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Abstract—There are many clustering tasks which are closely
related in the real world, e.g. clustering the web pages of
different universities. However, existing clustering approaches
neglect the underlying relation and treat these clustering
tasks either individually or simply together. In this paper,
we will study a novel clustering paradigm, namely multi-task
clustering, which performs multiple related clustering tasks
together and utilizes the relation of these tasks to enhance the
clustering performance. We aim to learn a subspace shared by
all the tasks, through which the knowledge of the tasks can
be transferred to each other. The objective of our approach
consists of two parts: (1) Within-task clustering: clustering the
data of each task in its input space individually; and (2) Cross-
task clustering: simultaneous learning the shared subspace and
clustering the data of all the tasks together. We will show that it
can be solved by alternating minimization, and its convergence
is theoretically guaranteed. Furthermore, we will show that
given the labels of one task, our multi-task clustering method
can be extended to transductive transfer classification (a.k.a.
cross-domain classification, domain adaption). Experiments
on several cross-domain text data sets demonstrate that the
proposed multi-task clustering outperforms traditional single-
task clustering methods greatly. And the transductive transfer
classification method is comparable to or even better than
several existing transductive transfer classification approaches.

Keywords-multi-task clustering; transductive transfer classi-
fication; multi-task learning; transfer learning; cross domain
classification; domain adaption

I. INTRODUCTION

Clustering has a long history in the machine learning
literature. It aims to partition data points into groups, so
that the data points in the same group are relatively similar,
while the data points in different groups are relatively dis-
similar. In the past decades, incorporating prior knowledge
into clustering has witnessed increasing interest, e.g. semi-
supervised clustering [1] [2] [3] [4] [5] and co-clustering
[6] [7] [8] [9]. However, all these methods are limited to
a single task, where i.i.d. assumption of the data samples
holds. We refer them as single-task clustering.

There are many different but related data sets in real appli-
cations. For example, we have web pages from 4 universities,
e.g. Cornell, Texas, Wisconsin and Washington. And we are
going to cluster the web pages of each university into 7 cate-
gories, e.g. student, faculty, staff, department, course, project

and the other. In this scenario, clustering the web pages of
each university can be seen as a task. Our intuition tells us
that the 4 clustering tasks are related, since the sources and
contents of their data are similar. However, the distributions
of their data should be different, since different universities
exhibit different features. Imagine that if we have limited
web pages in one university, typical clustering methods may
fail to discover the correct clusters. In this case, one may
argue to use the web pages from the other universities as
an auxiliary data to inform the correct clusters. However,
simply combining them together followed with traditional
single-task clustering approach does not necessarily lead to
performance improvement, because their distributions are
different, which violates the i.i.d. assumption in single-task
clustering. To address this problem, new clustering paradigm
is imperative, which can utilize the relation of different tasks
to enhance clustering as well as overcome the non i.i.d.
problem.

In this paper, based on the observations mentioned above,
we will study a novel clustering paradigm, namely multi-
task clustering, which can exploit the knowledge shared
by multiple related tasks. It falls in the field of multi-
task learning [10] [11] [12] [13] [14] [15], which says
learning multiple related tasks together may achieve better
performance than learning these tasks individually, provided
that we can exploit the underlying relation. The assumption
of our multi-task clustering is that there is a common
underlying subspace shared by the multiple related tasks.
This underlying subspace can be seen as a new feature
representation, in which the data distributions of the related
tasks are close to each other. Hence single-task clustering
algorithm can be applied in this shared subspace. Similar
assumption has also been made in several multi-task classi-
fication approaches [11] [13] [14] [15]. Based on the above
assumption, we propose a multi-task clustering method. It
aims to learn a subspace shared by all the tasks, through
which the knowledge of one task can be transferred to
another. And the objective of our approach consists of
two parts: (1) Within-task clustering: clustering the data of
each task in its input space individually; and (2) Cross-
task clustering: simultaneous learning the shared subspace



and clustering the data of all the tasks. Our approach
not only utilizes the knowledge in each individual task as
traditional clustering method does, but also make use of the
knowledge shared by the related tasks which may benefit
the clustering performance. We will show that it can be
solved via alternating minimization, and its convergence is
theoretically guaranteed. To the best of our knowledge, this
is the first work addressing multi-task clustering.

Furthermore, we will show that provided with the labels
of one task, our multi-task clustering method turns out to
be a transductive transfer classification method (a.k.a. cross-
domain classification or domain adaption), in which the label
of a source task (in-domain) is available as prior knowledge,
and we aim to utilize this prior knowledge to predict the
labels of the data in a related target task (out-of-domain). Ex-
periments on several cross-domain text data sets demonstrate
that the proposed multi-task clustering method outperforms
traditional single-task clustering methods greatly. And the
transductive transfer classification method is comparable to
or even better than several existing transductive transfer
classification approaches.

The remainder of this paper is organized as follows. In
Section II, we will review some related works. In Section
III we will propose the multi-task clustering algorithm. In
Section IV, we will extend the multi-task clustering method
to transfer clustering setting. Experiments on text data sets
are demonstrated in Section V. Finally, we draw a conclusion
in Section VI and point out the future works.

II. RELATED WORKS

In this section, we will review some works related with
ours.

A. Multi-Task Learning

Empirical work has shown that learning multiple related
tasks from data simultaneously can be advantageous in terms
of predictive performance, relative to learning these tasks
independently. This motivates multi-task learning [10] [11]
[12] [13] [14] [15]. However, existing multi-task learning
methods all tackle classification, in which each task has
both labeled and unlabeled data, and the goal is to predict
the class labels of unlabeled data in each task by utilizing
within-task and cross-task knowledge. In this paper, we
consider multi-task clustering, where the data in each task
are all unlabeled, and it aims at predicting the cluster labels
of the data in each task.

B. Transfer Learning

Transfer learning [16] [17] is closely related with multi-
task learning. It tackles the transfer of knowledge across
tasks, domains, categories and distributions that are similar
but not the same. In this paper, we refer task and domain
as the same thing. Transfer learning is closely related with
multi-task learning, with the difference that in multi-task

learning, the learner focuses on enhancing the performance
of all the tasks, while in transfer learning, the learner only
focuses on improving the performance of a so-called target
task (out-of-domain) by using the knowledge from a so-
called source task (in-domain). Transfer learning can be
categorized as (1) inductive transfer: there are a few labeled
data in the target task, while there are a large amount of
labeled [18] [19] [20] or unlabeled [21] data in the source
task, (2) transductive transfer: there are no labeled data in
the target task, while there are large amount of labeled
data in the source task [22] [23] [24] [25], this is also
called cross-domain classification or domain adaption, and
(3) Unsupervised transfer: there are no labeled data in the
target task, while there are large amount of unlabeled data in
the source task [26]. In our study, we focus on transductive
transfer classification, which belongs to the second category.

C. Clustering with Background and Prior Knowledge

Improving clustering performance using the background
and prior knowledge has witnessed increasing interest in
the past decade. One direction is co-clustering [6] [7] [8]
[9], which clusters the data and features simultaneously
to enhance the clustering performance. Another direction
is semi-supervised clustering [1] [2] [3] [4] [5], which
incorporates pairwise constraints, e.g. must-link and cannot-
link constraints, to assist clustering. Both co-clustering and
semi-supervised clustering use either the background or
prior knowledge within a single task. However, multi-task
clustering exploits both in-task and out-of-task knowledge.

D. Semi-Supervised Learning

In many practical machine learning problems, the acquisi-
tion of sufficient labeled data is often expensive and/or time
consuming. On the contrary, in many cases, large number of
unlabeled data are far easier to obtain. Consequently, semi-
supervised learning [27] [28] [29], which aims to learn from
both labeled and unlabeled data points, has received signif-
icant attention in the past decade. Semi-supervised learning
is different from transductive transfer classification. In semi-
supervised learning, the labeled and unlabeled samples are
drawn from the same task, so their distributions are the
same. However, in transductive transfer classification, the
labeled samples are from the source task, while the unlabeled
samples are from the target task. So their distributions are
different.

III. MULTI-TASK CLUSTERING

In this section, we first present the problem setting of
multi-task clustering. Then we propose a multi-task cluster-
ing method and the optimization algorithm, followed with
its convergence analysis.



A. Problem Formulation

Suppose we are given m clustering tasks, each with a
set of data points, ie. X® = {xP x® <P e
Rd,l < k < m, where ny is the number of data points
in the k-th task. The goal of multi-task clustering is to
partition the data set X'(®) of each task into ¢ clusters
{Cj(.k)}jzl. Note that we assume the dimensionality of the
feature vector of all the tasks is the same, i.e. d. It is
appropriate since we could augment the feature vectors of all
the tasks to make the dimensionality same. In fact, the bag-
of-words document representation used in our experiments
implicitly does the augmentation. Moreover, we assume
that the number of clusters in each task is the same, i.e.
€1 = Cy =...= ¢y = ¢, which is also assumed in existing
multi-task learning literature.

B. Objective

Let us consider the case of single-task clustering first.
Take the k-th task for example. We are going to partition the
k-th data set into c clusters. The classical K-means algorithm
achieves this goal by minimizing the following objective

C
Ja=> 3 " —m{|3, (1)

J=1x®ecth
where || -||2 is 2-norm and m;k) is the mean of cluster CJ(-k)
in the k-th task. If we define M(*) = [mgk), . .,mgk)] €
R?*¢, then Eq.(1) can be rewritten as

T = [IX® - MWPETZ,
st. PR g {0, 1}mexe )
where X(*) = [ng),...,xgi)],l <k <m|l - |lFis

Frobenius norm and P®*) € {0,1}™*¢ is called partition
matrix, which represents the clustering assignment, such that
Pff) = 1if xik) belongs to cluster Cj(-k) and Pff) =0
otherwise. This is also known as hard clustering, i.e. the
cluster assignment is binary.

When it comes to multi-task clustering setting, we are
going to learn a shared subspace, which is obtained by an
orthonormal projection W € R9*! across all the related
tasks, in which we perform all the clustering tasks together.
This shared subspace can be seen as a new feature space,
in which the data distribution from all the tasks are similar
with each other. As a result, we can cluster them together in
this shared subspace using traditional single-task clustering
algorithm, i.e. K-means. Furthermore, we add a constraint
that the clustering result of each task in the shared subspace
is the same as that in the input subspace, which intertwines
the clustering in the input space and clustering in the shared

subspace. Then it is formulated as minimizing

Jmt
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where \ € [0,1] is a regularization parameter balancing the
clustering in the input space and the clustering in the shared
subspace, I is an identity matrix, and M = [my, ..., m.] €
R™*¢ with m; is the mean of cluster C; of all the tasks in
the shared subspace.

The objective in Eq.(3) consists of two terms. The first
term is Within-task clustering, which includes & independent
k-means clustering of each task in the input space. The
second term is Cross-task clustering, which simultaneously
learns the shared subspace and clusters the data of all the
tasks together in the shared subspace. It is worth noting
that the second term is similar with clustering the data
of all the tasks together via Adaptive Subspace Iteration
(ASI) clustering method [30]. The first term and the second
term are intertwined through the partition matrices. When
letting A = 1, Eq.(3) degenerates to m independent K-means
clustering. And When letting A = 0, Eq.(3) turns out to be
clustering data of all the tasks via ASI. In general case, the
more related the tasks are, the smaller A we will set.

By its definition, the elements in P(*) can only take binary
values, which makes the minimization in Eq.(3) very dif-
ficult, therefore we relax P*) into nonnegative continuous
domain. Then the objective of multi-task clustering in Eq.(3)
turns out to be

Jmt
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We call Eq.(4) Learning the Shared Subspace for Multi-Task
Clustering (LSSMTC).

C. Optimization

As we see, minimizing Eq.(4) is with respect to
M®) P®*) "W and M. And we cannot give a closed-form
solution. In the following, we will present an alternating
minimization algorithm to optimize the objective. In other
words, we will optimize the objective with respect to one
variable when fixing the other variables.



1) Computation of M: Given W and P*), optimizing
Eq.(4) with respect to M is equivalent to optimizing

Bo= YIWIX® - MPOT
k=1
= [[W'X-MPT|} (5)
where X = XM, ..., X(™] and P =
pOT  PmTIT,
Setting gK}I = 0, we obtain

M =WTXPPTP) L (6)
2) Computation of M®*): Given P*) optimizing Eq.(4)

with respect to M(¥) is equivalent to optimizing

0Jy
OM(k)
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Setting 0, we obtain

3) Computation of P*): Given W, M, M®*) optimizing
Eq.(4) with respect to P(¥) is equivalent to optimizing
o= AX® - MOPOT
+ 1 =N|WTX®) - MP®T2,
st. P® >, )
For the constraint P(*) > 0, we cannot get a closed-
form solution of P*)_ In the following, we will present an

iterative solution. We introduce the Lagrangian multiplier
v € R™>*¢ and the Lagrangian function is

L(P(k)) )\Hx(k) _ M(k)P(k)TH%
+ Q=NWIX® _MpP®T|2,
— t(yP®T) (10)
Setting aggfj)) = 0, we obtain
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where A = AXH®TM® 4+ (1 — )X®TWM and B =
AMBOTM®E) 4 (1 — N )M M.
Using the Karush-Kuhn-Tucker condition [31] 'ying-c) =
0, we get
A +POB];PY =0 (12)

Introduce A = AT — A~ and B =Bt —B~ where A;'; =
(|A’Lj|+A’Lj)/2 and .:AZ_7 = (‘A7]| 7A7J)/2 [32], we obtain

A~ +PWB* — AT —PWB-; PP =0 (13)

Eq.(13) leads to the following updating formula

, F L PpRB-1..
P§.’?>HP<’?>\/[A +PYB (14)

4) Computation of W: Given M, M) P(*¥) optimizing
Eq.(4) with respect to W is equivalent to optimizing

m
Jo= S IWIX® - MpOT
k=1
WX~ MPT}
st. WI'w =1 (15)
where X = XM, ..., X(™] and P =

pwT . poTT,
Substituting M = WTXP(PTP)~! into the above
equation, we obtain

Js = ao(WIX{I-PPTP)'PT)XTW)
st. WIW =1 (16)
It is easy to show that the optimal W minimizing Eq.(16) is
composed of the eigenvectors of X(I-P(PTP)~1PT)XT
corresponding to the [ smallest eigenvalues.

In summary, we present the algorithm of optimizing
Eq.(4) in Algorithm 1.

Algorithm 1 Learning the Shared Subspace for Multi-Task
Clustering (LSSMTC)

Input:m tasks, {X(’“)}L”:P the dimensionality of the
shared subspace [, maximum number of iterations 7T’
Output:Partitions P(*) ¢ R"*¢ 1 < k < m;
Initialize £ = 0 and P(k), 1 < k < m using K-means;
Initialize W € R%*! using any orthonormal matrix.
while not convergent and ¢ < T do

M = WI(XP)(PTP) 1,

for Kk =1 To m do

Compute M(¥) = X(R)p ) (p(R)TP(k))—1,

Update
(k) (k) [[A++PMB-];; .
P =Py a+tpmB,
end for

Compute W;; by eigen-decomposition of X(I —
P(PTP)-1PT)XT,
t=t+1

end while

D. Convergence Analysis

In the following, we will investigate the convergence of
Algorithm 1. We use the auxiliary function approach [33] to
analyze the multiplicative updating formulas. Here we first
introduce the definition of auxiliary function [33].

Definition IIL1. [33] Z(h,}') is an auxiliary function for
F(h) if the conditions

Z(h,h') > F(h), Z(h,h) = F(h),

are satisfied.



Lemma IIL.2. [33] If Z is an auxiliary function for F, then
F' is non-increasing under the update

R+ — arg m}jn Z(h, h(t))

Proof: F(RtD) < Z(htHD M) < Z(h® 1) =
F(h®) [ ]

Lemma II1.3. [32] For any nonnegative matrices A €
Rnxn B e RExk § ¢ R**k S ¢ Rk and A, B are
symmetric, then the following inequality holds

>yt

i=1 p=1

(AS'B);
(AS'B);,S3, > tr(STASB)

Theorem II1.4. Let
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Then the following function
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nral PP
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+p/
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+ QZA‘
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is an auxiliary function for J(P¥)). Furthermore, it is a
convex function in P*) and its global minimum is

At +PHFB-];

P — p¥ [ 18
i A=+ PIB, (%)

Proof: Please see Appendix. |

Theorem IIL5. Updating P*) using Algorithm 1 will
monotonically decrease the value of the objective in Eq.(4),
the objective is invariant under the updating if and only if
P is at a stationary point.

Proof: By Lemma III1.2 and Theorem III.4, we can get
that J(P0) = Z(P®O pk)0) > zPpWk1 pko) >
JP®Y) > . So J(P®) is monotonically decreasing.
Since J(P*)) is obviously bounded below, we prove this
theorem. ]

In addition to Theorem IIL.5, since the computation of
W in Eq.(16) also monotonically decreases the value of the
objective in Eq.(4), Algorithm 1 is guaranteed to converge.

IV. TRANSDUCTIVE TRANSFER CLASSIFICATION

In this section, we will show that given the labels of one
task, the proposed multi-task clustering method turns out to
be a transductive transfer classification method.

For simplicity, we consider the 2 tasks case, X*) =
{xgk),xék),...,xgi)},k = 1,2, where ny is the number
of data points in the k-th task. Without loss of generality,
we assume the label of the 1st task is given, and we are
going to predict the labels of the data in the 2nd task.
This problem is exactly transductive transfer classification,
which is also known as domain adaption or cross-domain
classification. We call the 1st task source task (in-domain),
and the 2nd task target task (out-of-domain). Denote X (%) =

[xgk), cee g?], k = 1,2. Again, we assume that the number
of classes in each task is the same, ie. ¢; = ¢ = c.

Note that it is trivial to generalize our transductive transfer
classification method from 1 source task to more than 1
source task.

Based on the above discussion, our multi-task clustering
method can be extended to transductive transfer classifica-
tion as follows,

Jie = NX® -—MOPpAT|32

2
+ (=) [WIX® —MPOT|

st. WIW =1,P® ¢ {0,1}"2x¢ (19)

where the first term is clustering in the input space of the
target task, the second and the third term are clustering
of the source and the target task together in the shared
subspace, A € [0,1] is a regularization parameter balancing
the clustering in the input space and the clustering in the
shared subspace. It should be noted that P(!) in Eq.(19) is a
constant since the label of the source task has been known
as prior knowledge.

Again, we relax P(?) into nonnegative continuous domain.
Then the objective of transductive transfer classification in
Eq.(19) turns out to be

Jtc =

2
+ o 1=0) WKWK

)\Hx@) — M(Q)P(Q)TH%

- MPOT

st. WI'w =1,P® >, (20)

We call Eq.(20) Learning the Shared Subspace for Trans-
ductive Transfer Classification (LSSTTC).

Since the optimization of Eq.(20) is very similar with
that of Eq.(4), we omit the derivation of the optimization
algorithm, and present it in Algorithm 2 directly.

The convergence of Algorithm 2 is also theoretically
guaranteed. The proof of convergence is very similar with
that of Algorithm 1.



Algorithm 2 Learning the Shared Subspace for Transductive
Transfer Classification (LSSTTC)

Input: XM P X(2) the dimensionality of the shared
subspace [, maximum number of iterations 7’;
Output:Partitions P(2) € R"*¢;
Initialize P(®) using K-means;
Initialize W using any orthonormal matrix.
while not convergent and ¢ < 7" do
Compute M = WTXP(PTP)1;
Compute M) = WIXAPpER)(PATPR)-1;
Update Pg) — Pl(?) 7&11;?;%
Compute W;; by eigen-decomposition of X(I —
P(PTP)1PT)XT,
end while

V. EXPERIMENTS

In our experiments, we will evaluate the proposed meth-
ods on several cross-domain text data sets.

A. Evaluation Metrics

To evaluate the clustering results, we adopt the perfor-
mance measures used in [34]. These performance measures
are the standard measures widely used for clustering.

Clustering Accuracy: Clustering Accuracy discovers the
one-to-one relationship between clusters and classes and
measures the extent to which each cluster contained data
points from the corresponding class. Clustering Accuracy is
defined as follows:

Moo — 2uiz1 0(map(ri), L) 21

’
n

where r; denotes the cluster label of x;, and /; denotes the
true class label, n is the total number of documents, §(z, y)
is the delta function that equals one if z = y and equals zero
otherwise, and map(r;) is the permutation mapping function
that maps each cluster label r; to the equivalent label from
the data set.

Normalized Mutual Information: The second measure
is the Normalized Mutual Information (NMI), which is used
for determining the quality of clusters. Given a clustering
result, the NMI is estimated by

Yot 25:1 N j log ,7:7;7
V(o nilog %) (5, 1y log 22)

where n; denotes the number of data contained in the cluster
Ci(1 <i < ¢), ny; is the number of data belonging to the
L;(1 <j <c),and n; ; denotes the number of data that are
in the intersection between the cluster C; and the class £;.
The larger the NMI is, the better the clustering result will
be.

To evaluate the classification results, we use the classifi-
cation accuracy.

NMI =

, (22

B. Data Sets

In order to evaluate the proposed methods, we use 2 text
data sets, which are widely used in cross-domain classifica-
tion literature [22] [23] [25].

WebKB' The WebKB data set contains webpages gath-
ered from university computer science departments (Cornell,
Texas, Washington, Wisconsin). There are about 8280 docu-
ments and they are divided into 7 categories, and we choose
student, faculty, course and project these four most popu-
lous entity-representation categories for clustering, named
WebKB4. We consider clustering the web pages of each
university as one task. Therefore, we have 4 tasks.

20Newsgroup’ The 20 Newsgroups is a collection of ap-
proximately 20000 newsgroup documents, partitioned across
20 different newsgroups nearly evenly. We generate 2 cross-
domain data sets, i.e. Rec.vs.Talk and Comp.vs.Sci, for
evaluating multi-task clustering and transductive transfer
classification methods. In detail, two top categories are
chosen, one as positive and the other as negative. Then the
data are split based on sub-categories. The task is defined as
top category classification. The splitting ensures the data in
different tasks are related but different, since they are drawn
from the same top category but different sub-categories. The
detailed constitutions of the 2 data sets are summarized in
Table 1.

Table 1
CONSTITUTION OF THE 2 DATA SETS GENERATED FROM 20NEWSGROUP

[ Dataset [ Taskid | Class 1 [ Class 2
Rec.vs.Talk Task 1 rec.autos talk.politics.guns
Task 2 rec.sport.baseball talk.politics.mideast
Comp.vs.Sci | Task I | comp.os.ms-windows.misc sci.crypt
Task 2 comp.sys.mac.hardware sci.space

Table.Il summarizes the characteristics of the 3 data sets
used in this experiment.

Table 11
DESCRIPTION OF THE DATA SETS

[ Dataset | Taskid | #Sample | #Feature | #Class |

Task 1 227 2000 4

WebKB4 Task 2 250 2000 4
Task 3 248 2000 4

Task 4 304 2000 4

Rec.vs.Talk Task 1 1844 2000 2
Task 2 1545 2000 2

Comp.vs.Sci | Task 1 1875 2000 2
Task 2 1827 2000 2

C. Experiment 1: Multi-Task Clustering
In this experiment, we study multi-task clustering. We
assume that the labels of all the tasks in each data set

Uhttp://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
Zhttp://people.csail. mit.edu/jrennie/20Newsgroups/



are unknown. We compare the proposed multi-task clus-
tering method with typical single-task clustering meth-
ods, e.g. Kmeans (KM), Principal Component Analysis
(PCA)+Kmeans (PCAKM), Normalized Cut (NCut) [35]
and adaptive subspace iteration (ASI) [30]. Note that
Kmeans can be seen as a special case of the proposed
method with A = 1. We also present the experimental results
of clustering the data of all the tasks together using Kmeans,
PCA+Kmeans, NCut and ASI. Note that clustering the data
of all the tasks together via ASI corresponds to the proposed
method with A = 0.

1) Methods & Parameter Settings: We set the number of
clusters equal to the true number of classes for all the clus-
tering algorithms. For NCut, the scale parameter of Gaussian
kernel is set by the grid {1073,1072,1071, 1,10, 102, 103}.
For PCAKM, the reduced dimension of PCA is set to
the minimal number that preserves at least 95% of the
information. For LSSMTC, we set | by searching the grid
{2,2%,23 2}, And the regularization parameter ) is set by
searching the grid {0.25,0.5,0.75}. Under each parameter
setting, we repeat clustering 5 times, and the mean result
as well as the standard deviation is computed. We report
the mean and standard deviation result corresponding to the
best parameter setting for each method to compare with each
other. Since our algorithm is iterative, in our experiments,
we prescribe the maximum number of iterations as 1" = 20.

2) Clustering Results: We repeat each experiment 5
times, and the average results are shown in Table III, Table
IV and Table V.

”All” refers to clustering the data of all the tasks together.
We can see that LSSMTC indeed improves the clustering
result, and outperforms Kmeans greatly, which is its single-
task degeneration. This improvement owes to exploiting the
relation among the tasks by learning the shared subspace. In
Task 2 of WebKB4 data set, NCut achieves better clustering
result than our method. This is because NCut considers the
geometric structure in the data, which is suitable for data
sampled from manifold, while our method does not take
this into account.

In addition, it is worthwhile noticing that although our
method involves combining all the tasks together and doing
dimensionality reduction, it far exceeds these simple opera-
tions. As we see, simply clustering the data of all the tasks
together does not necessarily improve the clustering result,
because the data distributions of different tasks are different,
and combining the data together directly will violate the
ii.d. assumption in single-task clustering. Moreover, the
clustering result of doing dimensionality reduction followed
with clustering is also not as good as LSSMTC, because it
treats learning the subspace and clustering independently,
while learning the subspace and clustering could benefit
from each other.

D. Experiment 2: Transductive Transfer Classification

In this experiment, we study transductive transfer classi-
fication. We do experiments on any two tasks of each data
set. One task is used as source task, in which the class labels
of all the data are known. The other is used as target task,
where the class labels of all the data are unknown and to be
predicted. We compare the proposed transductive transfer
classification method with support vector machine (SVM)
[36], three semi-supervised learning methods, i.e. Gaussian
Field Harmonic Function (GFHF) [27], Learning with Local
and Global Consistency (LLGC) [28] and transductive SVM
(TSVM) [29]. We also compare it with several existing
transductive transfer classification methods, Co-Clustering
based Classification (CoCC) [22] and Cross-Domain Spec-
tral Classification (CDSC) [23].

1) Methods & Parameter Settings: For SVM, TSVM,
CDSC, since they are designed originally for binary clas-
sification, we address the multi-class classification via 1-
vs-rest strategy. For SVM, it is trained on the source task,
and tested on the target task. For TSVM, GFHF, LLGC
and our method, they are trained using both labeled (source
task) and unlabeled (target task) data, and are tested on
the unlabeled data. SVM is implemented by LibSVM? [37],
while TSVM is implemented by SVM%9/%6-01 4 "and Jinear
kernel is used. The implementation of GFHF is the same as
in [27]. The width of the Gaussian similarity is set via the
grid {27302,27202,27 0}, 02, 202, 2202, 2302}, where oy
is the mean distance between any two samples in the training
set. And the size of neighborhood is searched by the grid
{5,10,50,80,n — 1}. The implementation of LLGC is the
same as in [28], in which the width of the Gaussian similarity
and the size of neighborhood are also determined the same
as that in GFHF, and the regularization parameter is set by
searching the grid {0.1,1,10,100}. The implementation and
parameter settings of CoCC and CDSC are the same as that
in their papers. For LSSTTC, we set [ by searching the grid
{100, 200, . ..,900,1000}. And the regularization parameter
A is set by searching the grid {0.25,0.5,0.75}. Under each
parameter setting, we repeat LSSTTC 5 times, and the mean
result is computed.

2) Classification Results: The classification results are
reported in Table VI, Table VII and Table VIIL. It is obvious
that the proposed transductive transfer classification method
outperforms traditional single-task classification methods,
e.g. SVM, TSVM, GFHF and LLGC, greatly on most
transfer settings. This improvement is due to the prior
knowledge, i.e. label information, in the related source task
which is transferred to the target task by our method. It is
also comparable to or even better than existing transductive
transfer classification methods, e.g. CoCC and CDSC. Note
that in Task 4 — Task 1 and Task 4 — Task 2 settings of

3http://www.csie.ntu.edu.tw/ cjlin/libsvm/
“http://svmlight joachims.org/



Table III

CLUSTERING RESULTS ON WEBKB4

Task 1 Task 2 Task 3 Task 4
Method Acc NMI Acc NMI Acc NMI Acc NMI
KM 0.5784£0.0996 | 0.2760£0.0753 | 0.5670£0.0697 | 0.25524£0.0551 | 0.5671£0.0903 | 0.2814E0.0603 | 0.6770£0.0773 | 0.3552+0.0949
PCAKM 0.593840.1006 0.308540.0822 0.561640.0595 0.2446+0.0534 0.610540.0659 0.322440.0588 0.688240.0824 0.418740.0975
NCut 0.4907+0.0188 | 0.2816+0.0342 | 0.672040.0000 | 0.3632+0.0000 | 0.528240.0000 | 0.346640.0000 | 0.607940.0015 | 0.25554-0.0068
ASI 0.511940.0612 0.237440.0365 0.551240.0613 0.294740.0438 0.609740.0569 0.293340.0265 0.641840.0254 0.359140.0157
All KM 0.547640.0837 0.1846+0.0736 0.59444-0.0447 0.3178+0.0514 0.598040.0914 0.214740.1255 0.5898+0.1158 0.310840.1135
All PCAKM 0.591240.0841 0.231840.0907 0.595240.0565 0.205940.0182 0.571840.0789 0.141340.1206 0.675340.1060 0.381240.1094
All NCut 0.568340.0000 0.250540.0000 0.59204-0.0000 0.272140.0000 0.49604-0.0000 0.23404-0.0000 0.513240.0000 0.262040.0000
All ASI 0.573140.0581 0.120940.0515 0.53844-0.0232 0.22961+0.0122 0.50444-0.0790 0.2965+40.0879 0.623440.0845 0.336340.1297
LSSMTC 0.62474-0.0336 0.3369+0.0144 0.63044-0.0364 0.341610.0101 0.667710.0408 0.35524-0.0147 0.7329+0.0333 0.42404-0.0096
Table IV
CLUSTERING RESULTS ON REC.VS.TALK
Task 1 Task 2
Method Acc NMI Acc NMI
KM 0.64671+0.0382 | 0.1884+0.0307 | 0.645440.0967 | 0.1568+0.1379
PCAKM 0.6757+0.0015 | 0.2122+0.0020 | 0.6344+0.1131 | 0.1416+0.1602
NCut 0.6779+0.0000 | 0.2216+0.0000 | 0.688740.0000 | 0.212240.0000
ASI 0.6303+0.0607 | 0.1311£0.1012 | 0.617040.1464 | 0.140140.1893
All KM 0.6551+£0.0382 | 0.1742+0.0160 | 0.5898+0.0271 | 0.0558+0.0443
All PCAKM 0.6765+0.0348 | 0.1796+0.0184 | 0.606140.0262 | 0.077040.0381
All NCut 0.6866+0.0000 | 0.2604+0.0000 | 0.618840.0000 | 0.078340.0000
All AST 0.6241+0.0585 | 0.1133+0.0660 | 0.5683+0.0376 | 0.0295+0.0357
LSSMTC 0.8433+0.0804 | 0.4306+0.0582 | 0.7895+0.0827 | 0.3473+0.0835
Table V
CLUSTERING RESULTS ON COMP.VS.SCI
Task 1 Task 2
Method Acc NMI Acc NMI
KM 0.61304+0.0202 | 0.1727+0.0228 | 0.671640.0000 | 0.208740.0000
PCAKM 0.6073+0.0190 | 0.1661£0.0214 | 0.6716£0.0000 | 0.208740.0000
NCut 0.6683+0.0000 | 0.2327+0.0000 | 0.667840.0000 | 0.169440.0000
ASI 0.740440.1615 | 0.3444+0.2041 | 0.665740.0021 | 0.128240.0098
All KM 0.6656+0.0727 | 0.2330+0.0924 | 0.5407+0.0211 | 0.0532+0.0191
All PCAKM 0.6659+0.0726 | 0.2334+0.0922 | 0.540940.0212 | 0.053640.0193
All NCut 0.635240.0000 | 0.1941+£0.0000 | 0.55064-0.0000 | 0.062740.0000
All AST 0.6241+0.0585 | 0.1133+0.0660 | 0.5683+0.0376 | 0.0295+0.0357
LSSMTC 0.8801+0.0076 | 0.5376+0.0155 | 0.8016+0.0614 | 0.3347+0.1407

WebKB4 data set, “negative transfer” [17] occurred, where
transfer learning lowers the learning performance.

VI. CONCLUSIONS AND FUTURE WORKS

The contribution of this paper includes the following
aspects. First of all, we initiate a novel clustering paradigm,
i.e. multi-task clustering, which utilizes the relation among
multiple clustering tasks and outperforms traditional single-
task clustering methods greatly. As far as we know, this
is the first work addressing multi-task clustering. Secondly,
we extend our multi-task clustering method to transductive
transfer classification, which is comparable to or even better
than existing methods.

In our future work, we will extend our method to take
into account geometric structure as in [34] [38].
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APPENDIX
PROOF OF THEOREM II1.4
Proof: We rewrite Eq.(17) as

L(PH) = w@®Btp®WT _prg-pHT

2ATPWT L oA~ P
By Lemma III.3, we have

k)2
(P'MB*); Pl
1(k)
P/

tr(PHBTPHT) <}~

ij



Table VI
CLASSIFICATION RESULTS ON WEBKB4

Source | Target | SVM [ TSVM [ GFHF [ LLGC | CoCC | CDSC | LSSTTC |

Task 1 | Task 2 0.6280 | 0.6320 | 0.5920 | 0.6520 | 0.6400 | 0.6760 0.7024
Task 1 | Task 3 0.6371 | 0.6492 | 0.7137 | 0.7379 | 0.7258 | 0.7339 0.7419
Task 1 | Task 4 || 0.7138 | 0.7303 | 0.7467 | 0.7993 | 0.7895 | 0.8092 | 0.8125
Task 2 | Task 1 0.5639 | 0.6167 | 0.5639 | 0.6432 | 0.6520 | 0.6828 0.6745
Task 2 | Task 3 0.5645 | 0.5960 | 0.5202 | 0.5403 | 0.6573 | 0.7218 0.7661
Task 2 | Task 4 0.6382 | 0.6842 | 0.5132 | 0.7171 | 0.7237 | 0.7336 0.7513
Task 3 | Task 1 0.6344 | 0.6564 | 0.6035 | 0.6960 | 0.6916 | 0.7048 0.7022
Task 3 | Task 2 0.5920 | 0.6800 | 0.5920 | 0.6520 | 0.6760 | 0.6840 0.6960
Task 3 | Task 4 0.7237 | 0.7304 | 0.5132 | 0.7368 | 0.7796 | 0.8257 0.8414
Task 4 | Task 1 0.7269 | 0.7313 | 0.6608 | 0.7357 | 0.6740 | 0.7093 0.6493
Task 4 | Task 2 0.6360 | 0.6420 | 0.5920 | 0.6320 | 0.6200 | 0.6360 0.6072
Task 4 | Task 3 0.5887 | 0.5960 | 0.5202 | 0.5726 | 0.6976 | 0.7177 0.7339
Table VII
CLASSIFICATION RESULTS ON REC.VS.TALK

[ Source | Target [ SVM [ TSVM [ GFHF | LLGC | CoCC [ CDSC [ LSSTIC |
Task 1 | Task 2 0.7605 | 0.8395 | 0.8220 | 0.7625 | 0.8544 | 0.8628 0.8841
Task 2 | Task 1 0.7310 | 0.7988 | 0.7039 | 0.7055 | 0.8574 | 0.8829 0.9170

Table VIII
CLASSIFICATION RESULTS ON COMP.VS.SCI

[ Source [ Target | SYM | TSVM | GFHF [ LLGC | CoCC [ CDSC [ LSSTIC
Task 1 | Task 2 || 0.6902 | 0.8336 | 0.6825 | 0.7170 | 0.9063 | 0.9196 | 0.9489
Task 2 | Task 1 0.7803 | 0.8864 | 0.8955 | 0.8800 | 0.8960 | 0.9003 0.9056

. . 2 . (k) pr(k) .
Moreover, by the inequality a < (a”+b )Na,b > 0, we have by setting L’kp) = 0 and solving for P(*), from
2b opH
. ij
which we can get Eq.(18). |

tr(A ZA P <N Az
ij

UL

1(k)
2P’

To obtain the lower bound for the remaining terms, we use
the inequality that z > 1 + log z,Vz > 0, then

(k)
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