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Abstract

In many problems of machine learning, the
data are distributed nonlinearly. One way to
address this kind of data is training a non-
linear classifier such as kernel support vector
machine (kernel SVM). However, the com-
putational burden of kernel SVM limits its
application to large scale datasets. In this
paper, we propose a Clustered Support Vec-
tor Machine (CSVM), which tackles the data
in a divide and conquer manner. More specif-
ically, CSVM groups the data into several
clusters, followed which it trains a linear sup-
port vector machine in each cluster to sepa-
rate the data locally. Meanwhile, CSVM has
an additional global regularization, which re-
quires the weight vector of each local linear
SVM aligning with a global weight vector.
The global regularization leverages the in-
formation from one cluster to another, and
avoids over-fitting in each cluster. We derive
a data-dependent generalization error bound
for CSVM, which explains the advantage of
CSVM over linear SVM. Experiments on sev-
eral benchmark datasets show that the pro-
posed method outperforms linear SVM and
some other related locally linear classifiers.
It is also comparable to a fine-tuned ker-
nel SVM in terms of prediction performance,
while it is more efficient than kernel SVM.

1 Introduction

In many problems of machine learning, the data points
are distributed non-linearly. In this case, linear clas-
sifiers such as linear support vector machine [7] and

Appearing in Proceedings of the 16th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2013, Scottsdale, AZ, USA. Volume 31 of JMLR: W&CP
31. Copyright 2013 by the authors.

linear regression [15] are not able to classify the data
points correctly, because they fail to consider the un-
derlying structures of complex data (e.g., clusters and
manifolds). One way to solve this problem is to train
a nonlinear classifier such as kernel support vector ma-
chine [23], which implicitly maps the input data into
a high dimensional (or even infinite dimensional) fea-
ture space and learns a hyperplane in the new feature
space to separate the mapped data. Unfortunately,
although the training of linear SVM has received sub-
stantial advance in the past years [19] [25] [17] [16],
the best known time complexity of training a kernel
SVM is still quadratic to the number of examples [3].
Therefore, it is necessary to develop some classifiers
which are able to handle the nonlinear data, while hav-
ing considerably lower time complexity than nonlinear
classifiers. In our study, we are interested in large mar-
gin classifiers, because they are based on max-margin
principle, which is theoretically sound. They have also
achieved great success in a wide range of applications.

In this paper, we propose a novel large margin classifier
namely Clustered Support Vector Machine (CSVM). In
particular, we first divide the data into several clusters
by K-means1, and in each cluster, we train a linear
support vector machine. To avoid over-fitting of each
local SVM, we add a global regularization, which re-
quires the weight vector of linear SVM in each cluster
aligning with a global reference weight vector. The
resulting CSVM can be efficiently solved by stochas-
tic gradient descent [25], or dual coordinate descent
[17]. We prove a data dependent generalization bound
for CSVM based on Rademacher complexity [1], which
theoretically explains why CSVM outperforms linear
SVM. Experiments on benchmark large datasets show
that the proposed method outperforms linear SVM
and other related methods. Moreover, it achieves com-
parable or even better prediction performance than
kernel SVM while it is computationally more efficient.

1The reason why we choose K-means is due to its well-
known Vapnik-Chervonenkis dimension [26] [2], which is
amenable to analysis. Other clustering algorithms may also
be applicable.
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It is worth noting that although we focus on large mar-
gin classifiers in this paper, the techniques developed
here can be applied to other linear classifiers such as
ridge regression and lasso [15] very straightforwardly.

The remainder of this paper is organized as follows. In
Section 2, we briefly review some related work. In Sec-
tion 3, we present clustered support vector machine,
followed which we prove its generalization error bound.
The experiments are demonstrated in Section 4. Fi-
nally, we draw conclusions and point out the future
work in Section 5.

2 Related Work

There are quite a few existing studies which attempted
to achieve the goal mentioned before from different
perspectives.

The first way to handle the nonlinear data is local
learning [4]. The basic idea of local learning is: given
a testing example, we select a few training examples
located in the vicinity of the testing example, and train
a classifier with only those selected training examples,
then apply this classifier to the testing example. Fol-
lowing this idea, there are several works with different
heuristics, e.g., SVM-KNN [29] and fast local kernel
machine (FaLKM) [24], etc. The disadvantage of local
learning-based methods is their nature of lazy learning,
which is inefficient during the testing phase, because
they need to perform nearest neighbor searching and
classifier training for every testing examples.

The second idea which has been widely explored is us-
ing a divide-and-conquer strategy, which is similar in
spirit to the mixture of experts framework [18]. Typi-
cally, the input space is partitioned into disjoint clus-
ters, followed which a local classifier is trained on ex-
amples falling in each cluster. This process is often
repeated in the manner of expectation maximization
(EM) [9]. Representative methods belonging to this
family include [6] [30] [13] [8], to mention a few. The
main disadvantage of mixture of experts-based meth-
ods is that they are prone to local minima, which
makes model selection a nontrivial task. The proposed
method in the present paper shares similar flavor with
this family of methods. However, instead of perform-
ing clustering and training SVMs in an iterative way,
we only perform it once in a global regularization way,
which turns out to be very effective and efficient. We
notice that there exist several studies [14] [22] which
share similar spirit with ours, i.e., using global regular-
ization (or ensemble) for a set of linear/nonlinear clas-
sifiers. However, they do not provide any non-trivial
theoretical analysis.

Recently, there is a new family of methods which stems

from the theory of locally linear approximation of non-
linear functions. The pioneering work is local coor-
dinate coding (LCC) [28], which presented a princi-
pled coding algorithm with theoretically guarantee on
the quality of the approximation. Based on local co-
ordinate coding, [20] proposed a locally linear SVM
(LLSVM), which approximates a nonlinear classifier
by a set of linear classifiers associated with each an-
chor point in a dictionary. According to our empirical
study, the main advantage of LLSVM is its superior
prediction performance rather than its efficiency.

3 Clustered Support Vector Machine

In this section, we present clustered support vector
machine, and analyze it theoretically. Throughout this
paper, we consistently use lower case letters (e.g., w)
to denote scalars, lower case bold letters to denote
vectors (e.g., w), upper case letters to denote the ele-
ments of a matrix (e.g., W ), and bold-face upper case
letters to denote matrices W. 1 is a vector of all ones
with an appropriate length, 0 is a vector of all zeros,
and I is an identity matrix with an appropriate size.
We use w⊤ denote the transpose of a vector or a ma-
trix. Furthermore, we use ∥ · ∥ denote the ℓ2-norm of
a vector.

3.1 The Proposed Model

Given a sample S = {x1, . . . ,xn}, we partition it
into k clusters, i.e., {C1, . . . , Ck} by some clustering
algorithms such as K-means. Furthermore, we use
(xl

i, y
l
i), i = 1, . . . , nl to index the examples in the l-

th cluster, where nl is the number of examples in the
l-th cluster. For each cluster, we are going to train a
linear classifier, fl(x), 1 ≤ l ≤ k. The final classifier is
defined with indicator function as follows

f(x) =
k∑

l=1

fl(x)1(x ∈ Cl), (1)

where 1(·) is an indicator function, and fl(x) is defined
as

fl(x) = w⊤
l x. (2)

Note that here we do not explicitly introduce a bias
term b. This can be alternatively achieved by ap-
pending each example with an additional dimension:
x⊤ ← [x⊤; 1] and w⊤ ← [w⊤; b].

The objective function of clustered support vector ma-
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chine is as follows,

arg min
w,wl,ξli≥0

λ

2
∥w∥2 + 1

2

k∑
l=1

∥wl −w∥2

+ C
k∑

l=1

nl∑
i=1

ξli,

s.t. yliw
⊤
l x

l
i ≥ 1− ξli, i = 1, . . . , nl,∀l,

(3)

where ξlis are slack variables, w is a global reference

weight vector, 1
2

∑k
l=1 ∥wl − w∥2 is a global regular-

ization, which requires the weight vector of each lo-
cal linear SVM (wl) aligning with the global reference
weight vector. w establishes a bridge among different
clusters, such that the information from one cluster
can be leveraged to another. It is therefore able to
avoid over-fitting in each local cluster. In particular,
if we set w = 0, then CSVM will degenerate into k
independent SVMs which are trained in each cluster
separately.

Let vl = wl − w, then wl = vl + w. The above
optimization problem can be equivalently written as

arg min
w,vl,ξli≥0

λ

2
∥w∥2 + 1

2

k∑
l=1

∥vl∥2 + C

k∑
l=1

nl∑
i=1

ξli,

s.t. yli(vl +w)⊤xl
i ≥ 1− ξli, i = 1, . . . , nl,∀l.

(4)

In order to further simplify the above optimization
problem, we define

w̃ = [
√
λw⊤,v⊤

1 , . . . ,v
⊤
k ]

⊤ (5)

x̃l
i = [

1√
λ
xl⊤
i ,0⊤ . . . ,xl⊤

i . . . ,0⊤]⊤, (6)

where the (l + 1)-th component of x̃l
i is x

l
i.

Thus, the optimization problem in Eq. (4) can be
simplified as

arg min
w̃,ξli≥0

1

2
∥w̃∥2 + C

k∑
l=1

nl∑
i=1

ξli,

s.t. yliw̃
⊤x̃l

i ≥ 1− ξli, i = 1, . . . , nl,∀l.
(7)

This is an appealing property because it indicates that
CSVM can be efficiently solved by many off-the-shelf
SVM packages such as Pegasus [25] and LibLinear [11],
with time complexity O(ndkϵ ) or even O(ndk log( 1ϵ ).
Note that the complexity is linear to the number of
clusters (k). In addition, the complexity of K-means
is also linear to k. Therefore, the total training com-
plexity is linear to the number of clusters, which makes
CSVM applicable to large-scale datasets.

3.2 Relation to Regularized Multi-Task
Learning

We notice that CSVM looks similar to regularized
multi-task learning (RMTL) proposed in [10]. Using
the terminology of multi-task learning, one may think
that each cluster corresponds to a task, and the global
regularization can be seen as the assumption that the
hypotheses of each task share a common structure. In
fact, CSVM is fundamentally different from RMTL.
CSVM uses w⊤

l x as the linear classifier for each clus-
ter, while RMTL uses v⊤

l x as the linear classifier for
each task. More importantly, in CSVM, each cluster is
a disjoint subset of the same sample (i.e., disjoint sub-
sample) from a single distribution, while in RMTL,
each task is an independent sample from possibly dif-
ferent distributions. Thus, the generalization analysis
of CSVM is totally different from that of RMTL, which
will be seen in the sequel.

3.3 Generalization Error Bound

In this subsection, we derive a generalization error
bound for CSVM using the tool of Rademacher com-
plexity for general function classes [1].

Definition 1. [1] For a fixed sample set S =
{x1, . . . ,xn} generated by a distribution DX on a set X
and a real-valued function class F with domain X , the
empirical Rademacher complexity of F is the random
variable

R̂n(F) = Eσ

[
sup
f∈F

2

n

n∑
i=1

σif(xi)

]
, (8)

where σ = (σ1, . . . , σn) are independent uniform {±1}-
valued random variables. The Rademacher complexity
is

Rn(F) = Ex

[
R̂n(F)

]
. (9)

Intuitively speaking, Rademacher complexity mea-
sures the richness of a class of real-valued functions
with respect to a probability distribution. Note that
here we use a stronger version of Rademacher com-
plexity than that in [1], which omits an absolute value
of the sum.

Let G be a class of binary-valued functions on X , and
let H be a class of real-valued functions on X . In
CSVM, G is the set of indicator functions of all the
clusters generated by K-means. H is the set of candi-
date predictors used within each cluster, and assumed
without loss of generality that supx∈X |h(x)| ≤ 1. In
CSVM, hl(x) = w⊤

l x. We say that a set of functions
g1, . . . , gk ∈ G is disjoint if, for any x ∈ X , hl(x) = 1
for only a single l. Then a cluster-wise predictor can
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be written as

f(x) =
k∑

l=1

hl(x)gl(x), (10)

where h1, . . . , hk ∈ H, g1, . . . , gk ∈ G are disjoint.

For the ease of analysis, we define the following two
composite function classes:

Gk = {x→ g(x) = [g1(x), . . . , gk(x)]
⊤|gl ∈ G}

Hk = {x→ h(x) = [h1(x), . . . , hk(x)]
⊤|hl ∈ H}.

(11)

Based on the above setup, the function class of CSVM
can be defined as follows.

Definition 2. The function class of CSVM is F =
{x →

∑k
l=1 gl(x)w

⊤
l x|λ2 ∥w∥

2 + 1
2

∑k
l=1 ∥wl − w∥22 ≤

B, gl ∈ G}, where B > 0 is a constant.

It is easy to show that the optimal w to Eq. (3) is

w∗ =
1

λ+ k

k∑
l=1

wl. (12)

Substitute Eq. (12) into the Definition 2, we obtain
the following equivalent function class.

Definition 3. The function class of CSVM is F =
{x → g⊤(x)W⊤x| 12 tr(WMW⊤) ≤ B,g ∈ Gk},
where W = [w1, . . . ,wk], B > 0 is a constant, and
M = 1

λ+k11
⊤+ λ+k−4

λ+k I+L with Llm = − 1
λ+k if l ̸= m

and Lll =
k−1
λ+k .

In the following, we will present several theorems,
which are among the main contributions of this pa-
per.

Theorem 4. The empirical Rademacher complexity
of the function class for CSVM is upper bounded as
below

R̂n(F) ≤ sup
g∈Gk

R̂n(Hk
g) + 15k

√
log(n)

n
, (13)

where Hk
g is an auxiliary function class defined as fol-

lows
Hk

g = {x→ ⟨h(x),g(x)⟩ : h ∈ Hk} (14)

for any fixed g ∈ Gk

Theorem 5. The empirical Rademacher complexity
of the auxiliary function class Hk

g is upper bounded as

R̂n(Hk
g) ≤

3
√
B

n

√√√√ n∑
i=1

x⊤
i xig⊤(xi)M−1g(xi), (15)

The generalization error bound for CSVM is stated in
the following theorem.

Theorem 6. Fix δ ∈ (0, 1), and let F be a class
of functions mapping from X × Y to [0, 1]. Let
{(xi, yi)}ni=1 be drawn independently according to a
probability distribution D. Then with probability 1− δ
over random draws of samples of size n, every f ∈ F
satisfies

err(f) ≤ ˆerr(f) +
3
√
B

n

k∑
l=1

√
nl

n

√√√√ nl∑
i=1

(xl
i) · xl

iM
−1
ll

+ 15k

√
log(n)

n
+ 3

√
ln(2/δ)

2n
, (16)

where M−1
ll is the l-th diagonal element of M−1.

Recall that the empirical Rademacher complex-

ity of linear SVM is O

(
1
n

√∑n
i=1 x

⊤
i xi

)
. The

empirical Rademacher complexity of CSVM is

O

(
1
n

∑k
l=1

√
nl

n

√∑nl

i=1(x
l
i) · xl

iM
−1
ll

)
, which is

smaller than that of linear SVM when k ≥ 2. Given
that k grows slower than n, the third term in the

right hand side of the above bound 15k
√

log(n)
n is

dominated by the empirical Rademacher complexity
in the second term. In practice, we often choose
2 ≤ k ≪ n.

4 Experiments

In this section, we evaluate the proposed method on
both synthetic and real-world datasets, and compare it
with linear SVM, kernel SVM, as well as other related
methods discussed in Section 2.

4.1 Synthetic Dataset

To get an intuitive picture of how CSVM works for
linearly nonseparable data, we first show the results
of SVM, Kernel SVM and CSVM on a synthetic XOR
dataset in Figure 1. This dataset contains four Gaus-
sians: the top and the bottom ones constitute one
class, while the other two constitute the other class. It
is obvious that a global linear SVM is not able to cor-
rectly separate the data from the two classes. Kernel
SVM is able to classify the data correctly by learning
a nonlinear decision boundary. Our proposed CSVM
partitions the data into two clusters (the green dashed
curve is the boundary between two clusters), and train
a linear SVM in each cluster (the pink lines are deci-
sion boundaries of linear SVMs). We can see that both
KSVM and CSVM are able to sperate the linearly non-
separable data.
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Figure 1: Learned classifiers on the synthetic XOR dataset: (a) SVM; (b) KSVM; and (c) CSVM. The pink
curves are the learned classifiers by different methods.

4.2 Real Datasets

We use four benchmark datasets: two of them are from
LibSVM website2, and the other two are digit recog-
nition datasets which are originally used in [21] [12].
Note that all these datasets have already been split
into training and testing sets. For each digit dataset,
we transform it into a binary classification task by
grouping the odd digits into one class and the even
digits into another class. In addition, for MNIST data
set, we also generate two relatively small binary classi-
fication tasks, which aim to distinguish 3 from 8, and
4 from 9. Table 1 summarizes the characteristics of
these data sets.

Table 1: Description of the data sets
Datasets #training #test #features #classes

SVMGUIDE1 3,089 4000 4 2
IJCNN1 49,990 91,701 22 2

USPS OvE 7,291 917 256 2
MNIST 3v8 11,982 1984 784 2
MNIST 4v9 11,791 1991 784 2
MNIST OvE 60,000 10,000 784 2

For each example in every dataset, we normalize it into
a vector with unit ℓ2-norm.

4.3 Compared Methods and Parameter
Settings

Linear SVM: The regularization parameter C is
tuned by 5-fold cross validation on the training set
by searching the grid {10−2, 10−1, 1, 10, 102}. We use
the implementation of LibLinear [11].

Kernel SVM: We use Gaussian Kernel K(x, z) =
exp(−γ∥x − z∥2). The width of Gaussian kernel γ is
tuned by 5-fold cross validation on the training set by
searching the grid {10−2, 10−1, 1, 10, 102}. The regu-

2http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets
/multilabel.html

larization parameter C is tuned in the same way as
above. We use the implementation in LibSVM [5].

SVM-KNN [29]: It is a representative method in the
family of local learning. The number of nearest neigh-
bor search is tuned by 5-fold cross validation on the
training set via the grid {20, 50, 100}. The linear SVM
for each testing example is tuned the same as before.

K-means+SVM: This is a simple baseline, which
first partitions the dataset into k clusters, and then
trains a linear SVM in each local cluster separately.
Note that it can be seen as a special case of our pro-
posed method when w = 0. We set k equal to 8 em-
pirically due to its good performance.

MSVM [13]: It is the state-of-the-art method in the
category of mixture-of-experts. The EM algorithm is
initialized with the same K-means clustering results of
K-means+SVM, which makes the comparison as fair as
possible. The number of clusters are set to 20 accord-
ing to [13]. Note that the final number of clusters could
be smaller than 20 due to the built-in model selection
mechanism of the algorithm. The hyper-parameter of
the prior (which corresponds to the regularization pa-
rameter C in standard SVM) is tuned the same as
above. The scale parameter of the gating function is
set to 1 according to the original paper.

LLSVM [20]: It is a representative method belong-
ing to the family of local coordinate coding. For each
dataset, the dictionary of anchor points is generated
by K-means with k = 100 according to [20]. Given
the generated dictionary, the coefficients of the local
coordinate coding are obtained by the fast algorithm
proposed in [27]. The parameters are tuned according
to the description in that paper. The regularization
parameter of LLSVM is tuned in the same way as lin-
ear SVM.

CSVM: The global regularization parameter λ is
tuned by 5-fold cross validation on the training set by
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the grid {1, 5, 10, 20, 50, 100}. The regularization pa-
rameter C is tuned the same as above. We set k equal
to 8 the same as K-means+SVM. We also use the same
K-means clustering results as K-means+SVM for fair
comparison. We will study the sensitivity of CSVM
with respect to k later.

For those algorithms which involve K-means cluster-
ing (e.g., K-means+SVM, MSVM, LLSVM and our
method), due to the randomness of K-means cluster-
ing, we repeat the training process for 10 rounds, and
compute the mean results (i.e., classification accuracy
on the test set and training time) as well as their stan-
dard deviation. Note that when we calculate training
time, we count the time of both K-means and SVM
training, for the above methods.

For those algorithms which depend on nearest neigh-
bor search (e.g., SVM-KNN, LLSVM), we use the data
structure of k-d tree to speed up the search process. So
the implementations of most baselines are optimized.

4.4 Results on Real Datasets

The comparison in terms of classification accuracy on
the test set is shown in Table 2, while the comparison
in terms of training time is shown in Table 3.

We observe that the proposed CSVM greatly outper-
forms linear SVM on all the datasets, which is consis-
tent with our theory in Section 3.4. Furthermore, it
is comparable to or even better than kernel SVM in
terms of prediction accuracy (except on SVMGUIDE1
dataset, but we will see later that increasing the num-
ber of clusters improves its performance dramatically
on this dataset), while its training is several orders of
magnitude faster than kernel SVM.

In addition, we see that SVM-KNN often performs well
and is comparable to kernel SVM. However, the train-
ing time of SVM-KNN is longer than CSVM, especially
for large scale datasets (e.g., IJCNN1 and MNIST
OvE). One may find that the training time of SVM-
KNN is shorter than those reported elsewhere. The
reason is that our implementation uses k-d tree to do
nearest neighbor search, which is more efficient, espe-
cially for low-dimensional data.

The performance of LLSVM is even better than SVM-
KNN, and is very close to our method. This implies
the effectiveness of local coordinate coding. However,
the training of LLSVM is slow, which sometimes takes
more time than kernel SVM. The computational over-
head of LLSVM includes nearest neighbor search and
the local coordinate coding.

It is very interesting to see that the simple baseline,
K-means+SVM, performs also very well. And it is
also very efficient. However, K-means+SVM is worse

than our method consistently. The reason is that it
is lack of global regularization. Hence over-fitting in
each cluster may happen.

MSVM is slightly better than K-means+SVM at most
cases, which implies that the adjust of cluster assign-
ment in an EM way could refine the local clusters.
However, the resulting improvement in terms of pre-
diction performance is quite limited, while its training
time is at least one order of magnitude longer than
that of K-means+SVM.

In a word, CSVM is a good alternative for kernel SVM.
The superior performance of our method is attributed
to its neat idea as well as its theoretical foundation,
which guarantees small generalization error on the test
data.

4.5 Study on the Number of Clusters k

Now we investigate how the performance of our
method changes with respect to the number of clus-
ters. We vary the number of clusters according to the
grid {2, 5, 8, 11, 14, 17, 20}, and repeat the experiment
of CSVM as in the previous subsection. The classifica-
tion accuracy of CSVM with respect to various number
of clusters is depicted in Figure 2, while the training
time of our method with respect to varied number of
clusters is illustrated in Figure 3. In all subfigures, the
x-axis represents the number of clusters, while the y-
axis is the averaged classification accuracy on the test
data (in Figure 2) or training time (in Figure 3) over
10 runs. We also show the results of linear SVM for
reference.

We can see that the classification accuracy of CSVM
is relatively stable with different k on all the datasets
except SVMGUIDE1. This is an appealing property
because it implies that model selection would be easy.
We attribute this property to the global regularization.
This is consistent with our theoretical analysis in Sec-
tion 3.4, which states that given 2 ≤ k ≪ n, CSVM is
stable with respect to k.

On the other hand, the training time of CSVM seems
roughly linear in the number of clusters, this is what
we expected by the analysis in Section 3.1. The curves
fluctuate a bit because the convergence of K-means
is a little sensitive to its initialization. Nevertheless,
Figure 3 still gives a broad idea about the time con-
sumption of CSVM with respect to different number of
clusters. Since the prediction performance of CSVM
is not sensitive to k, we could choose k = 8 or 11
in practice to get a tradeoff between effectiveness and
efficiency.
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Table 2: Comparison of classification accuracy (%) for different large margin classifiers

Dataset SVMGUIDE1 IJCNN1 USPS OvE MNIST 3v8 MNIST 4v9 MNIST OvE
Linear SVM 79.13 91.01 93.72 97.08 97.14 90.21
Kernel SVM 87.95 93.89 95.91 98.69 98.90 98.87
SVM-KNN 85.78 92.45 94.46 98.99 97.90 96.97

K-means+SVM 80.45±1.15 93.19±0.60 95.45±0.20 98.45±0.19 97.80±0.26 96.06±0.22
MSVM 83.27±0.64 93.41±0.19 95.71±0.22 98.46±0.25 97.74±0.25 96.62±0.18
LLSVM 87.64±0.30 94.07±0.45 96.19±0.25 98.62±0.18 98.09±0.24 98.91±0.09
CSVM 83.68±0.84 94.29±0.62 96.44±0.24 99.41±0.18 98.69±0.19 97.14±0.17

Table 3: Comparison of training time (in seconds) for different large margin classifiers

Dataset SVMGUIDE1 IJCNN1 USPS OvE MNIST 3v8 MNIST 4v9 MNIST OvE
Linear SVM 0.00 0.22 0.27 0.34 0.28 2.46
Kernel SVM 0.19 320.27 22.07 381.52 364.65 4031.03
SVM-KNN 2.62 164.97 16.57 38.78 37.42 1002.76

K-means+SVM 0.09±0.02 0.37±0.05 1.77±0.42 7.69±0.78 8.48±1.20 18.33±1.95
MSVM 2.09±0.01 10.56±0.05 42.86±0.55 192.64±1.13 199.15±1.12 440.28±2.80
LLSVM 2.17±0.08 472.88±1.67 73.09±3.00 188.04±4.10 151.24±5.38 1420.75±11.09
CSVM 0.32±0.06 4.13±1.33 3.60±0.57 12.25±1.28 10.81±1.57 31.93±3.37

2 4 6 8 10 12 14 16 18 20
75

80

85

90

number of clusters(k)

a
c
c
u
ra
c
y

 

 

SVM

CSVM

(a) SVMGUIDE1

2 4 6 8 10 12 14 16 18 20
85

90

95

100

number of clusters(k)

a
c
c
u
ra
c
y

 

 

SVM

CSVM

(b) IJCNN1

2 4 6 8 10 12 14 16 18 20
92

93

94

95

96

97

98

number of clusters(k)

a
c
c
u
ra
c
y

 

 

SVM

CSVM

(c) USPS OvE

2 4 6 8 10 12 14 16 18 20
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

number of clusters(k)

a
c
c
u
ra
c
y

 

 

SVM

CSVM

(d) MNIST 3v8

2 4 6 8 10 12 14 16 18 20
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

number of clusters(k)

a
c
c
u
ra
c
y

 

 

SVM

CSVM

(e) MNIST 4v9

2 4 6 8 10 12 14 16 18 20
85

90

95

100

number of clusters(k)

a
c
c
u
ra
c
y

 

 

SVM

CSVM

(f) MNIST OvE

Figure 2: Study on the classification accuracy of CSVM with respect to the number of clusters (k)

5 Conclusions and Future Work

In this paper, we proposed a clustered support vector
machine (CSVM), which divides the data into several
clusters, followed which it trains a linear support vec-

tor machine in each cluster to separate the data locally.
In the mean time, CSVM has an additional global reg-
ularization, which requires the weight vector of each
local linear SVM aligning with a global weight vec-
tor. We show via experiments on several benchmark
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Figure 3: Study on the training time of CSVM with respect to the number of clusters (k)

datasets that the proposed method outperforms linear
SVM and some related locally linear classifiers. It is
also comparable to a fine-tuned kernel SVM in terms of
prediction performance, while it is more efficient than
kernel SVM. In the future, we plan to extend the idea
of clustered classifier to the setting of non-parametric
classification/regression.
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