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ABSTRACT
Selective sampling is an active variant of online learning in
which the learner is allowed to adaptively query the label of
an observed example. The goal of selective sampling is to
achieve a good trade-off between prediction performance and
the number of queried labels. Existing selective sampling al-
gorithms are designed for vector-based data. In this paper,
motivated by the ubiquity of graph representations in real-
world applications, we propose to study selective sampling
on graphs. We first present an online version of the well-
known Learning with Local and Global Consistency method
(OLLGC). It is essentially a second-order online learning al-
gorithm, and can be seen as an online ridge regression in the
Hilbert space of functions defined on graphs. We prove its
regret bound in terms of the structural property (cut size) of
a graph. Based on OLLGC, we present a selective sampling
algorithm, namely Selective Sampling with Local and Global
Consistency (SSLGC), which queries the label of each node
based on the confidence of the linear function on graphs. Its
bound on the label complexity is also derived. We analyze
the low-rank approximation of graph kernels, which enables
the online algorithms scale to large graphs. Experiments
on benchmark graph datasets show that OLLGC outper-
forms the state-of-the-art first-order algorithm significantly,
and SSLGC achieves comparable or even better results than
OLLGC while querying substantially fewer nodes. More-
over, SSLGC is overwhelmingly better than random sam-
pling.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.5.1 [Pattern
Recognition]: Models

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Selective sampling [13] [8] is an active variant of online

learning [9] in which the learner is allowed to adaptively
query the labels of a sequence of examples. The learner’s
goal is to achieve a good trade-off between error rate and
the number of queried labels. This can be viewed as an
abstract protocol for interactive learning applications. Re-
cently, several advanced selective sampling algorithms [6]
[24] were proposed, demonstrating more promising results
than traditional passive online learning. However, we note
that existing selective sampling algorithms are specifically
designed for vector-based data.

Graphs have recently received significant attention be-
cause of their increasingly important role in real life appli-
cations. Examples include the friendship network in Face-
book1, co-author and citation networks in DBLP2, and the
World Wide Web. In these applications, the data (nodes)
are not independent and identically distributed (i.i.d.) as
is typically assumed in statistical learning applications, be-
cause of the impact of the linkage structure of the graph.
Learning a function defined on a graph from a set of la-
beled nodes has been studied extensively in machine learning
both in off-line and online settings. More specifically, in the
offline learning scenario, a majority of the literature is of-
ten referred to as graph-based semi-supervised learning [30]
[29]. On the other hand, the pioneering work towards online
learning on graphs is probably [19]. Inspired by this work,
the state-of-the-art Graph Perceptron Algorithm (GPA) was
proposed in [18] and further analyzed in [17] [16].

Based on the above observation, a natural question arises
as to whether we can design selective sampling algorithms
for graphs. The results of this paper show that the answer
is in the affirmative. In this paper, we propose to study
selective sampling on graphs. Our work is built on a well-
known model on graphs, namely learning with local and
global consistency. This model is a state-of-the-art model
on graphs and is particularly amenable to analysis in the
context of selective sampling. We first present an online
version of the well-known Learning with Local and Global
Consistency method (OLLGC). It is essentially a second-
order online learning algorithm, and can be seen as an on-

1http://www.facebook.com
2http://www.informatik.uni-trier.de/∼ley/db/



line ridge regression in the Hilbert space of functions de-
fined on a graph. We prove its regret bound in terms of
cut size of a graph. Based on OLLGC, we present a se-
lective sampling algorithm, namely Selective Sampling with
Local and Global Consistency (SSLGC), which queries the
labels of nodes based on the confidence of the linear function
on graphs. We also derive a bound on the label complex-
ity of our proposed algorithm. Lastly, in order to scale the
proposed algorithms as well as existing online learning algo-
rithms to large graphs, we discuss the low-rank approxima-
tion technique for graph kernels. Experiments on benchmark
graph datasets show that OLLGC outperforms GPA [18]
substantially. Furthermore, the selective sampling algorithm
(SSLGC) achieves comparable or even better results than
OLLGC, while querying substantially fewer nodes. More-
over, SSLGC provides superior results to random sampling.
The main contributions of this paper are three-fold: (1)

we present an online learning with local and global consis-
tency (OLLGC), and prove its regret bound; (2) we present
a selective sampling algorithm on graphs based on OLLGC,
and derive its bound on label complexity; and (3) we analyze
the low-rank approximation of graph kernels, which enables
greater scalability of our algorithms as well as existing algo-
rithms, when the graphs are large.
The remainder of this paper is organized as follows. In

Section 2, we briefly review the related literature. In Sec-
tion 3, we present an online version of learning with local
and global consistency, followed by its regret bound. In Sec-
tion 4, we devise a selective sampling algorithm on graphs
based on the online algorithm derived in previous section,
and analyze its bound on the label complexity. We discuss
and analyze the low-rank approximation of graph kernels for
online algorithms in Section 5. The experiments on bench-
mark graph datasets are demonstrated in Section 6. Finally,
we present the conclusions in Section 7.

1.1 Notation
Throughout this paper, we will use lower case letters to

denote scalars, lower case bold letters to denote vectors (e.g.,
w), upper case letters to denote the elements of a matrix or
a set, and bold-face upper case letters to denote matrices
(e.g., A). 0 is a vector of all zeros with appropriate length.
I is an identity matrix with an appropriate size. We use w⊤

denote the transpose of a vector w, and A−1 the inverse
of a matrix A. Given a matrix L, L† denotes its pseudo
inverse. diag(σ1, . . . , σn) denotes a diagonal matrix with
diagonal elements equal to σi’s. Furthermore, we use ∥ · ∥
denote the ℓ2-norm of a vector.

2. RELATED WORK
For ease in exposition, we briefly discuss online learning,

active learning and selective sampling, in the context of both
vector-based data and graph data.

2.1 Online Learning
Online learning has been studied extensively in the ma-

chine learning community. In the past several decades, a va-
riety of online learning algorithms have been proposed. Due
to the sequential nature of online learning, it is very suitable
to be applied to big data from many real-world applications.
Roughly speaking, online learning algorithms can be cate-
gorized into first-order algorithms [25] [23] and second-order

algorithms [5] [12]. In general, second-order online algo-
rithms are better than first-order online algorithms [20].

The extension of online learning to graph data was origi-
nally studied in [19]. After that work, the well-known Graph
Perceptron Algorithm (GPA) was proposed in [18] and fur-
ther analyzed in [17] [16]. It is worth noting that the set-
ting of online learning on graphs is essentially transductive,
where the whole graph is already provided, but the learner
is presented with the nodes in a sequential manner. This is
different from the inductive paradigm for vector-based on-
line learning. In addition, all the online learning algorithms
on graphs mentioned before are first-order algorithms. Note
that the first contribution of our paper, i.e., online learning
with local and global consistency is a second-order algorithm
on graphs, which is better than first-order algorithms.

2.2 Active Learning
Active learning [11] [28] aims to minimize the required

level of acquisition of labeled data by actively selecting a
few carefully chosen examples to query the oracle for their la-
bels. There are several papers on active learning on graphs.
For instance, [1] proposed an effective label acquisition for
collective classification. [2] proposed an active learning algo-
rithm for networked data based on ensemble and relational
learning. Yet, there is no theoretical guarantee that these
methods are better than random sampling. [7] studied ac-
tive learning on graphs and trees. [21] proposed a nonadap-
tive active learning method by minimizing the variance of
Gaussian Field and Harmonic Function (GFHF) [30]. In our
previous work [15], we proposed a nonadaptive active learn-
ing approach on graphs, by minimizing the data-dependent
error bound of LLGC [29], which was shown to be better
than [21].

2.3 Selective Sampling
Selective sampling [8] [6] combines the idea of online learn-

ing and active learning. Similar to online learning, a selec-
tive sampling algorithm observes examples in a sequential
manner. After each observation, the algorithm predicts its
label. However, rather than receiving the correct label pas-
sively, the algorithm can choose whether to receive feedback
indicating whether the label is correct or not. It is obvious
that by using selective sampling, we need much less labeling
effort, since the labels of many examples can be predicted
with very high confidence. In other words, selective sam-
pling is online active learning.

Linear models lend themselves well to selective sampling
settings, because the variance of a classifier on an example
can be viewed as a measure of confidence for the classifica-
tion. If this confidence is too low, then the selective sampler
will query the label and use it, along with the example, to
update the linear model. For graph data, the key question is
how to define an example as well as a linear model. We will
show that learning with local and global consistency can be
equivalently formulated as a linear model on the graphs.

3. ONLINE LEARNING WITH LOCAL AND
GLOBAL CONSISTENCY

In this section, we present an online version of learning
with local and global consistency (LLGC) [29]. To make
our paper self-contained, we briefly review LLGC.



3.1 Learning with Local and Global Consis-
tency

Given a graph G = (V,E), where vi ∈ V is the i-th
node of a graph, and eij ∈ E is the link (edge) between
i-th node and the j-th node. Each link eij is associated
with a weight Sij , which reflects the strength of the link.
S ∈ Rn×n is called adjacency matrix of the graph. For undi-
rected graph, S is a symmetric matrix, while for directed
graph, S is asymmetric. In the setting of transductive clas-
sification, some of the nodes in the graph are labeled, i.e.,
yi ∈ {±1}, while the remainder are unlabeled, i.e., yi = 0.
Our goal is to obtain a prediction about the labels of those
unlabeled nodes. Through our paper, we assume that the
graph G is connected, though our results can be generalized
to disconnected graphs with more involved arguments.
The basic assumption of graph regularization is based on

the concept of homophily in networks. If two nodes vi and
vj are linked together, then their labels are likely to be sim-
ilar. Let f : V → R be a nonparametric function defined
on the nodes of a graph. For an undirected graph, graph
regularization [27] is mathematically written as follows:

1

2

n∑
i,j=1

(fi − fj)
2Sij = f⊤Lf , (1)

where fi is the function value on the i-th node, i.e., f(vi),
f = [f1, . . . , fn]

⊤, D is a diagonal matrix, which is also re-
ferred to as the degree matrix. The ith diagonal entry Dii =∑n

j=1 Sij , L = D− S is the combinatorial graph Laplacian

[10]. Eq. (1) is called Graph Regularization. Intuitively,
the objective function incurs a heavy penalty, if neighbor-
ing nodes vi and vj are mapped far apart. Suppose the
eigen decomposition of L is L = VΣV⊤ =

∑n
i=1 σiviv

⊤
i ,

where Σ = diag(σ1, . . . , σn), 0 ≤ σ1 ≤ σ2 ≤ . . . ≤ σn are
eigenvalues, V = [v1, . . . ,vn], and vi ∈ Rn, i = 1, . . . , n are
eigenvectors. One property of the graph Laplacian is that
its smallest eigenvalue is 0 (i.e., σ1 = 0), and the associ-
ated eigenvector is 1. For connected graphs, the algebraic
multiplicity of the zero eigenvalue is 1 (i.e., σ2 > 0).
Learning with Local and Global Consistency (LLGC) [29]

was originally proposed for semi-supervised learning and lat-
ter successfully used for classification on graphs [22]. In the
setting of binary classification, it solves the following prob-
lem,

min
f

1

2
∥f − y∥2 + µ

2
f⊤Lf , (2)

where y = [y1, y2, . . . , yn]
T is the label vector, µ > 0 is a reg-

ularization parameter, which controls the balance between
the squared loss and the graph regularization.

3.2 An Equivalent Formulation
In order to derive the online version of LLGC, we derive an

equivalent formulation of LLGC as follows. Specifically, we
consider the dual problem of Eq. (2). Using the definition
of graph kernel [27], we have

f = L†α, (3)

where L† is the inverse (or pseudo inverse) of L, i.e., L† =∑n
i=2

1
σi
viv

⊤
i . Without loss of generality, we assume that

∥α∥2 ≤ C, where C > 0 is a constant.

Substituting Eq. (3) back into Eq. (2), we have

min
α

1

2
∥L†α− y∥2 + µ

2
α⊤L†α. (4)

We assume that L† = M⊤M, where M ∈ Rd×n. We
define w = Mα. The optimization problem in Eq. (4) can
be rewritten as follows:

min
w

1

2
∥M⊤w − y∥2 + µ

2
∥w∥2. (5)

Now we can see that the above objective function is essen-
tially a ridge regression, where each column of M can be
seen as a vector-based example. This insight enables us
adapt the technique from online ridge regression to derive
an online version of LLGC. We will discuss the selection of
M in Section 5.

3.3 Online Learning
Now we are ready to propose the online version of LLGC.

Before that, let us state the formal problem setting of online
learning on graphs. From now on, we assume T = n. Let
M = [m1, . . . ,mT ], where mi ∈ Rd is the i-th column of M.
Online learning operates on a sequence of nodes. In round
t, the algorithm receives an incoming node mt ∈ Rd, and
predicts its label ŷt ∈ {−1,+1}. After the prediction, the
true label yt ∈ {−1,+1} is revealed and the loss ℓ(yt, ŷt) is
evaluated. The goal of online learning is to minimize the
cumulative number of mistakes over the entire graph.

Given {(m1, y1), (m2, y2), . . . , (mt, yt)}, 1 ≤ t ≤ T , where
mt ∈ Rd and yt ∈ {−1, 1}, online LLGC aims at solving the
following optimization problem:

wt+1 = argmin
w

1

2

t∑
i=1

(m⊤
i w − yi)

2 +
µ

2
∥w∥2. (6)

It is worth noting that the above problem is a Follow-the-
Regularized-Leader problem [26], which has been extensively
studied in the online learning community.

The optimal solution for wt+1 to Eq. (6) is

wt+1 = (

t∑
i=1

mim
⊤
i + µI)−1

t∑
i=1

miyi. (7)

We define A0 = µI, At = µI+
∑t

i=1 mim
⊤
i , b0 = 0, and

bt =
∑t

i=1 yimi, Then, we have:

wt+1 = A−1
t bt. (8)

The calculation A−1
t seems to be computationally expen-

sive. Fortunately, we do not need to calculate A−1
t explic-

itly. In fact, A−1
t can be incrementally calculated by the

Sherman-Morrisan Identity [14]. In addition, the above up-
date is performed in each iteration, which is not sufficiently
efficient for large graphs. To resolve this problem, inspired
by the mistake-driven algorithms such as Second-Order Per-
ceptron (SOP) [5], we let our online algorithm update the
model parameters (A, b and w) only when it incurs a mis-
take (ŷt ̸= yt). Note that this modification does not affect
the soundness of our algorithm, as will be seen in our the-
oretical analysis. Furthermore, our algorithm is different
from SOP either, because it does not use the current node
to update the weight vector (w) until the label of current
node is revealed. In summary, we show the proposed online
LLGC in Algorithm 1.



Algorithm 1 Online Learning with Local and Global Con-
sistency (OLLGC)

Input: Adjacency matrix S, rank d, regularization pa-
rameter µ
Output: wT

Compute L = D− S and M from L
Initialize: A0 = µI, b0 = 0, w1 = 0
for t = 1 to T do

Receive mt ∈ Rd and Predict ŷt = sign(w⊤
t mt)

Receive the correct label yt ∈ {±1}
if ŷt ̸= yt then

Update At = At−1 +mtm
⊤
t

Update bt = bt−1 + ytmt

Update wt+1 = A−1
t bt

else
At = At−1, bt = bt−1, wt+1 = wt

end if
end for

Note that in each iteration of our algorithm, whenever an
update is invoked, the time complexity is O(d2).

3.4 Theoretical Analysis
Now we will prove the regret bound of OLLGC. This

bound shows that, for any ordering of nodes on a graph, our
algorithm cannot perform much worse than the best pre-
dictor learned in hindsight. The proof technique is adapted
from potential-based gradient descent [9] (a.k.a., mirror de-
scent [26]), as well as SOP [5].
First, we define the regret of OLLGC as follows:

RT =

T∑
t=1

ℓt(wt)−
T∑

t=1

ℓt(u), (9)

where ℓt(wt) =
1
2
(w⊤

t mt−yt)
2 and ℓt(u) =

1
2
(u⊤mt−yt)

2.

For the ease of proof, we define a setM = {t : sign(w⊤
t−1xt) ̸=

yt}, which is the set of round indices for which an algorithm
makes a mistake. We rewrite Eq. (6) as a potential-based
gradient descent problem:

wt+1 = argmin
w

1

2
(m⊤

t w − yt)
2 +Dϕt−1(w,wt), (10)

where Dϕt−1(w,wt) is the Bregman divergence [4], defined
as follows:

Dϕt−1(w,wt) = ϕt−1(w)−ϕt−1(wt)−⟨∇ϕt−1(wt),w−wt⟩,
(11)

and ϕt is a potential function, defined as follows:

ϕt(w) =
1

2
w⊤Atw −w⊤bt +

1

2

t∑
i=1

y2
i . (12)

It is easy to verify that the optimization problems in Eqs. (6)
and (10) are equivalent. Moreover, we have ∇ϕt(wt+1) = 0,
and ℓt(u) = ϕt(u) − ϕt−1(u). Since we incorporated the
mistake-driven update strategy into OLLGC, At is actually
defined as At =

∑t
i=1 mim

⊤
i I[i ∈M].

We begin with three technical lemmas, which facilitate the
proofs of the main theoretical result of OLLGC. The first
lemma is a property of potential-based gradient descent.

Lemma 1 For any u, we have

T∑
t=1

(ℓt(wt)− ℓt(u)) ≤ Dϕ0(u,w1) +
T∑

t=1

Dϕt(wt,wt+1). (13)

The second lemma is an upper bound of
∑

t∈M m⊤
t A

−1
t mt.

Similar lemma has been proved in [5] [9].

Lemma 2 Assume that ∥mt∥2 ≤ B for all t, then for Al-
gorithm 1, we have∑
t∈M

m⊤
t A

−1
t mt ≤

d∑
i=1

log

(
1 +

λi

µ

)
≤ d log

(
1 +
|M|B
dµ

)
, (14)

where λi, i = 1, . . . , d are the eigenvalues of
∑T

t=1 mtm
⊤
t I[i ∈

M].

The third lemma relates the norm ∥u∥2 with the struc-
tural property of a graph.

Lemma 3 Suppose G is a connected graph, for any u =
Mα, fi ∈ {−1, 1}, i = 1, . . . , n and ∥α∥2 ≤ C, we have

∥u∥2 = f⊤Lf = 2Φ(f), (15)

where Φ(f) is the cut size corresponding to the class assign-
ment of f .

Theorem 4 (Regret Bound) Let S = {(m1, y1), . . . , (mT , yT )} ∈
(Rd × {±1})T . Then for any u ∈ Rd such that (uTmt −
yt)

2 ≤ γ, f ∈ {−1, 1}T , and ∥α∥2 ≤ C, we have

RT ≤ µΦ(f) + γ

d∑
i=1

log

(
1 +

λi

µ

)
(16)

Proof. Using Lemma 1, we have

RT ≤ Dϕ0(u,w1) +

T∑
t=1

Dϕt(wt,wt+1)

=
µ

2
∥u∥2 +

T∑
t=1

Dϕ∗
t
(∇ϕt(wt+1),∇ϕt(wt)), (17)

where ϕ∗(·) is the Fenchel conjugate function [3] of ϕ(w),
and here we used a very useful property of Bregman diver-
gence [9]. Since ℓt(wt) = (w⊤

t mt−yt)mt, and Dϕ∗
t
(u,w) =

(u−w)⊤A−1
t (u−w), we have

Dϕ∗
t
(0,∇ℓt(wt)) = (w⊤

t mt − yt)
2m⊤

t A
−1
t mt

≤ γm⊤
t A

−1
t mt. (18)

Using Lemmas 2 and 3 completes the proof.

In fact, we can also bound the number of mistakes made
by Algorithm 1 for any ordering of nodes on a graph.

Corollary 5 (Mistake Bound) Let S = {(m1, y1), . . . ,
(mT , yT )} ∈ (Rd × {±1})T . Then for any u ∈ Rd such that
(uTmt − yt)

2 ≤ γ, we have

|M| ≤ min
f

1

2
∥f − y∥2 + µ

2
f⊤Lf + γd log

(
1 +

TB

dµ

)
(19)

This bound is very interesting, because it directly implies
that the better the off-line LLGC works on a graph, the
smaller the number of mistakes made by OLLGC. This is
consistent with our intuition.



4. SELECTIVE SAMPLING WITH LOCAL
AND GLOBAL CONSISTENCY

In this section, we will present a selective sampling algo-
rithm based on OLLGC proposed in previous section. First
of all, we formally give the definition of selective sampling
on graphs.

4.1 Problem Definition
Selective sampling is a modification of the online learn-

ing protocol for binary classification. At each round t, the
learner receives a node mt ∈ Rd, and outputs a binary pre-
diction ŷt ∈ {−1, 1}. After each prediction, the learner may
observe the true label yt only by querying for it. Hence, if
no query is issued at time t, then yt remains unknown. Since
the learner’s performance is deemed to improve as more la-
bels are observed, the goal of selective sampling is to trade
off predictive performance and the number of queries.

4.2 Algorithm
In our paper, following [6], we assume that Pr(Yt = 1|mt) =

1+u⊤mt
2

for some u ∈ Rd. Hence E[Yt|mt] = u⊤mt. Here
u is the Bayes classifier of unknown norm ∥u∥ which satis-
fies |u⊤mt| ≤ 1 for all t. We also define ∆t = u⊤mt. We

further define ∆̂t = w⊤
t mt, which is an estimator of ∆t.

Our algorithm is motivated by the Bound on Bias Query
(BBQ) algorithm [6] [24]. We introduce the following rele-
vant quantities,

Bt = u⊤(I+mtm
⊤
t )A

−1
t mt

rt = m⊤
t A

−1
t mt. (20)

where Bt is the bias of the estimator for the margin ∆̂t, and
rt is a bound on the variance.
Different from BBQ algorithm, the learner in our algo-

rithm does not necessarily update the model whenever it
queries the label. Instead, it updates the model when it
queries the label and a mistake is detected. This makes
SSLGC computationally more efficient, without significantly
affecting the theoretical properties. In summary, we show
the selective sampling with local and global consistency in
Algorithm 2.
Intuitively speaking, our algorithm issues a query when a

common upper bound on the bias and variance of the cur-
rent estimate of ∆̂t is larger than a given threshold vanishing
as t−κ, where 0 ≤ κ ≤ 1 is an input parameter. When this
upper bound on bias and variance gets small, we infer by a
simple large deviation argument that the margin of OLLGC
on the current example is close enough to the margin of the
Bayes optimal classifier. Hence the learner can safely avoid
issuing a query in that round. In each iteration of the algo-
rithm, whenever an update is invoked, the time complexity
is O(d2).

4.3 Theoretical Analysis
We define the regret of our selective sampling algorithm

as follows:

RT =

T∑
t=1

(
Pr(Yt∆̂t < 0)− Pr(Yt∆t < 0)

)
, (21)

uniformly over the number T of prediction rounds. Follow-
ing previous papers [6] [24], our bound can depend on the

Algorithm 2 Selective Sampling with Local and Global
Consistency (SSLGC)

Input: Adjacency matrix S, rank d, regularization pa-
rameter µ, and κ.
Output: wT

Compute L = D− S and M from L
Initialize: A0 = µI, b0 = 0, w1 = 0
for t = 1 to T do

Receive mt ∈ Rd and Predict ŷt = sign(w⊤
t mt)

if rt > t−κ then
Query the correct label yt ∈ {±1}
if ŷt ̸= yt then

Update At = At−1 +mtm
⊤
t

Update bt = bt−1 + ytmt

Update wt+1 = A−1
t bt

else
At = At−1, bt = bt−1, wt+1 = wt

end if
else

At = At−1, bt = bt−1, wt+1 = wt

end if
end for

number of rounds where the label Yt are close to being ran-
dom. According to our model, this is captured by ϵTϵ where
Tϵ = |{1 ≤ t ≤ T : |∆t| < ϵ}|.

Our main theoretical result provides bounds on the cumu-
lative regret and the number of queried labels (label com-
plexity) for Algorithm 2. We begin with a technical lemma.

Lemma 6 For all ϵ > 0, we have

T∑
t=1

Pr(|∆̂t −∆t| ≥ ϵ)

≤ ⌈ 1
κ
⌉!
(
2(

8

ϵ2
)

1
k + e(

4(B∥u∥2 + ϵ)

ϵ2
)

1
k

)
+

(
16

eϵ2
+

4(B∥u∥2 + ϵ)

ϵ2

)
d ln

(
1 +

NT

µd

)
(22)

where NT is the total number of queries issued in the first T
rounds.

Theorem 7 If Algorithm 2 is running with input κ ∈ [0, 1],
then for any ordering of T nodes on a graph, f ∈ {−1, 1}T ,
and ∥α∥2 ≤ C, the cumulative regret satisfies

RT ≤ min
0<ϵ<1

{ϵTϵ + ⌈
1

κ
⌉!
(
2(

8

ϵ2
)

1
k + e(

4(2BΦ(f) + ϵ)

ϵ2
)

1
k

)
+

(
16

eϵ2
+

4(2BΦ(f) + ϵ)

ϵ2

)
d ln

(
1 +

NT

µd

)
} (23)

Moreover, the number of queried nodes is upper bounded as

NT ≤ Tκd ln
(
1 + NT

µd

)
.

Proof. We have

Pr(Yt∆̂t < 0)− Pr(Yt∆t < 0)

≤ ϵ{|∆t| < ϵ}+ Pr(∆̂t∆t ≤ 0, |∆t| ≥ ϵ)

≤ ϵ{|∆t| < ϵ}+ Pr(|∆̂t −∆t| ≥ ϵ) (24)



Hence the cumulative regret can be bounded as follows:

RT ≤ ϵTϵ +
T∑

t=1

Pr(|∆̂t −∆t| ≥ ϵ) (25)

Using Lemmas 6 and 3 completes the proof of the regret
bound. Finally, in order to derive a bound on the number
of queried labels (label complexity), we have

NT ≤
∑

t:rt>t−κ

rt
t−κ
≤ Tκ

∑
t:rt>t−κ

rt ≤ Tκd ln

(
1 +

NT

µd

)
(26)

Note that the label complexity is O(dTκ log(T )), which is
smaller than O(T ) when κ is sufficiently small. Roughly
speaking, the larger the value of κ, the more nodes the
learner will query. One may argue that our regret bound
depends on d, which is not desirable. However, rather than
the case of vector-based selective sampling, where d could
be larger than T , d is smaller than T (or n) in our case. It is
worth noting that if we choose d = T , the label complexity
becomes O(Tκ+1 log(T )), which implies that the learner will
query all the nodes. This indicates that in order to make
selective sampling really work, we need to choose d < T . In
this sense, low-rank approximation of L† is preferred. On
the other hand, since the regret bound is decreasing with
κ, a larger value of κ is preferable for superior prediction
performance. In other words, it needs to query more nodes
to obtain better performance. Therefore, there is a trade-off
between label complexity and prediction performance.

5. LOW-RANK APPROXIMATION
Finding the M given a graph kernel L† is not difficult. In

fact, M can be calculated directly from L. Recall that the
eigen decomposition of L is L =

∑n
i=2 σiviv

⊤
i with vi ∈ Rn,

we could choose M as follows

M = diag(
1√
σ2

, . . . ,
1√
σn

)[v2, . . . ,vn]
⊤. (27)

In this way, L† is reconstructed exactly, but the time com-
plexity of our algorithms becomes O(n2), which is compu-
tationally expensive for large graphs.
In this paper, in order to make our algorithms as well as

existing online learning algorithms scalable to large graphs,
we propose to choose M as follows

M̂ = diag(
1√
σ2

, . . . ,
1√
σd

)[v2, . . . ,vd]
⊤, (28)

where d ≪ n. Thus, L† is approximated by a low-rank
matrix M̂⊤M̂ with rank d. And the time complexity of our
online algorithms is O(d2) ≪ O(n2). In the sequel, we will
analyze the impact of such low-rank approximation on our
algorithms. Denote L̂ =

∑d
i=2 σiviv

⊤
i and L̂† = M̂⊤M̂ =∑d

i=2
1
σi
viv

⊤
i . According to Eckart-Young-Mirsky theorem

[14], L̂ is the best rank-d approximation of L, while L̂† is
the best rank-d approximation of L†.
Due to space limit, we only analyze the impact of low-

rank approximation on OLLGC. The analysis for SSLGC is
similar and therefore omitted. By taking a close look at the
regret bound of OLLGC in Theorem 5, we can see that there
are two terms depending on M (or L† or L). One is σ2(L),

the other is
∑d

i=1 log
(
1 + λi

µ

)
.

First, note that σ2(L) is the second smallest eigenvalue
of L. Based on the above definitions, the second smallest
eigenvalue of L̂ is the same as that of L provided that d ≥
2. Hence, low-rank approximation does not introduce any
approximation error in σ2(L) as long as d ≥ 2.

Second, if we choose the exact M as in Eq. (27), then d =

n, and λi, i = 1 . . . , n are the eigenvalues of
∑T

t=1 mtm
⊤
t I[i ∈

M]. Let us consider the simple case whereM = {1, 2, . . . , T}.
In this case, λi, i = 1 . . . , n are the eigenvalues of

∑T
t=1 mtm

⊤
t .

Based on some linear algebra manipulations, it is easy to
show that λi, i = 1 . . . , n are also the eigenvalues of

∑n
i=2

1
σi
viv

⊤
i ,

i.e., λi = 1
σi

for i = 2, . . . , n. If we choose the approx-

imate M̂ as in Eq. (28), and suppose the eigenvalues of∑T
t=1 m̂tm̂

⊤
t are λ̂i, i = 1, . . . , d. Again, we can show that

λ̂i, i = 1, . . . , d are actually the top d largest eigenvalues of∑d
i=2

1
σi
viv

⊤
i , i.e., λi = 1

σi
for i = 2, . . . , d. This implies

that, under the condition that σi are sufficiently large for
i > d, the approximate M̂ provides a good approximation

for
∑d

i=1 log
(
1 + λi

µ

)
. For the general case ofM, the argu-

ment is similar but more involved.
The above arguments justify the validity of low-rank ap-

proximation for graph kernels.

6. EXPERIMENTAL RESULTS
In this section, we empirically evaluate the effectiveness of

the proposed algorithms. All the experiments are performed
on a PC with Intel Core i5 3.20G CPU and 48GB RAM
and all algorithms in our experiments are implemented in
Matlab.

6.1 Data Sets
We used four real-world graph data sets to evaluate the

online learning and selective sampling algorithms.
Coauthor2 is an undirected co-author graph data set ex-
tracted from the DBLP database in four areas: machine
learning, data mining, information retrieval and databases.
It contains a total of 1711 authors, each of which is repre-
sented by a node. The edge between each pair of authors
is weighted by the number of papers they have co-authored.
Each class contains about 400 authors.
Cora3 contains 2708 scientific publications classified into
one of seven classes: Case Based, Genetic Algorithms, Neu-
ral Networks, Probabilistic Methods, Reinforcement Learn-
ing, Rule Learning and Theory. The citation graph contains
5429 links.
IMDB4 is an international organization whose objective is
to provide useful and up-to-date movie information. We cre-
ate a graph based on the co-actor relationship among 17046
movies from four genres: “Romance”, “Action”, “Animation”
and “Thriller”. Each genre is considered as a class.
PubMed5 contains 19717 scientific publications from the
PubMed database pertaining to diabetes classified into one
of three classes. The citation network consists of 44338 links.

Some graphs in the above data sets are directed, and we
simply use S ← max(S,S⊤) to transform them into undi-
rected graphs. Table 1 summarizes the characteristics of the
data sets introduced above.

3http://www.cs.umd.edu/∼sen/lbc-proj/data/cora.tgz
4http://www.imdb.com/
5http://www.cs.umd.edu/projects/linqs/projects/lbc/Pubmed-
Diabetes.tgz



Table 1: Description of the data sets
Datasets #nodes #links #classes
Coauthor 1,711 7.507 4
Cora 2,485 10,138 7
IMDB 17,046 993,528 4
PubMed 19,717 88,651 3

6.2 Evaluation Measures
We evaluated the performance of online learning and selec-

tive sampling with the use of three measures: (i) cumulative
error rate, which reflects the prediction performance of on-
line learning algorithms; (ii) number of queried labels, which
reflects the label efficiency of an algorithm; and (iii) cumu-
lative computational time, which measures the efficiency of
online learning. Note that the smaller the above measures,
the better the performance of an online learning algorithm.

6.3 Baselines and Parameter Settings
We compare the proposed algorithms with the Graph Per-

ceptron Algorithm (GPA) [18]. The algorithms we studied
and their parameter settings are summarized as follows.
Graph Perceptron Algorithm (GPA) [18]: This is

the state-of-the-art first-order online learning algorithm on
graphs. There is no required parameter for this algorithm.
Note that the Perceptron algorithm is not affected by the
step-size.
Online Learning with Local and Global Consis-

tency (OLLGC): This is the proposed second-order online
learning algorithm on graphs. The parameter µ is tuned by
searching the grid {10−3, 10−2, . . . , 10} on a held-out ran-
dom shuffle.
Selective Sampling with Local and Global Consis-

tency (SSLGC): This is the proposed selective sampling
algorithm on graphs. The parameter µ is tuned according to
the grid {10−3, 10−2, . . . , 10} on a held-out random shuffle.
In our experiments, we fix κ = 0.4 for all the data sets. We
also study the impact of κ by setting it to {0.1, 0.2, . . . , 1}.
In order to compare these algorithms fairly, we randomly

shuffle the ordering of nodes for each dataset. We repeat
each experiment 20 times and calculate the average results.
The above algorithms are naturally designed for binary

classification, while the data sets have more than two classes.
In order to apply the algorithms to those data sets, we use
one-vs-rest scheme, which is a standard technique for adapt-
ing binary classifiers to the multi-class scenario.

6.4 Study on Low-rank Approximation
We first study the impact of low-rank approximation on

the performance of online learning algorithms. We try dif-
ferent ranks for approximation, and run all the algorithms.
Because of the space limit, we used the Cora data set as a
case study, because similar observations are obtained for the
other data sets. Specifically, we changed the rank of the ap-
proximation using the grid {10, 50, 100, 250, 500, 750, 1000}.
The results are shown in Figure 1.
It is evident that the higher the rank, the better the pre-

diction performance because of a lower error rate. However,
higher rank incurs higher computational cost, especially for
second-order algorithms (OLLGC and SSLGC), because the
time complexity of second-order algorithms is O(d2), where
d is the rank. It implies that we need to obtain a trade-off
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Figure 1: A case study of the impact of rank on the
prediction performance (a) and time cost (b) in the
Cora dataset.

between the predictive performance and the computational
cost. Therefore, in the rest of our experiments, we chose
d = 100, because the corresponding performance is good
while the computational time is short. In fact, under differ-
ent values of d, our algorithms are always better than GPA.
Therefore, choosing d = 100 does not affect the fairness of
the comparison in the rest of our experiments.

6.5 Results of Online Learning and Selective
Sampling

The experimental results are shown in Table 2. For each
data set, we executed paired t-tests of the error rate between
the proposed algorithms and GPA at a 95% confidence in-
terval. We found that the improvements of our algorithms
over GPA are always significant. We also show the results
with respect to the round of online learning in Figure 2.
In all subfigures, the horizontal-axis represents the rounds
of online learning, while the vertical-axis is the cumulative
number of mistakes, queried nodes or cumulative time, av-
eraged over 20 runs. Because of space limitations, we only
show results on the IMDB and PubMed datasets.

We can see that OLLGC outperforms GPA significantly
on every data set. This is consistent with previous obser-
vations in vector-based online learning: second-order algo-
rithms are generally better than first-order algorithms [20].
However, OLLGC requires more time than GPA. The rea-
son is that the time complexity of GPA is O(d), while the
time complexity of OLLGC is O(d2). However, given the
significant performance improvement of OLLGC over GPA,
OLLGC is still very appealing.

SSLGC is better than GPA as well. Moreover, SSLGC
achieves comparable results to OLLGC. Intuitively, SSLGC
uses fewer labeled nodes than OLLGC, so that its perfor-
mance should be no better than OLLGC. However, we can
see that on PubMed dataset, SSLGC is even better than
OLLGC. The reason is that the class distribution of PubMed
is unbalanced. And when the data are unbalanced, passively
querying the labels may be harmful, because the weight vec-
tor of the learner tends to be over-updated to fit the data
from the majority class. That is why SSLGC could be better
than OLLGC on the PubMed dataset.

Furthermore, it can be seen that SSLGC queried substan-
tially fewer nodes while GPA and OLLGC queried every
node. Although SSLGC queried much fewer nodes than
OLLGC, their performances are comparable. This indicates
that SSLGC is more label-efficient. Another advantage of
label-efficiency is that SSLGC costs less time than OLLGC.
The reason is obvious: once a node is queried, the model will



Table 2: A comparison of online learning and selective sampling algorithms on graphs in the four data sets.
The smaller the value of the measure, the better the performance.

Algorithm
Coauthor Cora

Error rate #Queried nodes Time (s) Error rate #Queried nodes Time (s)
GPA 0.2326±0.0048 1711 0.0104±0.0012 0.1169±0.0022 2485 0.0135±0.0009

OLLGC 0.1838±0.0032 1711 0.1273±0.0087 0.0758±0.0013 2485 0.0929±0.0035
SSLGC 0.1854±0.0031 1275.30±21.91 0.1215±0.0181 0.0832±0.0019 1525.48±19.32 0.0821±0.0061

Algorithm
IMDB PubMed

Error rate #Queried nodes Time (s) Error rate #Queried nodes Time (s)
GPA 0.3362±0.0025 17046 0.1228±0.0048 0.2256±0.0025 19717 0.1363±0.0128

OLLGC 0.2735±0.0038 17046 1.7451±0.1141 0.1804±0.0014 19717 1.4813±0.1104
SSLGC 0.2709±0.0064 3453.55±91.32 0.6072±0.0153 0.1720±0.0050 5298.55±186.91 0.7646±0.0197
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Figure 2: Cumulative error rate (first row), cumu-
lative number of queried nodes (second row) and
cumulative time (third row) with respect to the on-
line learning rounds on IMDB (first column); and
PubMed (second column) datasets. The lower the
curve, the better the performance.

be updated as long as a mistake is incurred. Since SSLGC
queried fewer nodes, it has lower chance than OLLGC to
update the model, which turns out to be computationally
more efficient.

6.6 Study on the Impact of κ

Now we will study the impact of κ in our selective sam-
pling algorithm. We will also compare it with random sam-

pling. Generally speaking, the smaller the value of κ, the
fewer the number of queried nodes. Specifically, we set κ
to {0.1, 0.2, . . . , 1}, and run SSLGC 20 times under each κ.
We calculate the average ratio of queried nodes for different
values of κ. Then, we test random sampling which is built
on GPA. Rather than querying every node, the random sam-
pling will query a node with probability 0 < p < 1. In other
words, for each node, the learner draw a value from a stan-
dard uniform distribution U(0, 1). If the value is smaller
than p, it queries the label. Otherwise, it does not. For fair
comparison, we set p equal to the ratio of queried nodes in
SSLGC. The comparison is shown in Figure 3.

We can observe that SSLGC is better than random sam-
pling consistently under different ratio of queried nodes.
This strengthens the advantage of SSLGC over random sam-
pling. This is also why selective sampling is demanded for
label effectiveness. It will actively query those nodes whose
labels are uncertain. In contrast, random sampling just pas-
sively queries the nodes, without considering the informa-
tiveness of each node.

7. CONCLUSIONS
In this paper, we presented an online version of the well-

known Learning with Local and Global Consistency method
(OLLGC), and proved its regret bound in terms of the struc-
tural properties of a graph. Based on OLLGC, we pre-
sented Selective Sampling with Local and Global Consis-
tency (SSLGC). We also derived a bound on the label com-
plexity of SSLGC. Experiments show that OLLGC outper-
forms the state-of-the-art first-order algorithm substantially,
and the selective sampling algorithm outperforms random
sampling overwhelmingly given the same number of queried
labels.

Note that in this paper, we studied transductive online
learning and selective sampling on graphs. In our future
work, we will study inductive online learning and selective
sampling on graphs.
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Figure 3: A comparison between selective sampling and random sampling with respect to different ratios of
queried nodes on (a) Coauthor; (b) Cora; (c) IMDB; and (d) PubMed data sets. The lower the curve, the
better the performance.
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