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Abstract

Combining graph regularization with nonnegative
matrix (tri-)factorization (NMF) has shown great
performance improvement compared with tradi-
tional nonnegative matrix (tri-)factorization models
due to its ability to utilize the geometric structure of
the documents and words. In this paper, we show
that these models are not well-defined and suffer-
ing from trivial solution and scale transfer prob-
lems. In order to solve these common problems,
we propose two models for graph regularized non-
negative matrix (tri-)factorization, which can be ap-
plied for document clustering and co-clustering re-
spectively. In the proposed models, a Normalized
Cut-like constraint is imposed on the cluster as-
signment matrix to make the optimization problem
well-defined. We derive a multiplicative updating
algorithm for the proposed models, and prove its
convergence. Experiments of clustering and co-
clustering on benchmark text data sets demonstrate
that the proposed models outperform the original
models as well as many other state-of-the-art clus-
tering methods.

1 Introduction

Nonnegative Matrix Factorization (NMF) [Lee and Seung,
2000] [Li and Ding, 2006] [Xu et al., 2003] [Ding et al.,
2006] has received increasing interest in the past decade and
achieved great success in document clustering and document-
word co-clustering [Dhillon et al., 2003] (clustering docu-
ments based on their distribution on words, while grouping
words based on their distribution on the documents).
Recently, [Cai et al., 2008] proposed a graph regularized
nonnegative matrix factorization (GNMF), which incorpo-
rates the geometric structure of the documents into NMF by
manifold regularization [Belkin et al., 2006]. [Gu and Zhou,
2009] proposed a Dual Regularized Co-Clustering (DRCC)
method based on graph regularized semi-nonnegative matrix
tri-factorization [Ding er al., 2010]. They showed that not
only the documents but also the words are discrete samplings
from some manifolds. By manifold regularization [Belkin et
al., 2006], the cluster labels of documents are smooth with
respect to the intrinsic document manifold, while the cluster

labels of words are smooth with respect to the intrinsic word
manifold.

However, both GNMF [Cai et al., 2008] and DRCC [Gu
and Zhou, 2009] suffer from the scale transfer problem be-
cause the regularization term in the objective function is not
lower-bounded. More seriously, when the regularization pa-
rameter is too large that the regularization term dominates the
objective function, the original optimization problem will de-
generate into a series of independent subproblems associated
with each column of the cluster assignment matrix. In this
case, the solution of each row of the cluster assignment ma-
trix will be very similar with each other, resulting in trivial
clustering result. We will analyze these two problems in de-
tail in the next section. As far as we know, there is no ex-
isting principled way to deal with such kinds of problems.
In this paper, to solve the problems in a principled way, we
propose two models for graph regularized nonnegative matrix
(tri-)factorization, which can be respectively applied to doc-
ument clustering and document-word co-clustering. We im-
pose a Normalized Cut-type [Shi and Malik, 2000] constraint
on the cluster assignment matrix, which makes the optimiza-
tion problem well-defined. We also derive an iterative mul-
tiplicative updating algorithm to solve the proposed models.
The convergence of the algorithm is theoretically guaranteed.
The main contributions of this paper include: (1) we analyze
the common problems existing in many previous graph regu-
larized nonnegative matrix (tri-)factorization models, and (2)
we propose a principled way to solve these problems. Exper-
iments of clustering and co-clustering on many benchmark
data sets demonstrate that the proposed models overcome the
problems and outperform the original models as well as many
state-of-the-art clustering methods.

1.1 Notations

Given a document set X = {x1,...,%,} € R the goal of
clustering is to group the documents into c clusters {C;}$_;.
And the goal of co-clustering is to group the documents into
c clusters {C; }5:1’ while grouping the words into m clusters

{W;}7L,. We use a cluster assignment matrix V. € R}**
to represent the clustering result of documents, such that if
argmax; V;; = j*, then x; belongs to cluster C;«. We de-
note the ith row of V by v?, and the jth column of V by
v,;. Each element in v’ can be seen as the probability of the
1th document belonging to each clusters, which provides Soft



Clustering. In the co-clustering scenario, we introduce an-

other clustering assignment matrix U € R‘ixm to represent
the clustering result of words analogously.

2 Related Work

In this section, we will review several methods related to ours,
and analyze the potential problems that previous works suffer
from.

[Cai et al., 2008] proposed a graph regularized NMF
(GNMF), which adds an additional graph regularizer on
NMF, imposing Manifold Assumption on the data points.
That is, if two documents x; and x; are close to each other,
then their cluster labels v¢ and v7 should be close as well.
This is formulated as follows,

*ZHV

where Lyy = Dy — Wy is the graph Laplacian on the docu-
ment graph, Wy, is the adjacency matrix defined on the docu-
ment graph, Dy is a diagonal degree matrix of the document
graph with (Dy )y = Z L (Wy);;. For example, we can
define the adjacency matnx WV as

VI|[P(Wy )i = e(VILy V), (1

1, ifx; e N(x;) orx; € N(x;)

(Wv)ij = { 0, otherwise. )
where N (x;) denotes the k-nearest neighbor of x;. And
GNMF minimizes the following objective,

J = |X-UVT}+pe(VILy V),
st. U>0,V >0, &)

where p > 0 is a regularization parameter. Due to the graph
regularization term tr(V?Ly V), GNMF can take into ac-
count the geometric information of the data.

[Gu and Zhou, 2009] proposed a dual regularized co-
clustering (DRCC) method based on graph regularized (semi-
)nonnegative matrix factorization [Ding ef al., 20101, which
imposes graph regularization on both the word and document
cluster assignment matrices, i.e.,

i = [IX=USVT|Z + \r(UTLyU) + putr(VILy V)
st. U>0,8S>0, V>0, (4)

where S reflects the association between words and docu-
ments, Ly = Dy — Wy is the graph Laplacian on the
word graph, Wy is the adjacency matrix of the word graph
which can be defined similarly as in Eq. (2), Dy is the di-
agonal degree matrix associated with the word graph, with
(Dy)ii = Z?:l(WU)ij’ the definition of Ly, is the same as
above, \, 1 > 0 are regularization parameters. Hereafter, we
refer to the model in Eq. (4) as GNMTF for consistency with
GNMF. GNMTF not only considers the geometric structure
of the documents as in GNMF, but also takes into account the
geometric information of the words.

2.1 Trivial Solution Problem

In this subsection, we show that GNMF [Cai et al., 2008] suf-
fers from trivial solution. When p approaches oo, the second
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0.55 | 0.41 | 090 |2.22 |239 234 |253
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155 [1.89 | 1.64 |0.70 |0.25 | 0.60 |0.87
(a)
0.06 | 0.94 0.62 | 0.38 0.73 | 0.27
0.07 | 0.93 0.62 | 0.38 0.73 | 0.27
0.14 | 0.86 0.62 | 0.38 0.73 | 0.27
0.86 | 0.14 0.66 | 0.34 0.73 | 0.27
0.93 | 0.07 0.66 | 0.34 0.73 | 0.27
0.87 | 0.13 0.66 | 0.34 0.73 | 0.27
0.87 | 0.13 0.66 | 0.34 0.73 | 0.27

(b) (c) (d)

Figure 1: (a) is a word-document matrix. The first 3 columns
is one cluster, the last 4 columns is another cluster; (b) is V
learned by GNMF with p = 1; (¢) is V learned by GNMF
with © = 10%; (d) is V learned by GNMF with . = 106.
Note that we normalize each row of V by ¢; norm for better
viewing.

term dominates the objective function, Eq. (3) boils down to

J = u(VILyV) = kavak,

st. V>0, (5)

where v denotes the k-th column of V. Eq. (5) can be
decomposed into ¢ independent optimization subproblems as
follows

J” = vavak,
st v >0, (6)

where £ = 1,...,c. Thus each optimization gets the same
solution up to a scale, i.e., vi o ... < V.. This means all
elements in each row of V are identical up to a scale. Hence
the cluster assignment by V tends to assign all the documents
to one class, because the cluster assignment is determined
by the largest entry in each row. In reality, due to the exis-
tence of the first NMF term in Eq. (3), these elements are not
precisely identical up to a scale, but rather slightly fluctuate.
Figure 1 shows an illustrative toy example. It can be seen
that when p = 1, the clustering results is correct. However,
when . = 104, the clustering results assign all the documents
to cluster 1. Since there is a fluctuation caused by the first
NMF term, the scale between column 1 and column 2 of V
is not uniformly the same across the rows of V. And when
1 = 109, the problem gets worse. The scale to which column
1 equals to column 2 is uniformly g 0.73 73

The same problem exists in GNMTF [Gu and Zhou, 2009].
This motivates us to propose the new formulation presented
in this paper.



2.2 Scale Transfer Problem

Another problem that GNMF suffers from is scale transfer
problem in the optimization. Suppose {U*, V*} is the op-
timal solution for Eq. (3) with optimal objective function
value, i.e., J(U*, V*). For any real scalar « > 1, the scale
transferred solution {aU*, %}, will lead to a ”smaller” ob-
jective function value,

V*
J(aU™, o ) < J(U*, V™). @)
Thus, the ultimate solution is U* = oo, V* = 0 while

U*V*T remains a fixed value.

The same problem exists in GNMTF [Gu and Zhou, 2009].
To resolve this problem, [Gu and Zhou, 2009] proposed to use
{5 normalization on columns of U and V in each iteration
during the optimization, and compensate the norms of U and
V to S. However, this is not a principled way to solve the
problem. We will see that this problem can be resolved in the
new formulation proposed in this paper.

3 The Proposed Models

In this section, we present two Nonnegative Matrix (Tri-
)Factorization models with Graph Regularization, followed
by its optimization algorithm. We also prove the convergence
of the optimization algorithm.

3.1 Formulation

The key idea to resolve the problem is adding a Normalized
Cut [Shi and Malik, 2000] type constraint on V, which leads
to the following minimization problem

Jo = |X-UVE - pe(VIWyV),
st. U>0,V>0,VID,V =1, (8)

where I is the identity matrix with proper size, Wy is ex-
actly the adjacency matrix defined on the document graph,
1 is a positive regularization parameter balancing the recon-
struction error in the first NMF term and the label smoothness
in the second term. Note that we omit the term V7 Dy 'V
as it is a constant, i.e., uI. Hence the regularization term
turns out to be —utr(VI W1, V). We can see that the differ-
ence between Eq. (8) and Eq. (3) is the additional constraint
VTDV = I. The difference is seemingly small, but plays an
essential role. With this additional constraint, the optimiza-
tion problem in Eq. (8) is well-defined and no longer suffers
from either scale transfer problem or trivial solution. For ex-
ample, let ix approach oo, then the second term dominates the
objective function, and Eq. (8) boils down to maximize

Jy = uw(VIWyV),
st. ' V>0,VIDyV =1, 9)
which can be seen as nonnegative relaxed Normalized Cut.
Similar with the strategy adopted in Eq. (8), we add two

additional constraints on U and V to Eq. (4), resulting in the
following minimization problem,

Jg -
st. U>0,S>0,V>0
U'DyU=1LV'D,V =1,

[ X - USVT|Z - Mr(UTW,U) — utr(VIW V)

where A\, u > 0 are regularization parameters balancing the
reconstruction error of co-clustering in the first term, and the
label smoothness of the words and documents in the sec-
ond and third terms. The additional two constraints, i.e.,
UTDyU = Iand VIDyV = 1, are essential to make the
optimization in Eq. (10) well-defined and not prone to trivial
solutions.

Since the optimization problem in Eq. (8) can be seen as a
special case of that in Eq. (10) when absorbing S to U and
setting A = 0, in the sequel, we will develop the optimization
algorithm to solve Js3, which is a more general problem. The
derived optimization algorithm can be adapted to optimize J
very straightforwardly.

3.2 Optimization Algorithm
Optimizing Eq. (10) with respect to U is equivalent to opti-
mizing
Jy = ||X-=USVT|Z - \r(UTW,U)
st. U>0,U'Dy,U=1. (11)

Since UTDy U = I, we introduce the Lagrangian multiplier
A € R™*™ thus the Lagrangian function is

L(U) = ||X-USVT|Z - \xr(UTW,U)
+ w(A(UTDyU -1)). (12)
The gradient of L(U) with respect to U is

dL(U)
au

= —2XVvSsT +2usvTvs?
— 2AW, U + 2Dy UA. (13)

Using the Karush-Kuhn-Tucker complementarity condi-
tion [Boyd and Vandenberghe, 2004] (%)M U;; =0, we
get

(-XVST + USVTVST — AW, U + DyUA);;U;; = 0. (14)

Since A may take mixed signs, we introduce A = A1 —
A_, where A:; = (|A1J| + A”)/Q and Az_y = (|AU| —
A;;)/2. Then we get the following updating formula

XVST + \WyU + Dy UA™ |45
Uij — U”\/[ + v+ ] J (15)

[USVTVST + Dy UAT],,

It remains to determine the Lagrangian multiplier A. Fol-
lowing the similar trick used in [Ding et al., 2006], we obtain

A =UTXVST —UTUusvTvsT + \UTW,U. (16)

However, since UTDyU — I is symmetric, we have
r(A(UTDyU — 1)) = u(UTDyU — I)AT) =
tr(AT(UTDy U — I)). Therefore only the symmetric part
of A contributes to L(U), i.e., A should also be symmetric.

T .
Hence we use A’ = % instead of A.
Similarly, we can obtain the updating formula for V as

[XTUS + uyWyV + Dy VE T
[VSTUTUS + Dy VE'1];;

A7)
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where & = ==

=2 =vTXTus - vIvsTuTus + uvIwyVv. (18)

And the updating formula for S is
[UTXV];

[UTUSVTV];;

The iteration in Eq.(15), (17) and (19) terminates until con-
vergence.

and

3.3 Convergence Analysis
In this section, we prove the convergence of the updating for-
mulas in Eq. (15), Eq. (17) and Eq.(19), using the auxiliary
function approach [Lee and Seung, 2000].
Definition 3.1. [Lee and Seung, 2000] Z(h,}') is an auxil-
iary function for F(h) if the conditions

Z(h, ) = F(h), Z(h, h) = F(h),
are satisfied.
Lemma 3.2. [Lee and Seung, 2000] If Z is an auxiliary func-
tion for F', then F' is non-increasing under the update

AU+ = arg min Z(h,h®).

Theorem 3.3. Let
J5(U) = w(—2uTxvs? +usvivsiu”
AUTW,U 4+ AUTD,U), (20)

by ignoring the term —tr(A). Then the following function

Z(U,U)

U;
= -2 Z(XVST)ijUgju + log U;{)
ij J
(U'svTvsT),; Uz (DyU'A™Y);UZ

- Z U, + Z U/,

ij ij ij
/ / U
- A Z(WU)ijjiUki(l + log

— D (A7)(Dy); U5 U (1 +1
ikl

)

is an auxiliary function for J3(U). Furthermore, it is a con-
vex function in U and its global minimum is
, [ [XVST + \Wy U’ + Dy UA™ ;5
[U'SVTVST + Dy U'A™;5
Proof. For the space limit, we omit it. It will be presented in
the longer version of this paper. U

2y

Theorem 3.4. Updating U using Eq. (15) will monotoni-
cally decrease the value of the objective in Eq. (10), hence it
converges.

Proof. By Lemma 3.2 and Theorem 3.3, we can get that
J3(U% = z(Uu%Uu% > z@U,u’ > J(UYH > ...
Thus J3(U) is monotonically decreasing. Since J3(U) is ob-
viously bounded below, the theorem is proved. O

The convergence of the updating formulas of V and S can
be proved similarly. For the space limit, we omit it.

4 Experiments

In this section, We compare our methods with K-means
[Bishop, 2006], Normalized Cut (NCut) [Shi and Malik,
2000], NMF [Lee and Seung, 2000], ONMTF [Ding et al.,
2006], GNMF [Cai et al., 2008] and GNMTF [Gu and Zhou,
2009]. For GNMF and GNMTF, we test the un-normalized
version, and the version doing /> normalization on columns
of V (and U) in each iteration, which are referred to as
GNMF_C2 and GNMTF_C2. We refer to the proposed model
in Eq. (8) as IGNMF and the model in Eq. (10) as IGNMTF.

4.1 Evaluation Metrics

To evaluate the clustering results, we adopt the performance

measures used in [Xu ef al., 2003]. These performance mea-

sures are the standard measures widely used for clustering.
Clustering Accuracy is defined as follows:

Ao — 2uiz1 8(map(ri), ;)
n

; (22)

where r; denotes the cluster label of x;, and [; denotes the
true class label, n is the total number of documents, §(z, y)
is the delta function that equals one if x = y and equals zero
otherwise, and map(r;) is the permutation mapping function
that maps each cluster label r; to the equivalent label from the
data set.

Normalized Mutual Information is used for determining
the quality of clusters. Given a clustering result, the NMI is
estimated by

2im1 21 i log :n];
V(e nilog (S5, 7y log 2)

where n; denotes the number of data contained in the cluster
Ci(1 < i < ¢), iy is the number of data belonging to the
L;(1 < j < ¢), and n; ; denotes the number of data that are
in the intersection between the cluster C; and the class L;.
The larger the NMI is, the better the clustering result will be.

NMI = ;o (23

4.2 Data Sets

In our experiment, we use four data sets which are widely
used as benchmark data sets in clustering literature [Ding et
al., 2006] [Cai et al., 2005].

CSTR consists of the abstracts of technical reports pub-
lished in the Department of Computer Science at a univer-
sity. The data set contained 476 abstracts, which were di-
vided into four research areas: Natural Language Processing
(NLP), Robotics/Vision, Systems and Theory.

News4 is selected from the famous 20-newsgroups data
set!. The topic rec containing autos, motorcycles, baseball
and hockey was selected from the version 20news-18828.

WebKB4 contains webpages gathered from university
computer science departments. There are about 8280 docu-
ments and they are divided into 7 categories: student, faculty,
staff, course, project, department and others, among which
student, faculty, course and project are four largest entity-
representing categories.

'http://people.csail.mit.edu/jrennie/20Newsgroups/



TDT?2 consists of articles collected during the first half of
1998 and taken from 6 sources, including 2 newswires, 2 ra-
dio programs and 2 television programs. In this experiment,
those documents appearing in two or more categories were
removed. We use 10 out of 96 semantic categories.

4.3 Parameter Settings

In order to compare these algorithms fairly, we run these algo-
rithms under different parameter settings, and select the best
average result to compare with each other. We set the number
of clusters equal to the true number of classes for all the data
sets and clustering algorithms.

For NCut [Shi and Malik, 2000], the scale parameter of
Gaussian kernel for constructing adjacency matrix is set by
the grid {1073,1072,107%, 1,10, 102, 103}.

For ONMTF, the number of word clusters is set to be the
same as the number of document clusters, i.e., the true num-
ber of classes, according to [Ding ef al., 2006].

For GNMF, GNMF_C2 and IGNMF, the neighborhood size
k in Eq. (2) is set to 10 according to the observation in [Cai et
al., 2008], and the regularization parameter is set by search-
ing the grid {0.1, 1, 10, 50, 100, 500, 1000}.

For GNMTF, GNMTF_C2 and IGNMTF, the number of
word clusters is set the same as the number of document clus-
ters, i.e., the true number of classes, as in ONMTFE. Accord-
ing to the observation in [Gu and Zhou, 2009], the neigh-
borhood size k of the document graph as well as the word
graph is set to 10. We also set A = y and tune it by the grid
{0.1, 1,10, 50, 100, 500, 1000}.

Under each parameter setting of each method mentioned
above, we repeat clustering 20 times, and the average result is
computed. We report the best average result for each method.

4.4 Clustering Results

Table 1 shows the clustering accuracy of all the algorithms on
all the data sets, while Table 2 shows the normalized mutual
information.

Table 1: Clustering Accuracy (%)

Data Sets CSTR | News4 | WebKB4 | TDT2
Kmeans 76.34 81.58 69.73 76.97
NCut 65.97 60.56 67.16 65.97
NMF 70.97 85.22 69.55 85.28
GNMF 73.11 85.02 72.89 87.04
GNMF_C2 78.35 84.75 71.38 88.03
IGNMF 85.29 87.93 75.19 91.71
ONMTF 77.00 83.99 68.85 82.54
GNMTF 75.81 73.34 70.83 87.04
GNMTF_C2 | 81.76 88.53 71.37 84.04
IGNMTF 85.90 90.94 73.81 92.28

We can see that GNMF_C2 is better than GNMF on 2
out of 4 data sets. This implies that to some extent nor-
malization can resolve the problems suffered by GNMF, and
in turn improve the performance of GNMF. IGNMF outper-
forms GNMF and GNMF_C2 consistently. This indicates the
strength of the proposed model, which benefits from its well-
defined optimization problem.

Table 2: Normalized Mutual Information (%)

Data Sets CSTR | News4 | WebKB4 | TDT2
Kmeans 65.31 71.29 46.65 86.09
NCut 57.61 72.12 44.37 55.73
NMF 67.80 71.98 43.73 88.69
GNMF 67.49 71.07 46.86 89.09
GNMEF_C2 66.01 70.90 47.61 90.06
IGNMF 69.76 72.68 48.46 92.19
ONMTF 67.16 70.53 45.52 86.09
GNMTF 62.94 58.10 45.64 90.45
GNMTF_C2 | 63.14 74.71 46.45 87.22
IGNMTF 72.49 76.87 44.87 90.98

Similarly, GNMTF_C2 outperforms GNMTF on 3 out of
4 data sets according to the clustering accuracy. This im-
plies that the scale transfer problem is even more serious in
GNMTF, since there are two regularizers, i.e. tr(U7 Ly U)
and tr(VTLy/ V) in the objective function. Again, IGNMTF
is superior to GNMTF and GNMTF_C2, because the scale
transfer problem is resolved in a principled way in IGNMTF.

GNMTF type methods are superior to GNMF type meth-
ods on 3 out of 4 data sets. Similar observation was observed
in [Gu and Zhou, 2009]. This verifies the manifold assump-
tion on the words again.

4.5 Study on the Regularization Parameter

In this subsection, we first investigate the sensitivity of
GNMF, GNMF_C2 (GNMF with ¢2 normalization on
columns of V) and IGNMF with respect to the regularization
parameter . We vary the value of u, and plot the average
clustering accuracy in Figure 2. For better viewing, we scale

f1 by log(p).

(b) News4

(c ) WebKB4 (d) TDT2
Figure 2: Clustering accuracy (%) of GNMF type methods
with respect to the regularization parameter .

Figure 2 shows that when y is larger than 1, the perfor-
mance of GNMF declines sharply due to the trivial solution
problem. For example, on the CSTR data set, when y =
50, 100, 500, 1000, the clustering accuracy are all 37.39%.



Since there are 178 documents in the third class, we can see
that 178/476 is exactly 37.39%. This means that GNMF as-
signs all the documents in this data set to the third cluster,
which is the trivial solution problem we analyzed in Section
2. Similar phenomenons can be observed in the other 3 data
sets. GNMF_C?2 is able to overcome this problem to certain
extent. However, the price of normalization is potential per-
formance decrease. IGNMF performs the best and is not very
sensitive to the regularization parameter 1. More importantly,
it does not sacrifice its performance to solve the problem.

Second, we study the sensitivity of GNMTE, GNMTF_C2
(GNMTF with ¢2 normalization on columns of U and V),
and IGNMTF with respect to the regularization parameter
u(= X). We vary the value of u(= M), and plot the aver-
age clustering accuracy with respect to u(= ) in Figure 3.
Note that the horizontal axis represents log(u)(= log())).

Figure 3 illustrates that when g is larger than 0.1, the per-
formance of GNMTF drops off precipitously due to the triv-
ial solution problem. We can see that the problem is even
more serious in GNMTF as we pointed above. If we take
a closer look, we can also observe that GNMTF assigns
all the documents to one cluster when y is very large, e.g.
© = 50,100,500, 1000. GNMTF_C2 is able to overcome this
problem to some extent, which is consistent with the exper-
imental results in [Gu and Zhou, 2009]. IGNMTF performs
best and is very stable with respect to the regularization pa-
rameter p(= ). This strengthens the advantage of the new
formulation in Eq. (10).

(a) CSTR (b) News4

(c ) WebKB4

Figure 3: Clustering accuracy (%) of GNMTF type methods
with respect to the regularization parameter p(= \).

5 Conclusions

In this paper, we propose two models for graph regular-
ized nonnegative matrix factorization and graph regularized
nonnegative matrix tri-factorization respectively, which over-
come the scale transfer problem and trivial solution problem
in GNMF and GNMTF. The proposed models can be solved
via multiplicative updating algorithm, and its convergence is

theoretically guaranteed. Experiments of clustering on many
benchmark data sets demonstrate that the proposed models
outperform the original models and many other state-of-the-
art clustering methods.

Acknowledgments

The work was supported in part by NSF IIS-09-05215,
U.S. Air Force Office of Scientific Research MURI award
FA9550-08-1-0265, and the U.S. Army Research Laboratory
under Cooperative Agreement Number W911NF-09-2-0053
(NS-CTA).

References

[Belkin et al., 2006] Mikhail Belkin, Partha Niyogi, and
Vikas Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled ex-
amples. Journal of Machine Learning Research, 7:2399—
2434, 2006.

[Bishop, 2006] C. M. Bishop. Pattern Recognition and Ma-
chine Learning. Springer, 2006.

[Boyd and Vandenberghe, 2004] Stephen Boyd and Lieven
Vandenberghe. Convex optimization. Cambridge Univer-
sity Press, Cambridge, 2004.

[Cai et al., 2005] Deng Cai, Xiaofei He, and Jiawei Han.
Document clustering using locality preserving indexing.
IEEE Trans. Knowl. Data Eng., 17(12):1624-1637, 2005.

[Cai et al., 2008] Deng Cai, Xiaofei He, Xiaoyun Wu, and

Jiawei Han. Non-negative matrix factorization on mani-
fold. In ICDM, pages 63-72, 2008.

[Dhillon et al., 2003] Inderjit S. Dhillon, Subramanyam
Mallela, and Dharmendra S. Modha. Information-
theoretic co-clustering. In KDD, pages 89-98, 2003.

[Ding et al., 2006] Chris H. Q. Ding, Tao Li, Wei Peng,
and Haesun Park. Orthogonal nonnegative matrix t-
factorizations for clustering. In KDD, pages 126-135,
2006.

[Ding et al., 2010] Chris H. Q. Ding, Tao Li, and Michael 1.
Jordan. Convex and semi-nonnegative matrix factoriza-
tions. IEEE Trans. Pattern Anal. Mach. Intell., 32(1):45—
55, 2010.

[Gu and Zhou, 2009] Quanquan Gu and Jie Zhou. Co-
clustering on manifolds. In KDD, pages 359-368, 2009.

[Lee and Seung, 2000] Daniel D. Lee and H. Sebastian Se-
ung. Algorithms for non-negative matrix factorization. In
NIPS, pages 556-562, 2000.

[Li and Ding, 2006] Tao Li and Chris H. Q. Ding. The rela-
tionships among various nonnegative matrix factorization
methods for clustering. In ICDM, pages 362-371, 2006.

[Shi and Malik, 2000] Jianbo Shi and Jitendra Malik. Nor-
malized cuts and image segmentation. [EEE Trans. Pat-
tern Anal. Mach. Intell., 22(8):888-905, 2000.

[Xu er al., 2003] Wei Xu, Xin Liu, and Yihong Gong. Doc-
ument clustering based on non-negative matrix factoriza-
tion. In SIGIR, pages 267-273, 2003.



