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Abstract. Semi-supervised learning has witnessed increasing interest
in the past decade. One common assumption behind semi-supervised
learning is that the data labels should be sufficiently smooth with re-
spect to the intrinsic data manifold. Recent research has shown that the
features also lie on a manifold. Moreover, there is a duality between data
points and features, that is, data points can be classified based on their
distribution on features, while features can be classified based on their
distribution on the data points. However, existing semi-supervised learn-
ing methods neglect these points. Based on the above observations, in
this paper, we present a dual regularization, which consists of two graph
regularizers and a co-clustering type regularizer. In detail, the two graph
regularizers consider the geometric structure of the data points and the
features respectively, while the co-clustering type regularizer takes into
account the duality between data points and features. Furthermore, we
propose a novel transductive classification framework based on dual reg-
ularization, which can be solved by alternating minimization algorithm
and its convergence is theoretically guaranteed. Experiments on bench-
mark semi-supervised learning data sets demonstrate that the proposed
methods outperform many state of the art transductive classification
methods.

1 Introduction

In many practical machine learning problems, the acquisition of sufficient labeled
data is often expensive and/or time consuming. On the contrary, in many cases,
large number of unlabeled data are far easier to obtain. Consequently, semi-
supervised learning [1] [2], which aims to learn from both labeled and unlabeled
data points, has received significant attention in the past decade. In general,
semi-supervised learning can be categorized into two classes: (1) Transductive
learning [3] [4] [5] [6] [7]: to estimate the labels of the given unlabeled data; and
(2) Inductive learning [8]: to induce a decision function which has a low error rate
on the whole sample space. In our study, we focus on transductive classification.

Many transductive classification methods have been proposed up to now
[1] [2], among which graph based method [3] [4] [5] [6] [7] is one of the most



popular approaches. One common assumption behind graph based transductive
classification is that the data labels should be sufficiently smooth with respect to
the intrinsic data manifold, i.e. Cluster Assumption [1] [3] [4]. This assumption
can be achieved by graph regularization [9]. In detail, it models the whole data
set as an undirected weighted graph, whose vertices correspond to the data
points, and edges reflect the affinity between pairwise data points. Some of the
vertices on the graph are labeled, while the remainder are unlabeled, and the
goal of graph based transductive classification is to predict the labels of those
unlabeled data points such that the predicted labels are sufficiently smooth with
respect to the data graph. Other assumptions include Local Learning Assumption
[6] [10], which says the label of each point can be predicted by the points in its
neighborhood, and local linear embedding assumption [11] [5], which says if a data
point can be reconstructed from its neighbors, then its label can be reconstructed
from the labels of its neighbors by the same reconstruction coefficients.

The motivation of our work is twofold. First, recent research has shown that
not only the data points are sampled from some low dimensional manifold em-
bedded in the high dimensional ambient space [11] [12], namely data manifold,
but also the features lie on a manifold [13] [14], namely feature manifold. Sec-
ond, there is a duality between data points and features, i.e. data points can be
classified based on their distribution on features while features can be classified
based on their distribution on the data points. This is originally proposed in
co-clustering literature [15] [16] [17], which suggests that clustering of features
of a data matrix can lead to the improvement of data clustering. To demon-
strate the usefulness of the duality between data points and features, we give
an illustrative example in Fig. 1. As far as we know, existing semi-supervised
learning methods fail to consider these points mentioned above together, which
may further improve the performance of semi-supervised learning.

In this paper, we present a dual regularization. It consists of two graph reg-
ularizers and a co-clustering type regularizer. The graph regularizers explore
the geometric structure of the data points and features respectively, while the
co-clustering type regularizer utilizes the duality between the data points and
features. Furthermore, we propose a novel framework for transductive classifi-
cation based on dual regularization, which can be solved by alternating mini-
mization algorithm and its convergence is theoretically guaranteed. Encouraging
experimental results on benchmark semi-supervised learning data sets illustrate
that the proposed methods outperform many existing transductive classification
algorithms.

It is worth noting that in [18] [19], the authors proposed a co-clustering
type regularization for transductive learning. However, in their method, besides
partial supervision in the data points, partial supervision in the form of feature
labels is also assumed, which is hardly obtained in many applications. Similar
idea has also been applied for clustering [20]. Our method is different from theirs,
since we do not require the supervision on the feature side. Furthermore, graph
regularizers are adopted in our dual regularization, which considers the geometric
structure of data points and features.



(b) The document word matrix

(a) A synthetic data set

Fig. 1. An illustrative example. Suppose we have 4 documents, i.e. D1, D2, D3 and
D4. The true label of D1 and D2 is ”Data mining”, while the true label of D3 and D4 is
”Computer vision”. And suppose there are 6 words in the vocabulary, i.e. ”clustering,
classification, face, image, text, webpage”. We assume D1 and D3 are labeled, while
D2 and D4 are unlabeled and need to be predicted. If we only rely on the knowledge
of the document side, then D2 is closer to D3 than D1, and D4 is closer to D1 than
D3. So we will wrongly classify D2 as ”Computer vision” and D4 as ”data mining”.
However, if we has the clusters information of the words, we may obtain 3 clusters, i.e.
”clustering, classification”, ”face, image” and ”text, webpage”, based on which D2 is
closer to D1 than D3 while D4 is closer to D3 than D1. As a result, we will correctly
classify D2 as ”Data mining”. Similar analysis can be conducted on the word side.

The remainder of this paper is organized as follows. In Section 2, we will
briefly review graph-based transductive learning. In Section 3, we first present
dual regularization, followed which we propose a novel transductive classifica-
tion method based on dual regularization. The experiments on benchmark semi-
supervised learning data sets are demonstrated in Section 4. Finally, we draw
conclusions and point out the future work in Section 5.

2 A Brief Review of Graph Based Transductive
Classification

Before we go any further, let’s first briefly review the general framework of graph
based transductive classification [3] [4] [5] [6] [7], since it is the foundation of this
paper.

In the setting of transductive classification, we are given a data set X =
{x1, . . . ,xl,xl+1, . . . ,xn} ⊂ Rd, and a label set L = {1, 2, . . . , c}, the first l
points xi, 1 ≤ i ≤ l are labeled as yi ∈ L and the remaining points xu, l +
1 ≤ u ≤ n are unlabeled. Each xi is drawn from a fixed but usually unknown
distribution p(x). Typical graph based transductive classification seeks c optimal
classification functions f j , 1 ≤ j ≤ c, by minimizing the following criterion

J =
c∑

j=1

l∑

i=1

L(yi, f
j(xi)) + λ

c∑

j=1

||f j ||2I , (1)



where L(, ) is some loss function, e.g. hinge loss or square loss, ||f j ||I measures
the smoothness of f j with respect to the intrinsic data manifold, λ > 0 is the
regularization parameter, which controls the balance between the loss and label
smoothness.

Specifically, if we choose L(, ) as square loss, and ||f j ||I as graph regulariza-
tion, then Eq.(1) can be formulated as follows

min
F

tr((F−Y)T C(F−Y)) + λtr(FT LF), (2)

where F = (f1, f2, . . . , f c) ∈ Rn×c with f j = [f j(x1), f j(x2), . . . , f j(xn)]T is
the class assignment matrix, Y ∈ Rn×c is the label matrix with Yij = 1 if xi is
labeled as yi = j and Yij = 0 otherwise, L ∈ Rn×n is called graph Laplacian [21],
and C ∈ Rn×n is a diagonal matrix, with its ith diagonal element Cii = Cl > 0
for 1 ≤ i ≤ l, and Cii = Cu ≥ 0 for l + 1 ≤ i ≤ n, where Cl and Cu are two
parameters.

It is easy to show that the solution of Eq.(2) is

F = (C + λL)−1CY (3)

And the predicted label of xi, l + 1 ≤ i ≤ n is determined by

yi = arg max
1≤j≤c

Fij , l + 1 ≤ i ≤ n (4)

Most of the existing graph based transductive classification methods can be
unified in Eq(2), and only differ in the setting of graph Laplacian L and/or the
diagonal matrix C. For example, [3] chose L as combinational graph Laplacian
and Cl = ∞, Cu = 0. [4] set L as normalized graph Laplacian and Cl = Cu = 1.
Both of the graph Laplacians mentioned above correspond to Cluster Assumption
[1], while [6] selected L as local learning graph Laplacian which is based on Local
Learning Assumption, and Cl = 1, Cu = 0. And [5] selected L as local linear
embedding graph Laplacian and Cl = Cu = 1.

For convenience, we present in Table 1 the notation used in the rest of this
paper.

Table 1. Notation used in this paper.

Notation Description Notation Description

n number of data points F class assignment matrix of size n× c
d number of features fi· ith row of F
c number of data classes f·i ith column of F
m number offeature clusters G feature partition matrix of size d×m
X data set gi· ith row of G
X data matrix of size d× n g·i ith column of G
xi· ith row of X LF data graph Laplacian of size n× n
x·i ith column of X LG feature graph Laplacian of size d× d



3 The Proposed Method

In this section, we will first present dual regularization. Then we will propose
a transductive classification framework based on dual regularization, followed
with the optimization algorithm as well as the proof of its convergence.

3.1 Dual Regularization

As we have mentioned above, we aim to explore the geometric structure on both
the data point side and the feature side. To achieve this objective, we turn to
graph regularization [9]. In detail, we construct two graphs i.e. data graph and
feature graph, to explore the geometric structure of data manifold and feature
manifold. In the following, we will introduce the construction of data graph and
feature graph respectively. We will adopt Cluster Assumption [1] [3] [4] as a
running example.

Data Graph We construct a data graph GF whose vertices correspond to
{x·1, . . . ,x·n}. According to Cluster Assumption, if data points x·i and x·j are
close to each other, then their class labels fi· and fj· should be close as well. This
is formulated as follows,

1
2

∑

ij

|| fi·√
DF

ii

− fj·√
DF

jj

||2WF
ij (5)

where WF
ij is the affinity matrix of data graph measuring how close fi· and fj·

will be, DF
ii =

∑
j WF

ij is the diagonal degree matrix of data graph.
We define the data affinity matrix WF as follows,

WF
ij =

{
exp −d(x·i,x·j)2

σ2 , if x·j ∈ N (x·i) or x·i ∈ N (x·j)
0, otherwise.

(6)

where N (x·i) denotes the k-nearest neighbor of x·i. exp −d(x·i,x·j)2

σ2 is Gaussian
similarity where σ > 0 is the width. d(x·i,x·j) denotes the distance between x·i
and x·j .

Eq.(5) can be further rewritten as

1
2

∑

i,j

|| fi·√
DF

ii

− fj·√
DF

jj

||2WF
ij

= tr(FT (I− (DF )−
1
2 WF (DF )−

1
2 )F)

= tr(FT LF F) (7)

where F ∈ Rn×c is the class assignment matrix of data points, and LF = I −
(DF )−

1
2 WF (DF )−

1
2 is called normalized graph Laplacian (NLap) of the data

graph GF . Eq.(7) reflects the label smoothness of the data points. The smoother
the data labels are with respect to the underlying data manifold, the smaller the
value of Eq.(7) will be.



Feature Graph Similar with the construction of the data graph GF , we con-
struct a feature graph GG whose vertices correspond to {x1·, . . . ,xd·}. According
to Cluster Assumption again, if features xi· and xj· are near, then their cluster
labels gi· and gj· should be near as well. This is formulated as follows

1
2

∑

ij

|| gi·√
DG

ii

− gj·√
DG

jj

||2WG
ij (8)

where WG
ij is the affinity matrix of feature graph measuring how close gi· and

gj· will be, DG
ii =

∑
j WG

ij is the diagonal degree matrix of feature graph.
Again we define the feature affinity matrix WG as follows,

WG
ij =

{
exp −d(xi·,xj·)2

σ2 , if xj· ∈ N (xi·) or xi· ∈ N (xj·)
0, otherwise.

(9)

where N (xi·) denotes the k-nearest neighbor of xi·.
Eq.(8) can be further rewritten as

1
2

∑

i,j

|| gi·√
DG

ii

− gj·√
DG

jj

||2WG
ij

= tr(GT (I− (DG)−
1
2 WG(DG)−

1
2 )G)

= tr(GT LGG) (10)

where G ∈ Rd×m is the partition matrix of features, LG = I−(DG)−
1
2 WG(DG)−

1
2

is the normalized graph Laplacian (NLap) of the feature graph GG. Eq.(10) re-
flects the label smoothness of the features. The smoother the feature labels are
with respect to the underlying feature manifold, the smaller the value of Eq.(10)
will be.

Based on the two graph regularizers introduced above, we present a regular-
ization as follows

λtr(FT LF F) + µtr(GT LGG) + η||X−GSFT ||2F (11)

where || · ||F is the Frobenius norm, λ, µ, η ≥ 0 are regularization parameters.
It consists of three terms. The first term is graph regularizer defined in Eq.(7),
which is also the same as the second term in Eq.(2). The second term is graph
regularizer defined in Eq.(10). The third term is the most important one. It is
a co-clustering [17] type regularizer. This term reflects the approximation error
of matrix tri-factorization for co-clustering. The smaller it is, the better the
approximation will be. It establishes a bridge between the data points in the first
term and the features in the second term, through which the label information
of data points and features can be transferred from one to another, which may
benefit the classification of data points. Eq.(11) is called Dual Regularization.



By now, we have presented dual regularization. It is worth noting that al-
though in the derivation, we adopt Cluter Assumption, other kinds of assump-
tions, e.g. Local Learning Assumption can also be used. In other words, besides
the normalized graph Laplacian (NLap), other kinds of graph Laplacians can
also be utilized in Eq.(11), e.g. local learning graph Laplacian (LLL). For the
detail of LLL, please refer to [6] [10].

3.2 Transductive Classification via Dual Regularization

Based on the dual regularization in Eq.(11) presented above, we propose a novel
transductive classification framework as follows,

JTCDR = tr((F−Y)T C(F−Y))
+ λtr(FT LF F) + µtr(GT LGG) + η||X−GSFT ||2F , (12)

where || · ||F is the Frobenius norm, F ∈ Rn×c is the class assignment matrix of
the data points, G ∈ Rd×m is the partition matrix of the features, LF ∈ Rn×n

is graph Laplacian for data points, and LG ∈ Rd×d is graph Laplacian for fea-
tures. λ, µ, η ≥ 0 are regularization parameters. We call Eq.(12) Transductive
Classification via Dual Regularization (TCDR). TCDR provides a unified frame-
work for transductive classification. Different settings of the graph Laplacians
LF and LG, along with the diagonal matrix C lead to various instantiations of
TCDR. When letting µ = η = 0 in Eq.(12), TCDR degenerates to traditional
graph based transductive classification framework in Eq.(2). To this end, exist-
ing graph based transductive classification methods can be seen as the special
case of TCDR.

By its definition, the elements in F and G can only take binary values, which
makes the minimization in Eq.(12) very difficult, therefore we relax F and G
into continuous nonnegative domain. Then the objective of TCDR in Eq.(12)
turns out to be,

JTCDR = tr((F−Y)T C(F−Y))
+ λtr(FT LF F) + µtr(GT LGG) + η||X−GSFT ||2F ,

s.t. F ≥ 0,G ≥ 0, (13)

To make the objective in Eq.(13) lower bounded, we use L2 normalization on
columns of F and G in the optimization, and compensate the norms of F and
G to S.

3.3 Optimization

As we see, minimizing Eq.(13) is with respect to F,G and S. And we cannot give
a closed-form solution. In the following, we will present an alternating scheme
to optimize the objective. In other words, we will optimize the objective with
respect to one variable when fixing the other variables. This procedure repeats
until convergence.



Computation of S Optimizing Eq.(13) with respect to S is equivalent to
optimizing

J1 = ||X−GSFT ||2F (14)

Setting ∂J1
∂S = 0 leads to the following updating formula

S = (GT G)−1GT XF(FT F)−1 (15)

Computation of F Optimizing Eq.(13) with respect to F is equivalent to
optimizing

J2 = tr((F−Y)T C(F−Y)) + λtr(FT LF F) + η||X−GSFT ||2F ,

s.t. F ≥ 0, (16)

For the constraint F ≥ 0, we cannot get a closed-form solution of F. In
the following, we will present an iterative multiplicative updating solution. We
introduce the Lagrangian multiplier α ∈ Rn×c, thus the Lagrangian function is

L(F) = tr((F−Y)T C(F−Y))
+ λtr(FT LF F) + η||X−GSFT ||2F − tr(αFT ) (17)

Setting ∂L(F)
∂F = 0, we obtain

α = 2CF− 2CY + 2λLF F− 2ηA + 2ηFB (18)

where A = XT GS and B = ST GT GS.
Using the Karush-Kuhn-Tucker condition [22] αijFij = 0, we get

[CF−CY + λLF F− ηA + ηFB]ijFij = 0 (19)

Introduce LF = L+
F − L−F , A = A+ − A− and B = B+ − B− where A+

ij =
(|Aij |+ Aij)/2 and A−

ij = (|Aij | −Aij)/2 [23], we obtain

[CF−CY + λL+
F F− λL−F F− ηA+ + ηA− + ηFB+ − ηFB−]ijFij = 0 (20)

Eq.(20) leads to the following updating formula

Fij ← Fij

√
[CY + λL−F F + ηA+ + ηFB−]ij
[CF + λL+

F F + ηA− + ηFB+]ij
(21)

Computation of G Optimizing Eq.(13) with respect to G is equivalent to
optimizing

J3 = µtr(GT LGG) + η||X−GSFT ||2F
s.t. G ≥ 0, (22)



Since G ≥ 0, we introduce the Lagrangian multiplier β ∈ Rd×m, thus the
Lagrangian function is

L(G) = µtr(GT LGG) + η||X−GSFT ||2F − tr(βGT ) (23)

Setting ∂L(G)
∂G = 0, we obtain

β = 2µLGG− 2ηP + 2ηGQ (24)

where P = XFST and Q = SFT FST .
Using the Karush-Kuhn-Tucker complementarity condition [22] βijGij = 0,

we get
[µLGG− ηP + ηGQ]ijGij = 0. (25)

Introduce LG = L+
G − L−G, P = P+ −P− and Q = Q+ −Q−, we obtain

[µL+
GG− µL−GG− ηP+ + ηP− + ηGQ+ − ηGQ−]ijGij = 0. (26)

Eq.(26) leads to the following updating formula

Gij ← Gij

√
[µL−GG + ηP+ + ηGQ−]ij
[µL+

GG + ηP− + ηGQ+]ij
(27)

3.4 Convergence Analysis

In this section, we will investigate the convergence of the updating formula in
Eq.(21) and Eq.(27). We use the auxiliary function approach [24] to prove the
convergence of the algorithm. Here we first introduce the definition of auxiliary
function [24].

Definition 1. [24] Z(h, h′) is an auxiliary function for F (h) if the conditions

Z(h, h′) ≥ F (h), Z(h, h) = F (h),

are satisfied.

Lemma 1. [24] If Z is an auxiliary function for F , then F is non-increasing
under the update

h(t+1) = arg min
h

Z(h, h(t))

Proof. F (h(t+1)) ≤ Z(h(t+1), h(t)) ≤ Z(h(t), h(t)) = F (h(t))

Lemma 2. [23] For any nonnegative matrices A ∈ Rn×n, B ∈ Rk×k, S ∈
Rn×k,S′ ∈ Rn×k, and A, B are symmetric, then the following inequality holds

n∑

i=1

k∑
p=1

(AS′B)ipS2
ip

S′ip
≥ tr(ST ASB)



Theorem 1. Let

J(F) = tr(FT CF− 2FT CY + λFT LF F− 2ηAFT + FBFT ) (28)

Then the following function

Z(F,F′) =
∑

ij

(CF′)ijF2
ij

F′ij
− 2

∑

ij

(CY)ijF′ij(1 + log
Fij

F′ij
)

+ λ
∑

ij

(L+
F F′)ijF2

ij

F′ij
− λ

∑

ijk

(L−F )jkF′jiF
′
ki(1 + log

FijFik

F′ijF
′
ik

)

− 2η
∑

ij

A+
ijF

′
ij(1 + log

Fij

F′ij
) + 2η

∑

ij

A−
ij

F2
ij + F′2ij
2F′ij

+
∑

ij

(F′B+)ijF2
ij

F′ij
−

∑

ijk

B−
jkF

′
ijF

′
ik(1 + log

FijFik

F′ijF
′
ik

)

is an auxiliary function for J(F). Furthermore, it is a convex function in F and
its global minimum is

Fij = Fij

√
[CY + λL−F F + ηA+ + ηFB−]ij
[CF + λL+

F F + ηA− + ηFB+]ij
(29)

Proof. See Appendix.

Theorem 2. Updating F using Eq.(21) will monotonically decrease the value of
the objective in Eq.(13), hence it converges.

Proof. By Lemma 1 and Theorem 1, we can get that J(F0) = Z(F0,F0) ≥
Z(F1,F0) ≥ J(F1) ≥ . . . So J(F) is monotonically decreasing. Since J(F) is
obviously bounded below, we prove this theorem.

Theorem 3. Let

J(G) = tr(µGT LGG− 2ηGT P + µGQGT ) (30)

Then the following function

Z(G,G′) =
∑

ij

(L+
GG′)ijG2

ij

G′
ij

−
∑

ijk

(L−G)jkG′
jiG

′
ki(1 + log

GijGik

G′
ijG

′
ik

)

− 2η
∑

ij

P+
ijG

′
ij(1 + log

Gij

G′
ij

) + 2η
∑

ij

P−ij
G2

ij + G′2
ij

2G′
ij

+ µ
∑

ij

(G′Q+)ijG2
ij

G′
ij

− µ
∑

ijk

Q−
jkG

′
ijG

′
ik(1 + log

GijGik

G′
ijG

′
ik

)



is an auxiliary function for J(G). Furthermore, it is a convex function in G and
its global minimum is

Gij = Gij

√
[µL−GG + ηP+ + ηGQ−]ij
[µL+

GG + ηP− + ηGQ+]ij
(31)

Proof. For the limit of space, we omit it here.

Theorem 4. Updating G using Eq.(27) will monotonically decrease the value
of the objective in Eq.(13), hence it converges.

Proof. By Lemma 1 and Theorem 3, we can get that J(G0) = Z(G0,G0) ≥
Z(G1,G0) ≥ J(G1) ≥ . . . So J(G) is monotonically decreasing. Since J(G) is
obviously bounded below, we prove this theorem.

4 Experiments

In this section, we evaluate the proposed methods on many benchmark semi-
supervised learning data sets. Two instantiations of TCDR are evaluated: (1)nor-
malized graph Laplacian (NLap) + TCDR, which chooses LF and LG as NLap.
Note that it is just the method derived as a running example in Section 3; and
(2) local learning graph Laplacian (LLL) + TCDR, which chooses LF and LG

as LLL [6].

4.1 Data Sets

In our experiments, we use 9 benchmark semi-supervised learning data sets,
which can be found in [1] [7].

g241c & g241n1: Each data set contains two classes with 350 points in
each class, and the data sets are generated in a way of violating the cluster
assumptions or misleading class structures.

USPS, COIL & Digit1: The first two data sets are generated from the
famous USPS and COIL databases, such that the resultant image data did not
appear to be manifold explicitly. The digit1 data set is generated by transforming
the image of digit 1, and the image data appears a manifold structure strongly.

Cornell, Texas, Wisconsin & Washington: All these four data sets are
selected from the famous WebKB database2, and the web pages are classified
into 5 ∼ 6 categories.

Table 1 summarizes the characteristics of the data sets mentioned above. For
more details about these data sets, please refer to [1].

1 http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html
2 http://www.cs.cmu.edu/ webkb/



Table 2. Description of a subset of datasets

Datasets #samples #classes #dimensions Datasets #samples #classes #dimensions

g241c 1500 2 241 cornell 826 6 4134

g241n 1500 2 241 texas 811 5 4029

USPS 1500 2 241 wisconsin 1210 6 4189

COIL 1500 6 241 washington 1165 6 4165

digit1 1500 2 241

4.2 Methods & Parameter Settings

We compare our methods with some state of the art graph based transductive
classification algorithms in the following.

Gaussian Field and Harmonic Function (GFHF) [3]: The width of the
Gaussian similarity is set via the grid {2−3σ2

0 , 2−2σ2
0 , 2−1σ2

0 , σ2
0 , 2σ2

0 , 22σ2
0 , 23σ2

0},
where σ0 is the mean distance between any two samples in the training set. And
the size of N (·) is searched by the grid {5, 10, 50, 80, n− 1}

Learning with Local and Global Consistency (LLGC) [4]: The width
of the Gaussian similarity and the size of N (·) are also determined the same
as that in GFHF, and the regularization parameter is set by searching the grid
{0.1, 1, 10, 100}.

Transductive Classification with Local Learning Regularization
(TCLLR) [6]: The neighborhood size for constructing local learning regularizer
is searched by the grid {5, 10, 50, 80}, and the regularization parameter is set by
searching the grid {0.1, 1, 10, 100}.

Transductive Classification via Dual Regularization (TCDR): In
NLap+TCDR, we use normalized graph Laplacian on both the data point side
and the feature side, and the width of the Gaussian similarity as well as the
size of N (·) are tuned the same as in GFHF. And we set Cl = Cu = 1. In
LLL+TCDR, we use local learning graph Laplacian for both data points and
features, and the neighborhood size is tuned the same as that in TLLR. And
we set Cl = 1, Cu = 0. Besides, we set the number of feature clusters the same
as the number of data classes for simplicity, i.e. m = c. And the regularization
parameters, i.e. λ, µ, η are set by searching the grid {0.1, 1, 10, 100}.

For synthetic and image data sets, the distance between x·i and x·j (or xi·
and xj·) is computed as d(x·i,x·j) = ||x·i − x·j ||2 (or d(xi·,xj·) = ||xi· − xj·||2).

For text data sets, we use TFIDF to weight the term-document matrix. The
distance between two points x·i and x·j is defined as

d(x·i,x·j) = 1− 〈x·i,x·j〉
||x·i|| · ||x·j || . (32)

And the distance between xi· and xj· can be computed analogously.
In order to compare these algorithms fairly, we randomly select {5%, 10%, . . . ,

45%, 50%} data points as labeled samples, while the rest as unlabeled samples.
Since the labeled set is randomly chosen, we repeat each experiment 20 times



and calculate the average transductive classification accuracy. We run each al-
gorithms under different parameter settings, and select the best average result
to compare with each other.

4.3 Classification Results

The experimental results are shown in Fig. 2. In all figures, the x-axis repre-
sents the percentage of randomly labeled points, while the y-axis is the average
transductive classification accuracy.

To illustrate the experimental results better, we also list the results of these
algorithms on all the data sets with 10% labeled samples in Table 3.

Table 3. Classification Accuracy with 10% labeled samples on the 9 data sets.

Data Sets g241c g241n USPS COIL digit1 cornell texas wisconsin washington

GFHF 0.7998 0.7763 0.9377 0.9230 0.9813 0.7075 0.7151 0.7451 0.7860

LLGC 0.7980 0.8101 0.9633 0.9250 0.9781 0.7276 0.7442 0.7787 0.7906

TCLLR 0.8541 0.8551 0.9623 0.8730 0.9774 0.7439 0.7719 0.8308 0.8078

NLap+TCDR 0.8195 0.8207 0.9742 0.9323 0.9822 0.8064 0.7914 0.8376 0.8407

LLL+TCDR 0.8770 0.8799 0.9694 0.8855 0.9779 0.8173 0.8209 0.8807 0.8936

It is obvious that TCDR outperforms other methods on all the data sets.
In detail, we can see that NLap+TCDR outperforms LLGC consistently, while
LLL+TCDR outperforms TCLLR consistently. This is due to that LLGC is the
special case of NLap+TCDR and TCLLR is the special case of LLL+TCDR.
And the consistent improvement indicates that clustering the features indeed
benefits the classification of data points. In addition, it is worth noting that
LLL+TCDR achieved higher classification accuracy than NLap+TCDR on text
data sets. This indicates that Local Learning Assumption is more suitable for
text classification than Cluster Assumption. The reason is probably that the
data matrix of text data is very sparse, normalized graph Laplacian based on
the distance defined in Eq.(32) may not be able to explore the geometric struc-
ture very well. In contrast, the local learning graph Laplacian can explore the
geometric structure better in this case.

5 Conclusion & Future Work

In this paper, we present a dual regularization to explore the geometric struc-
ture in data manifold and feature manifold, along with the duality between data
points and features. Furthermore, we propose a novel framework for transductive
classification via dual regularization, which can be solved by alternating mini-
mization algorithm and its convergence is theoretically guaranteed. Encouraging
experimental results on benchmark semi-supervised learning data sets illustrate
that the proposed methods outperform many existing approaches.



5 10 15 20 25 30 35 40 45 50
0.7

0.75

0.8

0.85

0.9

percentage of labeled samples

a
c
c
u
ra

c
y

 

 

GFHF

LLGC

TCLLR

NLap+TCDR

LLL+TCDR

(a) g241c

5 10 15 20 25 30 35 40 45 50
0.7

0.75

0.8

0.85

0.9

percentage of labeled samples

a
c
c
u
ra

c
y

 

 

GFHF

LLGC

TCLLR

NLap+TCDR

LLL+TCDR

(i) washington

5 10 15 20 25 30 35 40 45 50
0.65

0.7

0.75

0.8

0.85

0.9

percentage of labeled samples

a
c
c
u
ra

c
y

 

 

GFHF

LLGC

TCLLR

NLap+TCDR

LLL+TCDR

(h) wisconsin

5 10 15 20 25 30 35 40 45 50
0.65

0.7

0.75

0.8

0.85

0.9

percentage of labeled samples

a
c
c
u
ra

c
y

 

 

GFHF

LLGC

TCLLR

NLap+TCDR

LLL+TCDR

(g) texas

5 10 15 20 25 30 35 40 45 50
0.65

0.7

0.75

0.8

0.85

0.9

percentage of labeled samples

a
c
c
u
ra

c
y

 

 

GFHF

LLGC

TCLLR

NLap+TCDR

LLL+TCDR

(f) cornell

5 10 15 20 25 30 35 40 45 50
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

percentage of labeled samples

a
c
c
u
ra

c
y

 

 

GFHF

LLGC

TCLLR

NLap+TCDR

LLL+TCDR

(d) coil

5 10 15 20 25 30 35 40 45 50
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

percentage of labeled samples

a
c
c
u
ra

c
y

 

 

GFHF

LLGC

TCLLR

NLap+TCDR

LLL+TCDR

(c)usps

5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

percentage of labeled samples

a
c
c
u
ra

c
y

 

 

GFHF

LLGC

TCLLR

NLap+TCDR

LLL+TCDR

(b) g241n

5 10 15 20 25 30 35 40 45 50
0.97

0.975

0.98

0.985

0.99

0.995

percentage of labeled samples

a
c
c
u
ra

c
y

 

 

GFHF

LLGC

TCLLR

NLap+TCDR

LLL+TCDR

(e) digit1

Fig. 2. Classification accuracy with respect to the proportion of labeled samples on
the 9 data sets.

In the future work, we will devote to extending the dual regularization frame-
work from transductive learning to inductive learning [8].
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Appendix: Proof of Theorem 1

Proof. We rewrite Eq.(28) as

L(F) = tr(FT CF− 2FT CY + λFT L+
F F− λFT L−F F

− 2FT A+ + 2FT A− + FB+FT − FB−FT ) (33)

By applying Lemma 2, we have

tr(FT CF) ≤ ∑
ij

(CF′)ijF
2
ij

F′ij
, tr(FT L+

F F) ≤ ∑
ij

(L+
F F′)ijF

2
ij

F′ij
,

tr(FB+FT ) ≤ ∑
ij

(F′B+)ijF
2
ij

F′ij

Moreover, by the inequality a ≤ (a2+b2)
2b ,∀a, b > 0, we have

tr(FT A−) =
∑

ij

A−
ijFij ≤

∑

ij

A−
ij

F2
ij + F′2ij
2F′ij

To obtain the lower bound for the remaining terms, we use the inequality that
z ≥ 1 + log z, ∀z > 0, then

tr(FT A+) ≥
∑

ij

A+
ijF

′
ij(1 + log

Fij

F′ij
) , tr(FT L−F F) ≥

∑

ijk

(L−F )jkF′jiF
′
ki(1 + log

FjiFki

F′jiF
′
ki

)

tr(FT CY) ≥
∑

ij

(CY)ijF′ij(1 + log
Fij

F′ij
) , tr(FB−FT ) ≥

∑

ijk

B−
jkF

′
ijF

′
ik(1 + log

FijFik

F′ijF
′
ik

)

By summing over all the bounds, we can get Z(F,F′), which obviously satisfies
(1) Z(F,F′) ≥ JTCDR(F); (2)Z(F,F) = JTCDR(F)

To find the minimum of Z(F,F′), we take

∂Z(F,F′)
∂Fij

= 2
(CF′)ijFij

F′ij
− 2(CY)ij

F′ij
Fij

+ 2λ
(L+

F F′)ijFij

F′ij
− 2λ(L−F F′)ij

F′ij
Fij

− 2A+
ij

F′ij
Fij

+ 2A−
ij

Fij

F′ij
+ 2

(F′B+)ijFij

F′ij
− 2(F′B−)ij

F′ij
Fij

and the Hessian matrix of Z(F,F′)

∂2Z(F,F′)
∂Fij∂Fkl

= δikδjl(2
(CF′)ij

F′ij
+ 2(CY)ij

F′ij
F2

ij

+ 2λ
(L+

F F′)ij

F′ij
+ 2λ(L−F F′)ij

F′ij
F2

ij

+ 2A+
ij

F′ij
F2

ij

+ 2
A−

ij

F′ij
+ 2

(F′B+)ij

F′ij
+ 2(F′B−)ij

F′ij
F2

ij

)

which is a diagonal matrix with positive diagonal elements. Thus Z(F,F′) is a
convex function of F. Therefore, we can obtain the global minimum of Z(F,F′)
by setting ∂Z(F,F′)

∂Fij
= 0 and solving for F, from which we can get Eq.(29).


