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Abstract. Graph regularization-based methods have achieved great suc-

cess for network classification by making the label-link consistency as-

sumption, i.e., if two nodes are linked together, they are likely to belong

to the same class. However, in a real-world network, there exist links

that connect nodes of different classes. These inconsistent links raise a

big challenge for graph regularization and deteriorate the classification

performance significantly. To address this problem, we propose a novel

algorithm, namely Consistent Graph Learning, which is robust to the in-

consistent links of a network. In particular, given a network and a small

number of labeled nodes, we aim at learning a consistent network with

more consistent and fewer inconsistent links than the original network.

Since the link information of a network is naturally represented by a set

of relation matrices, the learning of a consistent network is reduced to

learning consistent relation matrices under some constraints. More specif-

ically, we achieve it by joint graph regularization on the nuclear norm

minimization of consistent relation matrices together with `1-norm mini-

mization on the difference matrices between the original relation matrices

and the learned consistent ones subject to certain constraints. Experi-

ments on both homogeneous and heterogeneous network datasets show

that the proposed method outperforms the state-of-the-art methods.

Keywords: Robust Classification, Information Network, Consistent Link,

Consistent Network, Consistent Graph Learning

1 Introduction

Information networks have been found to play increasingly important role in

real-life applications. Generally speaking, information networks can be catego-

rized into two families: (1) homogeneous information networks where there is

only one type of nodes and links. Examples include friendship network in Face-

book? ? ?, co-author and citation network in DBLP†, and the World Wide Web;

? ? ? http://www.facebook.com
† http://www.informatik.uni-trier.de/ ley/db/
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and (2) heterogeneous information networks where there exist multiple types

of nodes and links. A bibliographic information network is an example of het-

erogeneous information network, which contains four types of objects: papers,

authors, conferences and terms. Papers and authors are linked by the relation of

“written by” and “write”. Papers and conferences are linked by “published in”

and “publish”. Papers and terms are linked by “contain” and “contained in”.

In the past decade, many methods have been proposed for classification of

both homogeneous information networks [21, 18, 11, 19, 20, 13, 14, 9, 5] and het-

erogeneous information networks [8, 7], which are based on the link structure and

the node content of networks. Among these methods, graph regularization-based

methods [21, 18, 19, 9, 8, 5] have achieved superior performance over other meth-

ods. These methods assume that if two nodes are linked in a network, their labels

are likely to be the same. Start from a small number of labeled nodes, labels are

propagated along linking nodes to preserve the local consistency. Therefore, they

heavily depend on the link structure of a network and implicitly require the links

of the network to be consistent with node labels. However, in many cases, this

requirement is not satisfied. For example, in Figure 1(a), there are two classes

of nodes denoted by different colors. The black edge links two nodes of the same

class, while the yellow edge links node from different classes. We define black link

as Consistent Link, and yellow link as Inconsistent Link. Due to the existence

of inconsistent links, graph regularization-based methods may fail to correctly

classify the nodes residing on both sides of the inconsistent edges. In our study,

we call the network with inconsistent links as Inconsistent Network. Since incon-

sistent links are prevalent in real-world networks, it is of central importance to

develop learning models for classification of inconsistent networks.

(a) Original Inconsistent Network (b) Consistent Network

Fig. 1. An example of (a) Inconsistent Network, and (b) Consistent Network. There

are two classes of nodes denoted by red and green. The black links are consistent with

the labels, while the nodes linked by yellow links have different labels. The blue dashed

links are added consistent links. The goal is to remove red links and add blue links.

Intuitively, if there are no inconsistent links, e.g., the yellow edges in Fig-

ure 1(a), graph regularization-based classification methods [18] can achieve good

results. This motivates us to handle an inconsistent network in the following two

ways. First, if we can detect which links are inconsistent, we can delete these
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inconsistent links. Second, if we can add more consistent links between the nodes

of the same classes, we can compensate the effect of the inconsistent links as well.

It is desirable to get a network as shown in Figure 1 (b), where we remove the

inconsistent yellow edges and add the dashed blue edges, i.e., consistent links.

Based on this modified network, graph regularization-based methods may work

better than using original relation matrices. In our study, we will show that we

can learn an approximately consistent network using a small number of labeled

data under certain constraints.

In this paper, based on the above discussion, we propose a novel regular-

ization technique, namely Consistent Graph Learning, which is robust to those

inconsistent links of a network. Our goal is to learn an approximately consistent

network based on a small number of labeled data. Since the link information of

a network can be naturally represented by a set of relation matrices, the learn-

ing of a consistent network can be transformed into learning consistent relation

matrices. More specifically, we assume that each original relation matrix can be

decomposed into a consistent relation matrix and a residue matrix. In a fully

consistent network, each pair of nodes of the same class are linked while those of

different classes are not linked. Though the real-world network is usually sparse,

nodes in a consistent network connect much more to the nodes of the same class

rather than a different class. Thus, consistent relation matrix intrinsically has

the low-rank property. We can achieve this low-rank characteristics by applying

nuclear-norm minimization on consistent relation matrix. By doing this, more

consistent links are added to the original inconsistent network. On the other

hand, since in real-world network nodes of the same class tends to have much

more links than those of different classes do, the consistent network should be

similar to the original network and the norm of the residue matrix should be

small. To remove inconsistent links and keep consistent links, we aim to have

a sparse residue matrix with non-zero elements as fewer as possible instead of

changing the value of every element in the original relation matrix. It can be

achieved by minimizing `1-norm of the residue matrix. In summary, to satisfy

both requirements, we perform a joint graph regularization on the consistent

relation matrix with nuclear-norm minimization, and the residue matrix with

`1-norm minimization, subject to the constraint that the sum of the consistent

relation matrix and the residue matrix equals to the original relation matrix, and

each element of consistent matrix is within a certain range. Given a set of labeled

data, our model can learn the consistent network by alternating direction method

of multipliers [2] (ADMM) method that solves a convex optimization problem

by breaking it into smaller pieces, each of which is easier to handle. We can use

the consistent network to classify all the other nodes by any network classifi-

cation method. Experiments on both homogeneous and heterogeneous network

datasets show that the proposed method outperforms the state-of-art methods.

The main contributions of this paper are as follows: (1) We raise and ana-

lyze the inconsistency of real-world networks; (2) we propose a consistent graph
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learning technique which is able to learn an approximately consistent network

given a small number of labeled data; and (3) we validate the effectiveness of

the proposed method on both homogeneous and heterogeneous networks. The

remainder of this paper is organized as follows. In Section 2 we present a model

for classification of the information networks with inconsistent links. In Section 3,

we discuss several related work to our method. The experiments on Cora and

DBLP datasets are demonstrated in Section 4. Finally, we draw a conclusion

and point out the future work in Section 5.

2 The Proposed Method

In this section, we present Consistent Graph Learning for semi-supervised clas-

sification of information networks. Before going deep into the proposed method,

we first present some preliminary definitions of information network.

2.1 Preliminary Definitions

Definition 1. An information network consists of m types of objects X kl =

{X k}mk=1, where X k is a set of objects belonging to the k-th type. A weighted

graph G = (V, E , R) is called an information network on objects X , if V = X ,
E is a binary relation on V, and R : E → R is a weight function mapping from

an edge e ∈ E to a real number w ∈ R. Specially, we call such an information

network heterogeneous network when m ≥ 2; and homogeneous network

when m = 1.

We can treat homogeneous information network as a special case of het-

erogeneous information network. The crucial difference of using heterogeneous

network is that we work on each relation matrix between two types of nodes in-

stead of working on a large relation matrix between all nodes of different types.

Therefore, we will introduce the proposed method in the context of heteroge-

neous network, which is more general. Now we present the formal definitions of

Consistent Link and Consistent Network.

Definition 2. A link is consistent if the nodes it connects belong to the same

class. An information network is consistent if and only if all of its links are

consistent.

The definitions of Inconsistent Link and Inconsistent Network can be de-

duced analogously, hence we omit them. Note that the definitions in this paper

are specific to our problem, i.e., classification of networks. There may exist other

definitions of Consistent Link and Consistent Network in the literature.
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2.2 Notation

A heterogeneous network can be represented by a collection of relation matrices,

each of which models the pairwise relation between a node in one type and

another node in a different type. Mathematically speaking, in a heterogeneous

information network, suppose there are m types of entities, i.e., X k, 1 ≤ k ≤ m,

where X k = {xk1 , . . . , xkn}. A relation graph Gkl can be built corresponding to

each type of link relationships between two types of data entities X k and X l,
1 ≤ k ≤ m. Let Rkl be an nk × nl relation matrix corresponding to graph G,

in which Rklij denotes the weight on link from xki to xlj . Note that Rkl is not

symmetric. One possible definition of Rkl is as follows.

Rklij =

{
1 if there is a link from xki to xlj
0 otherwise

(1)

If we consider a weighted graph, the definition of Rkl can be extended to

Rklij =

{
m if there are m links from xki to xlj
0 otherwise

(2)

Suppose there are c classes, in order to encode label information of each type,

we basically define a label matrix for each type, i.e., Yk ∈ Rnk×c, such that

Y kil =

{
1 if xki is labeled to the l-th class

0 otherwise
(3)

Note that if xki is unlabeled, then Y kil = 0 for ∀l.
For each type of objects, we are going to learn a class assignment matrix

Fk ∈ Rnk×c, whose definition is similar to Yk. We denote the i-th row of Yk by

Yk
i·, and the i-th row of Fk by Fki·. For a matrix Ekl, its `1-norm is defined as

||E||1 =
∑
ij |Eij |. For a m×n matrix W, its nuclear norm is defined as ||W||∗ =∑min{m,n}

i σi, where W = UΣVT is the Singular Value Decomposition (SVD)

of W, (Σ)ii = σi. For a matrix D, its Frobenius norm is defined as ||D||F =√∑
ij D

2
ij . Notation ◦ is used to get the entry-wise product of two matrices, e.g.,

D ◦E is a matrix whose each element equals to DijEij . Matrix 0 is a matrix of

all zeros, and matrix 1 is a matrix of all ones.

2.3 Standard Graph Regularization

The basic assumption of graph regularization is that if two objects xki and xlj
are linked together, then their labels F kip and F ljp are likely to be the same. It

can be mathematically formulated as [16],

min
Fk,Fl

1

2

nk∑
i=1

nl∑
j=1

||Fki· − Flj·||22Rklij , (4)
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where Rkl could either be the original relation matrix or the normalized one.

As we can see, if Rklij > 0, Eq. (4) will push the label of xki and the label of

xlj close. If Rklij = 0, the labels are determined by other terms of the objective

function. This is the rationale of graph regularization. To give an example, in a

homogeneous citation network (k = l = 1), if the i-th paper cites the j-th paper,

standard graph regularization tends to classify these two papers into the same

class. However, we will show that it is not true in real world citation dataset

when there are inconsistent links, as we will show in the experiments. In this

case, graph regularization would fail. This shows the drawback of standard graph

regularization technique for network classification.

2.4 Consistent Graph Learning

The basic idea of our method is to learn an approximately consistent network,

based on which we apply graph regularization and learn a classifier. Since a het-

erogeneous information network can be represented by a set of relation matrices,

i.e., {Rkl}, the learning of a consistent network can be transformed into learning

a set of consistent relation matrices, i.e., {Wkl}. Here we say a relation matrix is

consistent if and only if its corresponding network is consistent. For each relation

matrix Rkl where there may exist some entries which are inconsistent with the

labels, we decompose it into a consistent relation matrix Wkl whose entries are

consistent with the node labels, and a residue matrix Ekl whose entries are in-

consistent with the labels. Hereafter, we call Wkl as Consistent Relation Matrix

and Ekl as Residue Matrix. It is mathematically described as

Rkl = Wkl + Ekl,0 ≤Wkl ≤ max(1,Rkl), (5)

where the function max takes the larger value of 1 and each element in Rkl. We

add a box constraint on Wkl to make it both lower and upper-bounded. The

reason is that the original relation matrix Rkl is bounded. We hope that the

learned consistent relation matrix Wkl is also bounded.

In order to make the learned relation matrix Wkl consistent, we need to

specify additional constraints as follows:

1. Wkl should be consistent with the labeled data Y. It can be achieved by

standard graph regularization on Wkl with respect to Y.
2. We assume that the number of inconsistent links is only a portion of the links

in Rkl. Hence, we require the residue matrix to be sparse. To obtain this goal,

we apply `1-norm minimization to Ekl.
3. In principal, we prefer not to remove links that connect nodes of large degree

because removing such links may take a risk to disconnect more unlabeled

nodes with labeled ones such that some labels cannot be propagated through

the consistent links. To handle this issue, we take entry-wise product of Ekl in

the `1-norm term and Dkl, where Dkl
ij =

√
didj , di =

∑
iR

kl
ij is the out-degree

of node xki and dj =
∑
j R

kl
ij is the in-degree of node xkj .
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4. As we mentioned before, nodes in a consistent relation matrix connect much

more to the nodes of the same class rather than different class. To pursue

the low-rank property of consistent relation matrix Wkl, we apply nuclear

norm minimization to Wkl. Note that there may be some extreme cases when

a low-rank matrix is not necessarily a consistent matrix (e.g., an all-ones

matrix). However, we can prevent our method from converging to these cases

by balancing different regularizations.

We bring in an auxiliary Qkl and let it be equal to Wkl. The advantage

of it is to allows us to solve nuclear norm minimization and box constraint in

separate steps, which is easy to solve. Putting all the above constraints together,

we obtain

min
{Qkl,Wkl,Ekl}

nk∑
i=1

nl∑
j=1

||Yk
i· −Yl

j·||22W kl
ij + γkl||Dkl ◦Ekl||1 + βkl||Wkl||∗

subject to Rkl = Wkl + Ekl,Wkl = Qkl,0 ≤ Qkl ≤ max(1,Rkl) (6)

where γkl > 0 and βkl > 0 are regularization parameters that controls the spar-

sity of Ekl and the low-rank property of Wkl, respectively. These two parameters

essentially control the balance among the label-link consistency, sparsity and low-

rank property. The larger γkl is, the sparser Ekl will be. Larger βkl forces the

nuclear norm of Wkl to be smaller. We call the model in Eq. (6) as Consistent

Graph Learning. Note that if we set γkl = ∞ and βkl = 0, Wkl will be exactly

equal to Rkl. If we have prior knowledge indicating some of the relation matrices

Rkl are consistent, we can set the corresponding γkl to∞ and βkl = 0. Note that

we cannot guarantee that learned Wkl is totally consistent because we only have

partial labels of the nodes, but the learned relation matrix has fewer inconsistent

links and more consistent links than the original one. In the following, we will

introduce how to solve it.

2.5 Optimization

Due to the decomposition equality constraint in Eq. (6), we use the alternat-

ing direction method of multipliers [2] (ADMM). We will derive an algorithm

based on ADMM for solving Eq. (6). Before that, we first briefly introduce aug-

mented Lagrangian multiplier [3] method. Augmented Lagrangian [3] (ALM) is

a method for solving equality constrained optimization problem. It reformulates

the problem into an unconstrained one by adding Lagrangian multipliers and an

extra quadratic penalty term for each equality constraint.
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As to our method, the augmented Lagrangian function is as follows by ig-

noring the inequality constraints on Ekl

L(Qkl,Wkl,Ekl,Zkl) =

nk∑
i=1

nl∑
j=1

||Yk
i· −Yl

j·||22W kl
ij + βkl||Wkl||∗ + γkl||Dkl ◦Ekl||1

+ tr((Zkl)T (Wkl + Ekl −Rkl)) +
µ

2
||Wkl + Ekl −Rkl||2F

+ tr((Xkl)T (Wkl −Qkl)) +
ζ

2
||Wkl −Qkl||2F , (7)

where Zkl and Xkl are Lagrangian multipliers, µ and ζ are penalty parameters.

In the following, we will derive the updating formula for each variable. In

other words, we solve each variable when fixing the other variables. This is also

known as alternating direction method of multipliers [2] (ADMM).

Computation of Wkl Given other variables fixed, the optimization of Eq. (7)

with respect to Wkl is reduced to

min
Wkl

tr((Skl)TWkl) + βkl||Wkl||∗

+tr((Zkl)T (Wkl + Ekl −Rkl)) +
µ

2
||Wkl + Ekl −Rkl||2F

+tr((Xkl)T (Wkl −Qkl)) +
ζ

2
||Wkl −Qkl||2F , (8)

where the matrix Skl is defined as Sklij = ||Yk
i· −Yl

j·||22. Eq. (8) is equivalent to

min
Wkl

βkl
µ+ ζ

||Wkl||∗ +
1

2
||Wkl −Akl||2F , (9)

where

Akl =
ζQkl − µ(Ekl −Rkl)− Skl − Zkl −Xkl

µ+ ζ
. (10)

Eq. (9) has a closed-form solution

Wkl = UΣ∗V
T , (11)

where Akl = UΣVT is the SVD of Akl, and Σ∗ is the diagonal with (Σ∗)ii =

max{0, (Σ)ii−βkl/(µ+ζ)}. By setting small singular values to zero, the nuclear

norm of Wkl is reduced.

Computation of Ekl Given other variables fixed, the optimization of Eq. (7)

with respect to Ekl boils down to

min
Ekl

γkl||Dkl ◦Ekl||1

+tr((Zkl)T (Wkl + Ekl −Rkl)) +
µ

2
||Wkl + Ekl −Rkl||2F , (12)
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which is equivalent to

min
Ekl

γkl
µ
||Dkl ◦Ekl||1 +

1

2
||Ekl + Wkl −Rkl +

1

µ
Zkl||2F . (13)

Eq.(13) has a closed-form solution as follows,

Eklij =


Bklij −

γklD
kl
ij

µ if Bklij ≥
γklD

kl
ij

µ

0 if −γklD
kl
ij

µ < Bklij <
γklD

kl
ij

µ

Bklij +
γklD

kl
ij

µ if Bklij ≤ −
γklD

kl
ij

µ

, (14)

where Bkl = −Wkl + Rkl − 1
µZkl. This step essentially only allows Eklij to be

non-zero when falling out of a certain range. We can see that by introducing

matrix Dkl
ij , E

kl
ij is more likely to be zero if Dkl

ij is larger. Thus, the link between

nodes of large in-degree and out-degree will be less likely to be removed.

Computation of Qkl Given other variables fixed, the optimization of Eq. (7)

with respect to Qkl boils down to

min
Qkl

tr((Xkl)T (Wkl −Qkl)) +
ζ

2
||Wkl −Qkl||2F

subject to 0 ≤ Qkl ≤ max(1,Rkl), (15)

which has a closed-form solution

Qklij =


Rklij Qklij ≥ max(1, Rklij )

W kl
ij + 1

ζX
kl
ij 0 < Qklij < max(1, Rklij )

0 Qklij ≤ 0

. (16)

By making Qkl = Wkl and adding a box constraint on Qkl, Wkl is essentially

upper and lower-bounded.

Computation of Zkl and Xkl Taking the derivative of L with respect to Zkl

and Xkl, we obtain

∂L

∂Zkl
= Wkl + Ekl −Rkl and

∂L

∂Xkl
= Wkl −Qkl, (17)

which leads to the following updating formula for Lagrangian multiplier Zkl,

Zkl = Zkl + µ(Wkl + Ekl −Rkl). (18)

Similarly, the updating formula for Lagrangian multiplier is Xkl,

Xkl = Xkl + ζ(Wkl −Qkl). (19)
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In summary, we present the algorithm in Algorithm 1. In our experiments, we

set µ = 10 and ζ = 10, which leads to fast convergence. In addition, we initialize

Wkl as the original relation matrix Rkl with a small perturbation by adding a

random matrix Mkl to Wkl. Note that the random perturbation matrix helps

the convergence of the ADMM algorithm [17]. We can see that in each outer

iteration of Algorithm 1, it learns the underlying consistent network between

X k and X l, i.e., Wkl by ADMM. Note that k and l can be either the same

or different. We can see later the learned consistent matrices can improve the

accuracy of classification in the next step.

Algorithm 1 Robust Classification of Network by Consistent Graph Learning

(CGL)

Input: Rkl, βkl > 0, γkl > 0, Y, µ, ζ;

Output: Wkl, Ekl, k, l = 1, . . . ,m;

for k, l = 1→ m do

Initialize Wkl = Rkl + Mkl, Zkl, Xkl

repeat

Compute Wkl as in Eq. (11)

Compute Ekl as in Eq. (14)

Compute Qkl as in Eq. (16)

Compute Zkl as in Eq. (18)

Compute Xkl as in Eq. (19)

until Convergence

end for

2.6 Estimation of Unlabeled Data

After we compute the consistent relation matrix Wkl, we can apply existing

semi-supervised classification algorithms to estimate the unlabeled data. In the

experiment, we use LLGC [18] for homogeneous network classification and GNet-

Mine [8] for heterogeneous network classification. In the experiments, for the ci-

tation and co-author sub-networks, we transform the learned consistent relation

matrix into a symmetric one by setting W kl
ij to the larger element between W kl

ij

and W kl
ji . We do the same symmetrization on original relation matrix for input

of LLGC and GNetMine.

2.7 Analysis

The convergence of Algorithm 1 is stated in the following theorem.

Theorem 1. Algorithm 1 is theoretically guaranteed to converge to the global

minima of the problem in Eq. (6).
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Proof sketch: The global convergence of the algorithm can be proved using the

technique in [10] [6].

Now we analyze the time complexity of Algorithm 1. Let c be the number of

classes, |V | denote the total number of objects, and |E| denote the total number

of links in the information network. In each inner iteration of Algorithm 1, it

takes O(n2c) to update Wkl, O(|E|) to update Qkl, O(|E|) to update Ekl, and

O(|E|) to update Xkl and Zkl. Hence the total time complexity of Algorithm 1

is O
(
T (|E| + n2c)

)
, where T is the average number of inner iterations. In our

empirical study, we found that algorithm usually converges within 30 iterations.

3 Related Work

In this section, we review some work which are closely related to our study.

Classification of information networks has been extensively studied in the

past decade. Earlier studies mainly focus on the homogeneous network. For ex-

ample, [21, 18] studied classification of undirected networks while [19] studied

classification of directed networks. [20] proposed link-content matrix factoriza-

tion (LCMF) method, which integrates content and link information into a joint

matrix factorization framework. Sen et al. [14] studied collective classification

of networked data. Li and Yeung [9] proposed probabilistic relational principal

component analysis (PRPCA), which is the state-of-the-art subspace learning

method for networks. More recently, [1, 15] suggested active learning for net-

worked data, whose goal is to minimize the labeling effort while maximize the

classification accuracy. Gu and Han [5] proposed a feature selection approach for

homogeneous networked data, which selects a subset of features, such that they

are consistent with the link structure of the network. Recently, classification of

heterogeneous information networks received increasing attention. For instance,

as a natural generalization of [18], Ji et al. [8] proposed a model for classification

of heterogeneous networks. Later, Ji et al. [7] proposed to integrate ranking and

classification for heterogeneous networks, where they pay more attention to the

nodes whose ranking scores are higher. All the methods mentioned above are

heavily depending on the link structure of the network. They should perform

well if we remove inconsistent links and add consistent links. However, their

classification performance is limited when the networks are inconsistent. This

motivates us to develop a new model which is robust to the inconsistent links

and performs well on inconsistent networks.

We notice that Chen et. al [4] proposed a similar technique for sparse graph

clustering. However, their method does not take into account the label informa-

tion and heavily relies on the planted partition model assumption. Luo et. al [12]

proposed a similar method namely forging the graph, while their method does

not leverage label information either.
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4 Experiments

In this section, we empirically evaluate the effectiveness of the proposed method.

All the experiments are performed on a PC with Intel Core i5 3.20G CPU and

48GB RAM.

4.1 Data Sets

In our experiments, we use two benchmark datasets: one is a homogeneous cita-

tion network, the other is a heterogeneous bibliographic network.

Cora: It contains the abstracts and references of about 34,000 research papers

from the computer science community. The task is to classify each paper into

one of the subfields of data structure (DS), hardware and architecture (HA),

machine learning (ML), and programming language (PL), based on the citation

relation between the papers. We only use the link information of this dataset.

The statistics about the Cora data set are summarized in Table 1. Before we run

all the baselines and our algorithm, we first make adjacent matrices symmetric,

i.e. set r′ij = max(rij , rji).

Table 1. Description of the Cora dataset

Data Sets #samples #links #classes

DS 751 1283 9

HA 400 793 7

ML 1617 4046 7

PL 1575 4918 9

DBLP: We extract a sub-network of the DBLP data set on four areas: database,

data mining, information retrieval and artificial intelligence, which naturally

form four classes. By selecting five representative conferences in each area, papers

published in these conferences, the authors of these papers and the terms that

appeared in the titles of these papers, we obtain a heterogeneous information

network that consists of four types of objects: paper, conference, author and

term. Within that heterogeneous information network, we have four types of link

relationships: paper-conference, paper-author, paper-term and author-term. The

data set we used contains 14376 papers, 20 conferences, 6401 authors and 4483

terms, with a total number of 192003 links. For evaluation, we use a labeled data

set of 2876 authors, 100 papers and all 20 conferences. The statistics about the

DBLP data set are summarized in Table 2.

4.2 Baselines and Parameter Settings

We compare the proposed method with the state-of-the-art network classification

algorithms. The methods and their parameter settings are summarized as follows.
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Table 2. The statistics of the DBLP dataset

#paper 14376 #paper-author 33720

#author 6401 #paper-conference 14376

#conference 20 #paper-term 110187

#term 4483 #author-term 33720

Network-only Link-based Classification (nLB) [13] We use network-only

derivative of nLB because local features are not available in our problem. We

use the implementation from NetKit-SRL‡.

Weighted-vote Relational Neighbor Classifier (wvRN) [13] We only cre-

ate a feature vector for each node based on the structure information and use

the implementation from NetKit-SRL.

Learning with Local and Global Consistency (LLGC) [18] LLGC is a

graph-based transductive classification algorithm. The regularization parameter

is tuned by searching the grid {0.01, 0.1, 1, 10, 100}.
GNetMine [8] GNetMine is a heterogeneous generalization of LLGC. According

to [8], we set the regularization parameters λ to be the same for every pair of

k, l, and tune it by searching the grid {0.01, 0.1, 1, 10, 100}. It uses three relation

matrices: paper-author, paper-conference and paper-term.

Consistent Graph Learning (CGL) The regularization parameters βkl are

set to be the same for all k, l, and tuned by searching the grid {0.1 : 0.1 : 1} and

{1 : 1 : 20}. Similarly, we turn regularization parameters γkl by searching the grid

{1 : 1 : 10} and {10 : 10 : 100}. After learning the consistent relation matrices,

we use LLGC for Cora and GNetMine for DBLP to estimate the unlabeled data.

Parameters are tuned in the same way as LLGC and GNetMine.

The searching grids are set based on heuristics. We found for CGL, the

balance of different regularization terms is more important than the absolute

values. Note that we do not compare our method with [20, 9, 5, 7, 1] because

they either need the content information of the nodes or come from a different

line of ideas.

4.3 Classification Results on Cora

For each subset of Cora dataset, we randomly choose 20%, 50%, 80% objects as

labeled samples, and the rest as test samples. We repeat the selection 10 times

and report the average result.

The semi-supervised classification results on the Cora data are shown in

Table 3. We can see that the proposed method outperforms the other methods

significantly on all the subsets with different proportion of labeled samples. More

specifically, considering that LLGC is the special case of our method without

relation matrix learning, it indicates that finding the consistent network is of

essential importance for classification of network.

‡ http://netkit-srl.sourceforge.net
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Table 3. Classification Accuracy (%) on the Cora dataset

subset DS HA ML PL

#labeled node 20% 50% 80% 20% 50% 80% 20% 50% 80% 20% 50% 80%

nLB 39.49 41.08 57.87 38.50 48.27 64.13 45.14 55.32 60.09 46.82 58.75 61.40

wvRN 45.56 58.97 64.93 42.56 57.24 67.38 49.97 60.77 63.69 50.90 59.76 64.84

LLGC 62.77 73.39 77.32 70.38 81.71 83.50 73.54 81.05 82.79 66.66 75.33 76.16

CGL 64.39 77.02 81.45 79.72 87.31 88.38 76.26 82.68 84.94 69.54 76.90 80.68

4.4 Classification Results on DBLP

For DBLP dataset, according to [8], we randomly choose 0.1%, 0.2%, 0.3%,

0.4%, 0.5% of authors and papers, and use their label information in the classifi-

cation task. When applying LLGC to heterogeneous network, we tried different

settings. In detail, when classifying authors and papers, we tried constructing

homogeneous author-author (A-A) and paper-paper (P-P) subnetworks in vari-

ous ways, where the best results reported for author are given by the co-author

network, and the best results for papers are generated by linking two papers if

the are published in the same conference. The above two approaches are referred

as LLGC (A-A) and LLGC (P-P). Note that we do not use labels of conferences

in training, so we cannot build a conference-conference (C-C) sub-network for

classification. We also try to apply LLGC on all the objects without consider-

ing their different types. It is denoted by LLGC (A-C-P-T). The key difference

between LLGC (A-C-P-T) and GNetMine (A-C-P-T) is the normalization of

the relation matrix: the former one normalizes the whole big relation matrix,

while the latter one normalizes the small relation matrices respectively. The

semi-supervised classification results of paper, author and conference on DBLP

dataset are shown in Tables 4, 5 and 6 respectively. Since wvRN and nLB per-

form much worse than the other methods on this dataset, we omit their results

due to space limit. Similar observations are reported in [8].

Table 4. Classification Accuracy (%) of Paper on the DBLP dataset

% of authors and LLGC CGL LLGC GNetMine CGL

papers labeled (P-P) (P-P) (A-C-P-T) (A-C-P-T) (A-C-P-T)

0.1% 63.26±2.81 67.02±2.97 58.49±2.23 71.74±2.93 74.42±2.50
0.2% 69.58±2.49 74.15±1.98 61.27±2.41 80.01±2.67 82.94±2.53
0.3% 80.70±2.68 82.47±1.73 69.82±2.78 84.91±2.31 87.75±2.23
0.4% 79.76±2.29 82.29±2.39 67.38±1.90 83.81±1.86 87.62±2.29
0.5% 79.64±1.76 82.57±2.37 74.64±2.15 83.57±2.18 87.00±2.75

We can observe that:
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Table 5. Classification Accuracy (%) of Author on DBLP dataset

% of authors and LLGC CGL LLGC GNetMine CGL

papers labeled (A-A) (A-A) (A-C-P-T) (A-C-P-T) (A-C-P-T)

0.1% 41.31±3.04 45.39±3.18 58.68±2.89 80.42±2.62 83.77±2.55
0.2% 45.51±2.83 51.47±2.93 60.86±3.41 81.24±3.46 84.71±3.58
0.3% 47.72±2.72 55.53±2.75 66.39±3.08 84.50±2.55 87.31±2.44
0.4% 47.47±3.81 55.50±3.41 70.32±2.19 85.14±2.05 88.97±1.94
0.5% 50.64±2.16 59.11±2.31 71.17±1.72 86.84±1.55 89.93±1.67

Table 6. Classification Accuracy (%) on Conference

% of authors and LLGC GNetMine CGL

papers labeled (A-C-P-T) (A-C-P-T) (A-C-P-T)

0.1% 73.50±4.84 80.50±3.25 82.00±3.94
0.2% 77.50±2.35 83.50±2.30 86.50±2.12
0.3% 82.00±3.37 87.00±2.89 90.00±2.82
0.4% 78.00±2.83 88.00±2.22 92.00±2.59
0.5% 82.50±2.17 90.00±2.77 94.50±2.80

1. CGL (A-C-P-T) outperforms the state-of-the-art method, i.e., GNetMine,

significantly on all the types of objects. The reason is that CGL is able to

learn an approximately consistent heterogeneous network. This indicates the

effectiveness of CGL on heterogeneous information networks.

2. CGL (P-P) is better than LLGC (P-P) and CGL (A-A) is better than LLGC

(A-A). This strengthens the effectiveness of CGL on homogeneous networks.

5 Conclusions and Future Work

In this paper, we proposed a Consistent Graph Learning, which is robust to

inconsistent links in networks. Experiments on both homogeneous and heteroge-

neous network datasets show that the proposed method outperforms the state-

of-the-art methods. In the future, we plan to develop theoretical analysis on the

conditions under which the relation matrices can be recovered. Also, it is inter-

esting to analyze how the percentage of inconsistent links in a network affect the

classification performance, and test the algorithm in data set with large number

of classes.
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