature Learning (LPFL). In par-
ticular, LPFL aims to simultaneously find a subset of
features and a combination of features, to optimize
the Locality Preserving Criterion. LPFL inherits the
advantages of Laplacian score and LPI, as it is able
to simultaneously discard the irrelevant features and
transform the relevant ones. The resulting optimiza-
tion problem is a mixed integer programming problem
[2], which is difficult to solve. Therefore, we relax it
into a constrained Frobenius norm minimization prob-
lem and solve it using a variation of Alternating Direc-
tion Method [21]. ADM iteratively updates the linear
transformation matrix, the residue matrix and the La-
grangian multiplier. It is easy to implement and is
theoretically guaranteed to converge.

The contributions of this paper are summarized as
follows: (1) We propose a new feature learning ap-
proach based on Locality Preserving Criterion, which
is able to achieve feature selection and transforma-
tion together; (2) the number of selected features is
explicitly controlled in our method; (3) to solve the
proposed model, we present a variation of ADM algo-
rithm, which achieves the global solution of the pro-
posed model with convergence rate O( 1t ); and (4) ex-
perimental results on benchmark document data sets
showed that the proposed method outperforms LPI,
Laplacian score and other state-of-the-art related ap-
proaches.

The rest of this paper is organized as follows. In Sec-
tion 2, we review LPI and Laplacian score. In Section
3, we present LPFL which incorporates feature selec-
tion into LPI. Experiments on benchmark document
datasets are demonstrated in Section 5. We conclude
the study and discuss future work in Section 6.

Notation We denote a dataset that consists of n data
points as {xi}ni=1, where xi ∈ Rd denotes the i-th data
point. The data matrix (e.g., term-document matrix)
is denoted by X = [x1, . . . ,xn] ∈ Rd×n, and the lin-
ear transformation matrix is denoted by A ∈ Rd×l,
mapping the input data into an l-dimensional sub-
space. Given a matrix A ∈ Rd×l, we denote the
i-th row of A by ai, and the j-th column of A by
aj . The Frobenius norm of A is defined as ||A||F =

√∑d
i ||Ai||22 = ⟨A,A⟩ = tr(ATA) where ⟨·, ·⟩ denotes

the inner product of two matrices and tr(·) denotes the
trace of a matrix. The L2,0-norm of A is defined as
||A||2,0 = card(||a1||2, . . . , ||ad||2). 1 is a vector of all
ones of some appropriate length, and I is the identity
matrix of some appropriate size.

2 A Brief Review of Locality
Preserving Criterion

In order to estimate and preserve the geometrical and
topological properties of manifold data, Locality Pre-
serving Criterion was proposed [1]. It assumes that
if two data points xi and xj are close in the intrinsic
geometry of the data distribution, then the mappings
of this two points are also close to each other. Let
f(xi) be a function that produces the mapping of the
original data point xi, we use ||f ||2M to measure the
smoothness of f along the geodesics in the intrinsic
geometry of the data. When we consider the case that
the data is a compact submanifold M ⊂ Rm, a natural
choice for ||f ||2M is

||f ||2M =

∫
x∈M

|| ▽M f ||2dx (1)

where▽Mf is the gradient of f along the manifoldM.
In reality, the data manifold M is unknown. Thus,
||f ||2M in Eq. (1) can not be computed. Recent stud-
ies on spectral graph theory [7] has demonstrated that
||f ||2M can be discretely approximated through a near-
est neighbor graph on a scatter of data points. Given
an affinity matrix W ∈ Rn×n of the graph, ||f ||2M is
approximated as:

||f ||2M ≈ 1

2

∑
ij

||fi − fj ||22Wij

= tr(fT (D−W)f)

= tr(fTLf), (2)

where fi is a shorthand for f(xi), f = [f1, . . . , fn]
T ,

D is a diagonal matrix, called a degree matrix, with
Dii =

∑n
j=1 Wij , and L = D − W is the graph

Laplacian [7], which is a discrete approximation to the
Laplace-Beltrami operator M on the manifold. Intu-
itively, the objective function incurs a heavy penalty
if neighboring points xi and xj are mapped far apart.

For document representation, the affinity matrix is
usually defined as:

Wij =

{
xT
i xj

||xi||2||xj ||2 , if xj ∈ N (xi) or xi ∈ N (xj)

0, otherwise,

(3)

where
xT
i xj

||xi||2||xj ||2 is the cosine distance between xi and

xj , and N (xi) is the set of k-nearest neighbors of xi.
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In the following, we will show that by different defini-
tions of f(x), Locality Preserving Indexing [15] [4] and
Laplacian score [14] can be recovered.

2.1 Locality Preserving Indexing

In LPI [15] [4], the function f(x) is defined as f(x) =
ATx where A ∈ Rd×l is a linear transformation ma-
trix. Submit f(x) back into Eq. (2), we obtain the
objective function of LPI as follows:

argmin
A

tr(ATXLXTA)

s.t. ATXDXTA = I, (4)

where ATXDXTA = I is added to avoid the trivial
solution. It is easy to show that the problem in Eq.
(4) is equivalent to the following Ratio Trace problem
[9]:

argmin
A

tr
(
(ATXLXTA)(ATXDXTA)−1

)
. (5)

2.2 Laplacian Score

In Laplacian score, we define f(x) as f(x) = p ⊙ x,
where p = (p1, . . . , pd)

T and pi ∈ {0, 1}, i = 1, . . . , d,
to represent whether a feature is selected or not, and ⊙
is element-wise product. Then feature selection based
on Laplacian score can be written as:

argmin
p

tr{(diag(p)XLXTdiag(p))

(diag(p)XDXTdiag(p))−1},
s.t. p ∈ {0, 1}d,pT1 = m, (6)

where diag(p) is a diagonal matrix whose diagonal el-
ements are pi’s. In order to indicate that m features
are selected, we constrain p by pT1 = m. There are(
d
m

)
candidate feature subsets, hence Eq. (6) is a com-

binatorial optimization problem. Like other feature
selection approaches [13], [14] uses a greedy algorithm
and considers each feature individually. In particular,
the Laplacian score of the j-th feature is defined as:

LSj =
xjL(xj)T

xjD(xj)T
, (7)

where xj is the jth row of X. The greedy algorithm is
to compute the Laplacian score for each feature, and
then select the top-m features with the lowest scores.
The selected features as a whole are suboptimal.

3 The Proposed Method

Our proposed method incorporates feature selection
into Locality Preserving Indexing. The key idea is
to find a subset of features, based on which we learn

a linear transformation under the Locality Preserving
Criterion. We define f(x) = AT (p⊙ x) where A and
p are defined as before. By substituting f(x) into Eq.
(2), we get:

argmin
A,p

tr(ATdiag(p)XLXTdiag(p)A)

s.t. ATdiag(p)XDXTdiag(p)A = I

p ∈ {0, 1}d,pT1 = m, (8)

which is a mixed integer programming [2]. We refer
to Eq. (8) as the Locality Preserving Feature Learn-
ing(LPFL) approach, because it is able to simultane-
ously do feature selection and subspace learning, inher-
iting the advantages of Laplacian score and LPI. LPFL
finds a subset of useful features, based on which it gen-
erates new features by feature transformation. Setting
p = 1, Eq. (8) reduces to LPI as in Eq. (5). Similarly,
setting A = I, Eq. (8) degenerates to Laplacian score
as in Eq.(6). Hence both LPI and Laplacian score can
be seen as special cases of LPFL. In addition, the ob-
jective functions corresponding to LPI and Laplacian
score are upper bounds of the objective function of
LPFL.

The formulation of Eq. (8) is difficult to solve, so we
will now reformulate the problem:

Theorem 1. Let Y ∈ Rn×m be a matrix where each
column is an eigenvector of eigen-problem Ly = λDy.
If there exists a matrix A ∈ Rd×m and p where p ∈
{0, 1}d,pT1 = m such that XT diag(p)A = Y, then
each column of A is an eigenvector of eigen-problem
diag(p)XLXT diag(p)a = λdiag(p)XDXT diag(p)a
with the same eigenvalue λ.

Proof. The proof can be found in the supplemental
material.

According to Theorem 1, the optimal (A∗,p∗) that
minimizes the problem in Eq. (8) can be obtained in
the following two steps: (1) Solve the eigen-problem
LY = ΛDY to get Y; and (2) find A and p which
satisfy XTdiag(p)A = Y.

Finding a solution (A,p) such that XTdiag(p)A = Y
is usually impossible. Hence, we introduce a residue
matrix E, and solve the following problem instead:

min
A,E,p

1

2
||E||2F ,

s.t. XTdiag(p)A+E = Y

p ∈ {0, 1}d,pT1 = m, (9)

whereY = [y1, . . . ,yc] ∈ Rn×c, and yk is the eigenvec-
tor obtained in Step (1). In the ideal case, the optimal
E is a zero matrix, and XTdiag(p)A = Y holds ex-
actly. In reality, we can obtain an E which is close to
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a zero matrix. In other words, ||E||F is close to zero.
However, Eq. (9) is still a mixed integer programming
[2], and therefore still difficult to solve.

Assume the optimal solutions of Eq. (9) are (A∗,p∗).
Then, since p∗ is a binary vector, diag(p∗)A∗ is a
matrix where the elements of many rows are all zeros.
We, therefore, absorb the indicator variable p into A,
and use L2,0-norm on A to achieve feature selection,
resulting in the following problem:

argmin
A,E

1

2
||E||2F ,

s.t. XTA+E = Y, ||A||2,0 ≤ m. (10)

Eq. (10) is a constrained Frobenius norm minimization
problem. Note that although the feasible region de-
fined by ||A||2,0 ≤ m is not convex, we later will show
that the global optimal solution can still be achieved.
In the following section, we present an algorithm for
solving Eq. (10). Due to the equality constraint, the
most natural approach for solving the problem in Eq.
(10) is an augmented Lagrangian multiplier method
[2]. We derive an algorithm based on a variation of
Alternating Direction Method (ADM) [21] for solving
Eq. (10), which is an approximate augmented La-
grangian multiplier method. It is worth noting that
ADM has been successfully applied for the recovery
of single sparse vectors [21] and jointly sparse vectors
[16].

3.1 Alternating Direction Method

The standard ADM was designed to solve the following
structured optimization problem:

minx,y f(x) + g(y)

s.t. Px+Qy = b, (11)

where x and y are vectors, f and g are two real-valued
functions, and P,Q,b are matrices and a vector of ap-
propriate dimensions. Variables x and y are separate
in the objective function and coupled only in the con-
straint. The augmented Lagrangian function of Eq.
(11) is

L(x,y,λ, µ) = f(x) + g(y) + λT (Px+Qy − b)

+
µ

2
||Px+Qy − b||2F , (12)

where λ is a Lagrangian multiplier, and µ is a positive
scalar. ADM employs the separability structure in Eq.
(11) and replaces the joint optimization with respect
to (x,y) by two simpler subproblems. The algorithm
of ADM is outlined in Algorithm 1.

The convergence result of Algorithm 1 has been estab-

lished when ρ ∈ (0,
√
5+1
2 ) in [10].

Algorithm 1 Alternating Direction Method

Initialize: ρ, µ, λ = 0,x = 0,y = 0;
repeat

Solve xt+1 = argminx L(x,yt,λt, µt)
Solve yt+1 = argminy L(xt,y,λt, µt)
Update λt+1 = λt + µt(Pxt+1 +Qyt+1 − b)
Update µt+1 = ρµt

until convergence

Since the problem in Eq. (10) has the same structure
as that in Eq. (11) except the additional inequality
constraint ||A||2,0 ≤ m, we solve it by a variation of
ADM. The augmented Lagrangian function of Eq. (10)
is:

L(A,E,Λ) =
1

2
||E||2F − ⟨Λ,XTA+E−Y⟩

+
µ

2
||XTA+E−Y||2F , (13)

where Λ is a Lagrangian multiplier, and µ > 0 is a
penalty parameter.

We will now derive the optimization algorithm for the
two subproblems with respect to E and A, and the
update rule for Λ based on ADM as introduced above.

3.1.1 Solving E

Given A and Λ, we solve the first subproblem with
respect to E. By removing terms that do not depend
on E, and adding proper terms that do not depend on
E, the optimization problem with respect to E reduces
to:

min
E

L(E) =
1

2
||E||2F − ⟨Λ,XTA+E−Y⟩

+
µ

2
(||XTA+E−Y||2F ). (14)

Taking the gradient of L(E) with respect to E and
setting it to zero, we obtain:

∂L(E)

∂E
= E−Λ− µY + µXTA+ µE = 0, (15)

which leads to the closed-form solution of E:

E =
1

1 + µ
(Λ+ µY − µXTA). (16)

3.1.2 Solving A

Next, given E and Λ, we solve the second subproblem
with respect to A. By removing the terms that do not
depend on A and adding proper terms that do not
depend on A, the optimization problem with respect
to A reduces to

min
A

L(A) =
µ

2
||XTA+E−Y − 1

µ
Λ)||2F

s.t. ||A||2,0 ≤ m. (17)
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As in [21] [16], we approximate the second term of the
objective function by its second order Taylor expansion
at At:

||XTA+E−Y − 1

µ
Λ)||2F

= ||XTAt +E−Y − 1

µ
Λ)||2F

+ 2⟨X(XTA+E−Y − 1

µ
Λ),A−At⟩

+
1

τ
||A−At||2F . (18)

Substituting Eq. (18) into Eq. (17), we obtain:

L(A) =
µ

2
{2⟨(X(XTA+E−Y − 1

µ
Λ),A−At⟩

+
1

τ
||A−At||2F }. (19)

For the sake of simplicity, we denote Bt = X(XTAt+
E−Y − 1

µΛ) and Ct = At − τBt. The minimization

of Eq. (19) then takes the following form:

At+1 = argmin
A

µ

τ
||A−Ct||2F ,

s.t.||A||2,0 ≤ m. (20)

Although the feasible region defined by ||A||2,1 ≤ m is
non-convex, the global optimal solution of the above
problem can be obtained by the following theorem.

Theorem 2. The global optimal solution of Eq. (20)
is

aπ(i)∗ =

{
c
π(i)
t , i ≤ m
0, otherwise.

(21)

where π(i) is a sorting function such that ||cπ(1)t || ≥
||cπ(2)t || ≥ . . . ,≥ ||cπ(d)t ||.

3.1.3 Updating Λ

GivenA and E, the optimization problem with respect
to Λ is reduced to

L(Λ) = ⟨Λ,Y −XTA−E⟩. (22)

The gradient of L(Λ) is

∂L(Λ)

∂Λ
= Y −XTA−E. (23)

According to the augmented Lagrangian method [2],
Λ is updated as

Λ = Λ+ µ(Y −XTA−E), (24)

where µ is updated as µ = ρµ and ρ > 0 is a scalar.

We summarize LPFL in Algorithm 2.

Algorithm 2 Locality Preserving Feature Learning

Initialize: m,A = 0,E = 0, ρ = 1.5, µ = 1e− 4;
Compute Y by eigen-decomposition LY = ΛDY.
repeat

Compute Et+1 = 1
1+µ (Λt + µtY − µtX

TAt)

Compute Bt+1 = X(XTAt +Et+1 −Y − 1
µ t
Λt)

Solve At+1 by argminA
1
2 ||A − (At −

τBt+1)||2F , s.t.||A||2,0 ≤ m
Update Λt+1 = Λt + µt(Y −XTAt+1 −Et+1)
Update µt+1 = ρµt

until convergence

3.2 Theoretical Analysis

The proposed method has several nice properties.

First, the optimal objective function can be bounded
by the generalized eigenvalues of the full matrices L′

and D′.

Theorem 3. Let L′ = XLXT , D′ = XDXT , and
λi(L

′,D′), i = 1, . . . , d be the generalized value of L′

and D′ sorted in ascending order. The optimal objec-
tive function value J of LPFL in Eq. (8) is bounded
by

l∑
i=1

λi(L
′,D′) ≤ J ≤

l∑
i=1

λi+d−m(L′,D′).

where l is the dimension of the subspace learned by A,
and m is the number of selected features.

This provides a possible way to do model selection.
That is, to select an appropriate m before running
Algorithm 2.

Second, the derived variation of ADM is guaranteed
to converge to the global optimal solution.

Theorem 4. For Algorithm 2, if
∑+∞

t=1 µ
−2
t µt+1 <

+∞, then (At,Et,Λt) converges to an optimal solu-
tion (A∗,E∗,Λ∗).

Actually, we can prove that the convergence rate of
Algorithm 2 is O( 1t ).

Theorem 5. Let θ = [vec(A)T , vec(E)T , vec(Λ)T ]T

where vec(A) denotes the vectorization of matrix A,
H = diag([I− µXXT , µI, 1

µI]) is a block diagonal ma-
trix where I is the identity matrix with appropriate
size, and F (θ) = [−vec(XΛ)T , vec(Λ)T , vec(XTA +
E−Y)T ]T , Let {θt} be the sequence generated by Al-
gorithm 2. For any integer number t > 0, let θ̄t be
defined by θ̄t =

1
t+1

∑t
k=0 θt, Then, we have

1

2
||Ēt||2F−

1

2
||E∗||2F+(θ̄t−θ∗)TF (θ∗) ≤ 1

2(t+ 1)
||θ0−θ∗||2H

where ||θ0 − θ∗||2H = (θ0 − θ∗)TH(θ0 − θ∗)
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4 Related Work

In this section, we review several related works to our
proposed method.

For better interpretability, [5] proposed sparse locality
preserving indexing (SLPI), which is based on ℓ1-norm
regularization on each column of the linear transfor-
mation matrix, i.e., ai. Due to the nature of the ℓ1
penalty, some entries in ai will be shrunk to exact zero.
However, SLPI does not lead to feature selection, be-
cause each column of the linear transformation matrix
is optimized individually, and their sparsity patterns
are independent. Based on the above observation, [11]
proposed a joint feature selection and subspace learn-
ing (FSSL) approach. Rather than using ℓ1-norm reg-
ularization, they use L2,1-norm regularization on the
linear transformation matrix. The resultant model is
approximately solved by a two-stage algorithm. The
algorithm is proved to converge. However, its conver-
gence rate remains unclear. In contrast, the conver-
gence rate of the proposed optimization algorithm is
strictly given.

Incorporating feature selection into transformation
also received attention in supervised dimensionality
reduction. For example, [17] proposed linear dis-
criminant feature selection (LDFS), which modifies
Linear Discriminant Analysis to admit feature selec-
tion. Their optimization algorithm is based on Newton
method, which is very time consuming. [12] proposed
linear discriminant dimensionality reduction (LDDR),
which is based on an equivalent linear regression for-
mulation of LDA [22]. However, such kind of equiva-
lence only holds under a very strict condition, which
limits its application in general. Though our proposed
method is an unsupervised method for data represen-
tation, the technique proposed in this paper can actu-
ally be adapted to solve those issues of the supervised
approaches mentioned above.

It is also worth noting that the number of selected
features is explicitly controlled by m in the proposed
method, while the number of features is implicitly
controlled by a regularization parameter in the other
methods mentioned before [5] [11] [17] [12].

5 Experiments

In this section, we evaluate our proposed method and
compare it with other state-of-the-art document rep-
resentation methods: Latent Semantic Indexing (LSI)
[8] and Locality Preserving Indexing (LPI) [4]. In
addition, we compare LPFL with sparse LPI (SLPI)
[5], which seeks a sparse projection. We also com-
pare LPFL with Laplacian score (LS) [14]. In addi-
tion, we compare the proposed method with unsuper-

vised version of joint feature selection and subspace
learning (FSSL) method [11]. We also investigate the
two-phase approach of Laplacian score followed by LPI
(LS+LPI), which is the most intuitive way to integrate
feature selection with LPI. We use K-means clustering
as the baseline method. All of the experiments were
performed in Matlab on an Intel Core2 Duo 2.8GHz
Windows 7 machine with 4GB memory.

5.1 Datasets and Evaluation Measures

We use two text datasets that are used in [4]1.

TDT2 consists of data collected during the first half of
1998 and taken from 6 sources, including 2 newswires
(APW, NYT), 2 radio programs (VOA, RPI) and 2
television programs (CNN, ABC). It consists of 11201
documents which are classified into 96 semantic cat-
egories. In this experiment, documents appearing in
two or more categories were removed, and only the
largest 30 categories were kept, leaving us with 9394
documents.

Reuters contains 21578 documents which are grouped
into 135 clusters. The Reuters corpus is much more
unbalanced, as some large clusters are more than 200
times larger than some small clusters. In our experi-
ment, we discarded documents with multiple category
labels, and only selected the largest 30 categories, leav-
ing us with 8067 documents.

To evaluate the clustering results, we adopt the perfor-
mance measures used in [19]: clustering accuracy and
normalized mutual information. They are the stan-
dard measures widely used for clustering.

5.2 Parameter Settings

The clustering evaluations were conducted with vary-
ing numbers of clusters, ranging from 2 to 10. For
example, when c = 2, we randomly choose 2 classes
from the total 30 classes in the whole text dataset to
do clustering. For each given cluster number c, 20
tests were conducted on different randomly chosen cat-
egories, and the average performance was computed
over these 20 tests. For each test, the K-means algo-
rithm was applied 10 times with different start points
and the best result in terms of the objective function
of K-means was recorded.

Note that, LPI, SPLI, Laplacian score, FSSL, and
LPFL need to construct a graph on the documents. In
this experiment, we use the same graph for all these
methods. In particular, we use the affinity matrix from
Eq. (3), where k is set to 5. K-means is applied af-
ter the dimensionality reduction to do clustering. In

1http://www.zjucadcg.cn/dengcai/Data/TextData.html
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general, the clustering results after those dimensional-
ity reduction methods vary with the dimensions of the
subspace, or the number of selected features. In this
experiment, for those subspace learning methods, we
keep c dimensions as suggested by previous work [4].
For Laplacian score, the number of features is tuned by
searching the grid {1000, 1500, 2000, . . . , 5000}. Given
the above parameter settings, for LPI and Laplacian
score, there are no parameters to be set. For the two-
phase LS+LPI approach, we first use Laplacian Score
to select features and then we perform LPI to reduce
the dimensionality. The number of features selected
by Laplacian Score is tuned the same as above. For
SLPI, we tune the parameter β in [5] by searching the
grid {10, 20, . . . , 100} according to [5]. For FSSL, we
use the same parameters as in their paper [11]. For
LPFL, the number of features m is tuned by the same
strategy as in Laplacian score.

5.3 Convergence

Before reporting the clustering results, we first exam-
ine the rate of convergence of ADM in Algorithm 2.
In Figure 1, we plot the objective function value in
Eq. (10) versus the number of iterations on the TDT2
dataset with c = 2. In the figure, the y-axis is the
value of the objective function and the x-axis denotes
the iteration number.
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Figure 1: The objective function value of LPFL with
respect to the number of iterations for ADM on the
TDT2 dataset with c = 2,m = 2000.

We can see that ADM converges within roughly 130
iterations. This is consistent with the theoretical result
presented in Section 3. It may be surprised to see
that the objective function is increasing rather than
decreasing, although the optimization problem in Eq.
(10) is a minimization problem. This is due to the
nature of the augmented Lagrangian method. When
the penalty scalar µ is small, the equality constraint
does not strictly hold and the feasible solution space
is large, so we can achieve a small objective function
value. Once the penalty scalar µ increases, the feasible
solution space becomes smaller, and a larger objective
function value will be achieved.

5.4 Clustering Results.

The clustering accuracy on the TDT2 and
Reuters21578 datasets are shown in Table 1 and
Table 2 respectively. To save space, the normalized
mutual information on the TDT2 and Reuters21578
datasets are shown in Figure 2 in a compact way. For
each c, we did paired t-tests at 95% significance level
between the proposed method and the other methods.
If it is significant over all the other methods, the
corresponding entry of LPFL is bolded. Otherwise,
the entry is not bolded.
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Figure 2: Normalized mutual information while vary-
ing the number of clusters on (a) TDT2 and (b)
Reuters21578 datasets. The graphs are best viewed
in color.

A number of interesting results may be observed:

• On the TDT2 dataset, when the number of clus-
ters is small, e.g., less than 3, LPI is comparable
to K-means and LSI. However, as the number of
clusters increases, e.g., larger than 4, LPI signifi-
cantly outperforms K-means and LSI. This is be-
cause as the number of clusters increases, the doc-
ument distribution becomes more like a manifold.
In this case, the local geometric structure is more
crucial for better clustering than the global ge-
ometric structure. On the Reuters21578 dataset,
LPI outperforms K-means and LSI. As mentioned
previously, the Reuters21578 corpus is more diffi-
cult to cluster due to its unbalanced clusters. By
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Table 1: Clustering accuracy on the TDT2 dataset
c Baseline LSI LPI LS SLPI LS+LPI FSSL LPFL
2 93.63±15.30 92.14±15.77 92.98±14.28 93.58±13.14 97.20±4.00 92.23±13.35 98.72±2.24 99.43±0.65
3 89.62±16.15 88.02±18.60 88.16±15.03 88.46±16.45 90.55±10.44 85.72±14.93 94.39±10.98 97.63±4.40
4 86.59±18.79 84.30±20.15 88.41±9.12 86.38±16.72 90.95±9.16 86.64±9.11 92.12±8.18 95.38±5.89
5 80.67±17.52 77.36±19.90 89.76±8.97 81.25±17.21 86.74±13.04 85.21±9.04 91.85±7.83 94.53±6.02
6 83.19±15.33 75.97±16.74 87.49±9.49 76.35±13.55 82.11±9.00 88.01±6.98 92.08±9.02 94.29±5.94
7 74.12±12.35 70.47±1.35 93.05±3.87 73.24±13.43 79.29±13.22 89.27±6.90 91.60±6.09 92.87±6.13
8 72.35±16.09 68.51±16.43 86.76±11.07 67.99±18.58 74.64±15.57 88.07±7.17 90.56±7.32 92.75±7.02
9 72.57±14.06 65.36±17.59 91.50±5.41 67.39±14.93 73.95±13.38 92.04±5.03 92.33±4.76 93.02±4.49
10 63.22±15.28 57.55±16.09 86.94±9.30 59.44±16.92 65.67±11.48 89.02±7.63 88.60±9.18 89.26±7.04
avg 79.55 75.52 89.45 77.12 82.34 88.47 92.47 94.35

Table 2: Clustering accuracy on the Reuters21578 dataset
c Baseline LSI LPI LS SLPI LS+LPI FSSL LPFL
2 79.53±15.00 79.76±15.93 82.82±13.47 80.40±15.60 86.22±11.96 77.92±15.93 85.57±12.27 86.30±11.51
3 72.28±16.52 70.93±15.75 82.81±13.53 68.60±17.22 81.32±15.25 82.69±13.50 83.71±10.58 86.36±9.83
4 65.10±13.91 63.19±14.27 77.73±12.44 65.39±13.91 73.67±13.67 74.21±15.68 76.42±14.09 79.44±10.33
5 54.49±22.29 56.25±21.02 70.77±14.58 54.89±21.60 64.30±17.74 71.45±11.68 71.39±17.06 72.23±15.50
6 56.53±18.98 53.20±17.82 69.26±11.83 55.27±18.66 60.11±16.54 68.63±11.85 68.25±12.31 71.12±12.14
7 54.20±14.28 51.93±14.11 69.62±10.66 50.15±13.82 60.83±16.29 71.41±12.28 71.61±12.13 72.44±12.27
8 38.57±14.28 36.23±14.91 66.00±19.17 37.57±13.65 53.33±21.44 70.89±17.62 72.10±17.26 70.25±18.93
9 41.74±19.01 40.42±18.60 62.53±15.23 40.96±18.02 48.26±22.11 66.53±11.10 67.94±11.43 69.71±11.98
10 46.22±14.41 44.93±14.41 62.24±15.16 43.76±13.86 53.84±19.03 63.33±14.47 64.87±17.18 67.00±15.61
avg 56.52 55.20 71.53 55.22 64.65 71.90 73.57 74.98

preserving the locality of the data, LPI is able to
discover the unbalanced clusters while K-means
and LSI fail.

• Laplacian score usually performs worse than LPI.
Since Laplacian score and LPI are based on the
same criterion, this implies that feature combina-
tion is generally more effective than feature selec-
tion. SLPI is comparable to, or sometimes worse
than LPI, which indicates that sparsity does not
necessarily lead to performance improvement.

• In some cases, LS+LPI does achieve better results
than standalone LPI. This highlights the potential
performance gain of incorporating feature selec-
tion into LPI. But note that since Laplacian score
and LPI are performed sequentially in LS+LPI,
the features selected by Laplacian score are not
necessarily optimal for LPI, resulting in limited
improvement in performance.

• LPFL outperforms LPI, Laplacian score, SLPI
and LS+LPI in most cases, showcasing the ef-
fectiveness of incorporating feature selection into
LPI. Considered another way, this also indicates
that Laplacian score and LPI can mutually en-
hance each other. Note that the average improve-
ment of clustering accuracy over LS+LPI is from
88.47% to 94.35% on the TDT2 dataset, which
is arguably better. It indicates that the features
selected by LPFL should be inherently more use-
ful than those selected by Laplacian score alone,
because the feature selection and transformation
are jointly optimized in LPFL.

• Finally, LPFL is better than FSSL, though FSSL

performs very well in many cases. Despite of shar-
ing similar spirit with LPFL, FSSL is optimized in
an approximate way, which leads to performance
sacrifice.

6 Conclusions and Future Work

In this paper, we propose an approach called Locality
Preserving Feature Learning, which incorporates fea-
ture selection into LPI. We aim to find a subset of
features, and a projection such that the Locality Pre-
serving Criterion is minimized. The resulting opti-
mization problem is relaxed into a constrained F-norm
minimization problem and solved by applying a varia-
tion of Alternating Direction Method (ADM). Experi-
ments on benchmark document datasets illustrate the
efficacy of the proposed framework.

Although we have only studied document clustering
in this paper, LPFL could be used for other kinds of
document analysis as well. Moreover, as shown in The-
orem 3, there could be a potential guidance to choose
an appropriate or even optimal m for the proposed
method. We will study these issues in the future work.
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