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ABSTRACT
Co-clustering is based on the duality between data points
(e.g. documents) and features (e.g. words), i.e. data points
can be grouped based on their distribution on features, while
features can be grouped based on their distribution on the
data points. In the past decade, several co-clustering algo-
rithms have been proposed and shown to be superior to tra-
ditional one-side clustering. However, existing co-clustering
algorithms fail to consider the geometric structure in the
data, which is essential for clustering data on manifold.
To address this problem, in this paper, we propose a Dual
Regularized Co-Clustering (DRCC) method based on semi-
nonnegative matrix tri-factorization. We deem that not only
the data points, but also the features are sampled from some
manifolds, namely data manifold and feature manifold re-
spectively. As a result, we construct two graphs, i.e. data
graph and feature graph, to explore the geometric struc-
ture of data manifold and feature manifold. Then our co-
clustering method is formulated as semi-nonnegative matrix
tri-factorization with two graph regularizers, requiring that
the cluster labels of data points are smooth with respect to
the data manifold, while the cluster labels of features are
smooth with respect to the feature manifold. We will show
that DRCC can be solved via alternating minimization, and
its convergence is theoretically guaranteed. Experiments of
clustering on many benchmark data sets demonstrate that
the proposed method outperforms many state of the art clus-
tering methods.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.5.3 [Pattern
Recognition]: Clustering

General Terms
Algorithms, Experimentations
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1. INTRODUCTION
Clustering is one of the most fundamental topics in un-

supervised machine learning and has been widely applied in
data mining, computer vision, biology and so on. From a
traditional view, clustering aims to divide the unlabeled data
set into groups of similar data points. From a geometrical
view, a data set can be seen as a set of discrete samplings on
continuous manifold, and clustering aims at finding intrinsic
structures of the manifold.

Many clustering methods have been proposed up to now,
e.g. Kmeans [1], spectral clustering [21] [18] [15] and Non-
negative Matrix Factorization (NMF) [13] [23]. It is worth
noting there is close connection between Kmeans, spectral
clustering and NMF [24] [7] [10] [14].

However, the methods mentioned above focus on one-side
clustering, i.e. clustering the data side based on the similari-
ties along the feature side. Motivated by the duality between
data points (e.g. documents) and features (e.g. words),
i.e. data points can be grouped based on their distribution
on features, while features can be grouped based on their
distribution on the data points, several co-clustering algo-
rithms have been proposed in the past decade and shown to
be superior to traditional one-side clustering. For instance,
[6] proposed a bipartite spectral graph partition approach
to co-cluster words and documents. However, it requires
that each document cluster is associated with a word clus-
ter, which is a very tough restriction. [8] proposed an infor-
mation theoretic co-clustering algorithm, which can be seen
as the extension of information bottleneck method [20] to
two-side clustering. [11] proposed an orthogonal nonnega-
tive matrix tri-factorization (ONMTF) to co-cluster words
and documents, which owns an elegant mathematical form
and encouraging performance.

Recent studies show that many real world data are ac-
tually sampled from a nonlinear low dimensional manifold
which is embedded in the high dimensional ambient space
[17] [16]. Yet existing co-clustering algorithms [6] [8] [11]
fail to consider the geometric structure in the data which
is essential for clustering data on manifold. This greatly
limits the application of co-clustering for the data lying on
manifold.

To address this problem, in this paper, we propose a Dual
Regularized Co-Clustering (DRCC) method based on semi-



nonnegative matrix tri-factorization, which inherits the ad-
vantages of ONMTF [11]. We deem that not only the data
points but also the features are discrete samplings from some
manifolds, namely data manifold and feature manifold re-
spectively. Thus, we construct two graphs, i.e. data graph
and feature graph, to explore the geometric structure of data
manifold as well as feature manifold. We require that the
cluster labels of data points are smooth with respect to the
intrinsic data manifold, while the cluster labels of features
are smooth with respect to the intrinsic feature manifold.
This is achieved by graph regularization. Then DRCC is for-
mulated as semi-nonnegative matrix tri-factorization with
two graph regularizers. As a result, DRCC takes into ac-
count the geometric information of the data points and fea-
tures, and is suitable for clustering data on manifold. We
will show that DRCC can be optimized by iterative mul-
tiplicative updating algorithm and its convergence is the-
oretically guaranteed. Experiments of clustering on many
benchmark data sets demonstrate that the proposed method
outperforms many state of the art clustering methods.

The remainder of this paper is organized as follows. In
Section 2 we will propose dual regularized co-clustering (DRCC)
method, along with the optimization algorithm, followed
with the proof of the convergence of the algorithm. In Sec-
tion 3, we discuss several related works. The experiments
on benchmark data sets are demonstrated in Section 4. Fi-
nally, we draw a conclusion and point out the future work
in Section 5.

2. DUAL REGULARIZED CO-CLUSTERING
In this section, we first briefly introduce the formulation

of co-clustering, and some notations frequently used in this
paper. Then we present the graph regularization on both
the data side and the feature side, followed which we present
the dual regularized co-clustering (DRCC) method and its
optimization algorithm. Finally, we prove the convergence
of the algorithm.

2.1 Problem Formulation & Notations
In the setting of co-clustering, we are given a data set

X = {x·1, . . . ,x·n} ∈ Rd. The goal is to group the data
points {x·1, . . . ,x·n} into c clusters {Cj}c

j=1, while group
the features {x1·, . . . ,xd·} into m clusters {Wj}m

j=1.
We use a partition matrix F ∈ {0, 1}n×c to represent the

clustering result of data points, such that Fij = 1 if x·i be-
longs to cluster Cj and Fij = 0 otherwise. This is also known
as hard clustering, i.e. the cluster assignment is binary. Sim-
ilarly, we use another partition matrix G ∈ {0, 1}d×m to
represent the clustering result of features.

For convenience, we present in Table 1 the important no-
tations used in the rest of this paper.

2.2 Graph Regularization
As we have mentioned above, recent researches show that

many real world data distribute on low-dimensional mani-
fold embedded in the high-dimensional ambient space [17]
[16]. However, existing co-clustering algorithms [6] [8] [11]
fail to consider the geometric structure which is essential for
clustering data on manifold. A natural treatment for the
data sampled from a manifold is to construct a graph to dis-
cretely approximate the manifold, whose vertices correspond
to the data samples, while the edge weight represents the
affinity between the data points. One common assumption

Table 1: Important notations used in this paper.
Notation Description

n number of data points
d number of features
c number of data clusters
m number of feature clusters
X data set
X data matrix of size d× n
xi· ith row of X
x·i ith column of X
N (·) k-nearest neighborhood
F data partition matrix of size n× c
fi· ith row of F
f·i ith column of F
G feature partition matrix of size d×m
gi· ith row of G
g·i ith column of G
GF data graph
GG feature graph
WF data affinity matrix of size n× n
WG feature affinity matrix of size d× d
DF data degree matrix of size n× n
DG feature degree matrix of size d× d
LF data graph Laplacian of size n× n
LG feature graph Laplacian of size d× d

about the affinity between data points is Cluster Assump-
tion [4], which says if two samples are close to each other in
the input space, then their labels (or embeddings) are also
close to each other. This assumption has been widely used
in spectral clustering [21] [18] [15], dimensionality reduction
[16] [12] and semi-supervised learning [4] [25]. Furthermore,
we deem that not only the data points are sampled from
a manifold, namely data manifold, but also from the dual
view, the features are discrete samplings from another mani-
fold, namely feature manifold. As a result, we construct two
graphs, i.e. data graph and feature graph, to explore the
geometric structure of data manifold and feature manifold.
In the following, we will introduce the construction of data
graph and feature graph respectively.

2.2.1 Data Graph
We construct a data graph GF whose vertices correspond

to {x·1, . . . ,x·n}. According to Cluster Assumption, if data
points x·i and x·j are close to each other, then their cluster
labels fi· and fj· should be close as well. This is formulated
as follows,

1

2

∑
ij

||fi· − fj·||2W F
ij (1)

where W F
ij is the affinity measuring how close fi· and fj· will

be.
For simplicity, we define the data affinity matrix WF as

follows,

W F
ij =

{
1, if x·j ∈ N (x·i) or x·i ∈ N (x·j)
0, otherwise.

(2)

where N (x·i) denotes the k-nearest neighbor of x·i. It has
the advantage that there is no parameter to be tuned except
the neighborhood size, i.e. k. Other kinds of affinity can also
be adopted, e.g. heat kernel [12].



Eq.(1) can be further rewritten as

1

2

∑
i,j

||fi· − fj·||2W F
ij

=
∑
i,j

fi·W
F
ij f

T
i· −

∑
i,j

fi·W
F
ij f

T
j·

=
∑

i

fi·D
F
ii f

T
i· −

∑
i,j

fi·W
F
ij f

T
j·

= tr(FT (DF −WF )F)

= tr(FT LF F) (3)

where DF
ii =

∑
j W F

ij is the diagonal degree matrix, and

LF = DF − WF is the graph Laplacian [5] of the data
graph GF . Eq.(3) reflects the label smoothness of the data
points. The smoother the data labels are with respect to
the underlying data manifold, the smaller the value of the
data graph regularization in Eq.(3) will be.

2.2.2 Feature Graph
Similar with the construction of the data graph GF , we

construct a feature graph GG whose vertices correspond to
{x1·, . . . ,xd·}. According to Cluster Assumption again, if
features xi· and xj· are near, then their cluster labels gi·
and gj· should be near as well. This is formulated as follows

1

2

∑
ij

||gi· − gj·||2W G
ij (4)

where W G
ij is the affinity measuring how close gi· and gj·

will be.
For simplicity, we also define the feature affinity matrix

WG as follows,

W G
ij =

{
1, if xj· ∈ N (xi·) or xi· ∈ N (xj·)
0, otherwise.

(5)

where N (xi·) denotes the k-nearest neighbor of xi·.
Eq.(4) can be further rewritten as

1

2

∑
i,j

||gi· − gj·||2W G
ij

= tr(GT (DG −WG)G)

= tr(GT LGG) (6)

where DG
ii =

∑
j W G

ij is the degree matrix, and LG = DG −
WG is the graph Laplacian of the feature graph GG. Eq.(6)
reflects the label smoothness of the features. The smoother
the feature labels are with respect to the underlying feature
manifold, the smaller the value of the feature graph regular-
ization in Eq.(6) will be.

2.3 Objective
Based on the two graph regularizers presented in Eq.(3)

and Eq.(6), we propose a new co-clustering method, mini-
mizing the following objective,

JDRCC = ||X−GSFT ||2F + λtr(FT LF F) + µtr(GT LGG)

(7)

where λ, µ ≥ 0 are regularization parameters balancing the
reconstruction error of co-clustering in the first term and
the label smoothness of the data points and features in the

second and third terms. Since there are two graph regu-
larizers in the objective, we call Eq.(7) Dual Regularized
Co-Clustering (DRCC). When letting λ = µ = 0, DRCC
degenerates to ordinary co-clustering method.

By its definition, the elements in F and G can only take
binary values, which makes the minimization in Eq.(7) very
difficult, therefore we relax F and G into continuous nonneg-
ative domain. Then DRCC in Eq.(7) turns out to minimize,

JDRCC = ||X−GSFT ||2F + λtr(FT LF F) + µtr(GT LGG)

s.t. G ≥ 0,F ≥ 0 (8)

where S is a matrix whose entries can take any signs. Note
that Eq.(8) is a Dual Regularized Semi-Nonnegative Matrix
Tri-Factorization (DRSNMTF). To make the objective in
Eq.(8) lower bounded, we use L2 normalization on columns
of F and G in the optimization, and compensate the norms
of F and G to S.

2.4 Optimization
In the following, we will give the solution to Eq.(8). As

we see, minimizing Eq.(8) is with respect to S,F and G,
and we cannot give a closed-form solution. We will present
an alternating scheme to optimize the objective. In other
words, we will optimize the objective with respect to one
variable while fixing the other variables. This procedure
repeats until convergence.

2.4.1 Computation of S

Optimizing Eq.(8) with respect to S is equivalent to opti-
mizing

J1 = ||X−GSFT ||2F (9)

Setting ∂J1
∂S

= 0 leads to the following updating formula

S = (GT G)−1GT XF(FT F)−1 (10)

2.4.2 Computation of F

Optimizing Eq.(8) with respect to F is equivalent to op-
timizing

J2 = ||X−GSFT ||2F + λtr(FT LF F)

s.t. F ≥ 0, (11)

For the constraint F ≥ 0, we cannot get a closed-form
solution of F. In the following, we will present an itera-
tive multiplicative updating solution. We introduce the La-
grangian multiplier α ∈ Rn×c, thus the Lagrangian function
is

L(F) = ||X−GSFT ||2F + λtr(FT LF F)− tr(αFT ) (12)

Setting ∂L(F)
∂F

= 0, we obtain

α = 2λLF F− 2A + 2FB (13)

where A = XT GS and B = ST GT GS.
Using the Karush-Kuhn-Tucker condition [2] αijFij = 0,

we get

[λLF F−A + FB]ijFij = 0 (14)

Introduce LF = L+
F −L−F , A = A+−A− and B = B+−B−

where A+
ij = (|Aij |+ Aij)/2 and A−

ij = (|Aij | −Aij)/2 [9],
we obtain

[λL+
F F− λL−F F−A+ + A− + FB+ − FB−]ijFij = 0 (15)



Eq.(15) leads to the following updating formula

Fij ← Fij

√
[λL−F F + A+ + FB−]ij

[λL+
F F + A− + FB+]ij

(16)

2.4.3 Computation of G

Optimizing Eq.(8) with respect to G is equivalent to op-
timizing

J3 = ||X−GSFT ||2F + µtr(GT LGG)

s.t. G ≥ 0, (17)

Similar with the computation of F, since G ≥ 0, we in-
troduce the Lagrangian multiplier β ∈ Rd×m, thus the La-
grangian function is

L(G) = ||X−GSFT ||2F + µtr(GT LGG)− tr(βGT ) (18)

Setting ∂L(G)
∂G

= 0, we obtain

β = 2µLGG− 2P + 2GQ (19)

where P = XFST and Q = SFT FST .
Using the Karush-Kuhn-Tucker complementarity condi-

tion [2] βijGij = 0, we get

[µLGG−P + GQ]ijGij = 0. (20)

Introduce LG = L+
G − L−G, P = P+ −P− and Q = Q+ −

Q−, we obtain

[µL+
GG−µL−GG−P++P−+GQ+−GQ−]ijGij = 0. (21)

Eq.(21) leads to the following updating formula

Gij ← Gij

√
[µL−GG + P+ + GQ−]ij

[µL+
GG + P− + GQ+]ij

(22)

In summary, we present the iterative multiplicative up-
dating algorithm of optimizing Eq.(8) in Algorithm 1.

Algorithm 1 Dual Regularized Co-Clustering

Input:X, the number of data clusters c, the number of
feature clusters m, regularization parameters λ, µ, maxi-
mum number of iterations T ;
Output:Partitions F ∈ Rn×c;
Initialize F and G using K-means;
while not convergent and t ≤ T do

Compute S = (GT G)−1GT XF(FT F)−1;

Update Fij ← Fij

√
[λL−

F
F+A++FB−]ij

[λL+
F

F+A−+FB+]ij
;

Update Gij ← Gij

√
[µL−

G
G+P++GQ−]ij

[µL+
G

G+P−+GQ+]ij
;

end while

2.5 Convergence Analysis
In this section, we will investigate the convergence of Al-

gorithm 1.
We use the auxiliary function approach [13] to prove the

convergence of the algorithm. Here we first introduce the
definition of auxiliary function [13].

Definition 2.1 [13] Z(h, h′) is an auxiliary function for
F (h) if the conditions

Z(h, h′) ≥ F (h), Z(h, h) = F (h),

are satisfied.

Lemma 2.2 [13] If Z is an auxiliary function for F , then
F is non-increasing under the update

h(t+1) = arg min
h

Z(h, h(t))

Proof. F (h(t+1)) ≤ Z(h(t+1), h(t)) ≤ Z(h(t), h(t)) = F (h(t))

Lemma 2.3 [9] For any nonnegative matrices A ∈ Rn×n,
B ∈ Rk×k, S ∈ Rn×k,S′ ∈ Rn×k, and A, B are symmetric,
then the following inequality holds

n∑
i=1

k∑
p=1

(AS′B)ipS
2
ip

S′ip
≥ tr(ST ASB)

In the following, we will present 4 theorems, which guar-
antee the convergence of Algorithm 1.

Theorem 2.4 Let

J(F) = tr(λFT LF F− 2AFT + FBFT ) (23)

Then the following function

Z(F,F′)

= λ
∑
ij

(L+
F F′)ijF

2
ij

F′ij
− λ

∑

ijk

(L−F )jkF
′
jiF

′
ki(1 + log

FjiFki

F′jiF
′
ki

)

− 2
∑
ij

A+
ijF

′
ij(1 + log

Fij

F′ij
) + 2

∑
ij

A−
ij

F2
ij + F′2ij
2F′ij

+
∑
ij

(F′B+)ijF
2
ij

F′ij
−

∑

ijk

B−
jkF

′
ijF

′
ik(1 + log

FijFik

F′ijF
′
ik

)

is an auxiliary function for J(F). Furthermore, it is a con-
vex function in F and its global minimum is

Fij = Fij

√
[λL−F F + A+ + FB−]ij

[λL+
F F + A− + FB+]ij

(24)

Proof. See Appendix A.

Theorem 2.5 Updating F using Eq.(16) will monotonically
decrease the value of the objective in Eq.(8), hence it con-
verges.

Proof. By Lemma 2.2 and Theorem 2.4, we can get that
J(F0) = Z(F0,F0) ≥ Z(F1,F0) ≥ J(F1) ≥ . . . So J(F) is
monotonically decreasing. Since J(F) is obviously bounded
below, we prove this theorem.

Theorem 2.6 Let

J(G) = tr(µGT LGG− 2GT P + GQGT ) (25)

Then the following function

Z(G,G′)

= µ
∑
ij

(L+
GG′)ijG

2
ij

G′
ij

− µ
∑

ijk

(L−G)jkG
′
jiG

′
ki(1 + log

GjiGki

G′
jiG

′
ki

)

− 2
∑
ij

P+
ijG

′
ij(1 + log

Gij

G′
ij

) + 2
∑
ij

P−ij
G2

ij + G′2
ij

2G′
ij

+
∑
ij

(G′Q+)ijG
2
ij

G′
ij

−
∑

ijk

Q−
jkG

′
ijG

′
ik(1 + log

GijGik

G′
ijG

′
ik

)



is an auxiliary function for J(G). Furthermore, it is a con-
vex function in G and its global minimum is

Gij = Gij

√
[µL−GG + P+ + GQ−]ij

[µL+
GG + P− + GQ+]ij

(26)

Proof. See Appendix B.

Theorem 2.7 Updating G using Eq.(22) will monotonically
decrease the value of the objective in Eq.(8), hence it con-
verges.

Proof. By Lemma 2.2 and Theorem 2.6, we can get
that J(G0) = Z(G0,G0) ≥ Z(G1,G0) ≥ J(G1) ≥ . . . So
J(G) is monotonically decreasing. Since J(G) is obviously
bounded below, we prove this theorem.

According to Theorem 2.5 and Theorem 2.7, Algorithm 1
is guaranteed to converge. Note that there is no guarantee
that Algorithm 1 will converge to global optimum.

3. RELATED WORKS
In this section, we will review several works related with

ours, and compare our method with them.
Given a nonnegative data matrix X = [x1, . . . ,xn] ∈

Rd×n
+ , NMF [13] aims to find two nonnegative matrices S ∈
Rd×c

+ and F ∈ Rn×c
+ which minimize the following objective

JNMF = ||X− SFT ||2F ,

s.t. S ≥ 0,F ≥ 0, (27)

Note that in Eq.(27) X is a nonnegative constant matrix.
This limits the application of NMF for general data with
mixed signs.

[9] proposed a Semi-NMF, which relaxes the nonnegative
constraint S ≥ 0 in Eq.(27) and hence is suitable for general
data. It minimizes the following objective

JSNMF = ||X− SFT ||2F ,

s.t. F ≥ 0, (28)

Note that in Eq.(28) X is a constant matrix whose entries
can take any signs.

The most related works with ours is [3] and [11].
In [3], the authors proposed a graph regularized NMF

(GNMF), which adds an additional graph regularizer on
NMF, imposing Cluster Assumption on the data points. It
minimizes the following objective

JGNMF = ||X− SFT ||2F + λtr(FT LF F),

s.t. S ≥ 0,F ≥ 0, (29)

Hence GNMF can take into account the geometric informa-
tion of the data.

In [11], the authors proposed an Orthogonal Nonnega-
tive Matrix Tri-Factorization (ONMTF) to co-cluster words
and documents, aiming to find three nonnegative matrices
G ∈ Rd×m, S ∈ Rm×c and F ∈ Rn×c which minimizes the
following objective

JONMTF = ||X−GSFT ||2F ,

s.t. G ≥ 0,S ≥ 0,F ≥ 0,

GT G = Im,FT F = Ic (30)

where Im ∈ Rm×m and Ic ∈ Rc×c are identity matrices.

DRCC not only considers the geometric structure in the
data points as in GNMF, but also takes into account the ge-
ometric information in the features. In addition, our method
relaxes the nonnegative constraint on S which is imposed in
GNMF and ONMTF. As a result, DRCC applies for general
data, while both GNMF and ONMTF are restricted to non-
negative data. Furthermore, the orthogonality constraints
on F and G which are imposed in ONMTF are omitted in
our method, since we use L2 normalization on columns of F
and G in the optimization, and compensate the norms of F
and G to S.

4. EXPERIMENTS
In this section, we will evaluate the performance of the

proposed method. We compare our method with Kmeans,
Normalized Cut (NCut) [18], NMF [13], Semi-NMF (SNMF)
[9], ONMTF [11] and GNMF [3]. In order to verify our
assumption that features also lie on a manifold, we test a
special case of the proposed method with µ = 0, denoted by
RCC, and compare it with DRCC.

4.1 Evaluation Metrics
To evaluate the clustering results, we adopt the perfor-

mance measures used in [3]. These performance measures
are the standard measures widely used for clustering.

Clustering Accuracy Clustering Accuracy discovers the
one-to-one relationship between clusters and classes and mea-
sures the extent to which each cluster contained data points
from the corresponding class. Clustering Accuracy is defined
as follows:

Acc =

∑n
i=1 δ(map(ri), li)

n
, (31)

where ri denotes the cluster label of xi, and li denotes the
true class label, n is the total number of documents, δ(x, y)
is the delta function that equals one if x = y and equals zero
otherwise, and map(ri) is the permutation mapping function
that maps each cluster label ri to the equivalent label from
the data set.

Normalized Mutual Information The second measure
is the Normalized Mutual Information (NMI), which is used
for determining the quality of clusters. Given a clustering
result, the NMI is estimated by

NMI =

∑c
i=1

∑c
j=1 ni,j log

ni,j

nin̂j√
(
∑c

i=1 ni log ni
n

)(
∑c

j=1 n̂j log
n̂j

n
)
, (32)

where ni denotes the number of data contained in the cluster
Ci(1 ≤ i ≤ c), n̂j is the number of data belonging to the
Lj(1 ≤ j ≤ c), and ni,j denotes the number of data that are
in the intersection between the cluster Ci and the class Lj .
The larger the NMI is, the better the clustering result will
be.

4.2 Data Sets
In our experiment, we use 6 data sets which are widely

used as benchmark data sets in clustering literature [3] [11].
Coil201 This data set contains 32× 32 gray scale images

of 20 3D objects viewed from varying angles. For each object
there are 72 images.

1http://www1.cs.columbia.edu/CAVE/software/softlib/coil-
20.php



PIE The CMU PIE face database [19] contains 68 indi-
viduals with 41368 face images as a whole. The face images
were captured by 13 synchronized cameras and 21 flashes,
under varying pose, illumination and expression. All the
images were also resized to 32× 32.

CSTR This is the data set of the abstracts of technical
reports published in the Department of Computer Science
at a university. The data set contained 476 abstracts, which
were divided into four research areas: Natural Language
Processing (NLP), Robotics/Vision, Systems and Theory.

Newsgroup4 The Newsgroup4 data set used in our ex-
periments is selected from the famous 20-newsgroups data
set2. The topic rec containing autos, motorcycles, baseball
and hockey was selected from the version 20news-18828. The
Newsgroup4 data set contains 3970 documents.

WebKB4 The WebKB dataset contains webpages gath-
ered from university computer science departments. There
are about 8280 documents and they are divided into 7 cat-
egories: student, faculty, staff, course, project, department
and other, among which student, faculty, course and project
are four most populous entity-representing categories.

WebACE The data set contains 2340 documents consist-
ing of news articles from Reuters new service via the Web in
October 1997. These documents are divided into 20 classes.

Table.2 summarizes the characteristics of the data sets
used in this experiment.

Table 2: Description of the data sets
Data Sets #samples #features #classes

Coil20 1440 1024 20
PIE 1428 1024 68

CSTR 476 1000 4
Newsgroup4 3970 1000 4

WebKB4 4199 1000 4
WebACE 2340 1000 20

4.3 Parameter Settings
Since each clustering algorithm has one or more param-

eters to be tuned, in order to compare these algorithms
fairly, we run these algorithms under different parameter
settings, and select the best average result to compare with
each other. We set the number of clusters equal to the true
number of classes for all the data sets and clustering algo-
rithms.

For NCut [18], the scale parameter of Gaussian kernel for
constructing adjacency matrix is set by the grid {10−3, 10−2,
10−1, 1, 10, 102, 103}.

For ONMTF, the number of word clusters is set to be
the same as the number of document clusters, i.e. the true
number of classes in our experiment, according to [11].

For GNMF, the neighborhood size to construct the graph
is set by searching the grid {1, 2, 3, . . . , 10} according to [3],
and the regularization parameter is set by the grid {0.1, 1, 10,
100, 500, 1000}.

For DRCC, the number of data clusters is set the same
as the number of feature clusters, i.e. the true number of
classes, as in ONMTF. And for simplicity, the neighborhood
size of the data graph is set to be the same as that of the
feature graph, i.e. k, which is tuned by searching the grid

2http://people.csail.mit.edu/jrennie/20Newsgroups/

{1, 2, 3, . . . , 10}. We also set λ = µ and λ is tuned by search-
ing the grid {0.1, 1, 10, 100, 500, 1000}. So the parameters of
DRCC is tuned roughly. Better parameter tuning would
achieve better clustering performance than that reported in
this paper.

The parameter setting of RCC is the same as DRCC, ex-
cept keeping µ = 0.

Note that no parameter selection is needed for Kmeans,
NMF and Semi-NMF, given the number of clusters.

Under each parameter setting of each method mentioned
above, we repeat clustering 20 times, and the average result
is computed. And we report the best average result for each
method.

4.4 Clustering Results
The best average results are shown in Table 3 and Table 4.

Table 3 shows the clustering accuracy of all the algorithms
on all the data sets, while Table 4 shows the normalized
mutual information.

We can see that DRCC outperforms the other clustering
methods on all the data sets. The superiority of DRCC
arises in the following two aspects: (1) co-clustering the fea-
tures and data points together, and the clustering of features
can lead to improvement in the clustering of data points; (2)
exploration of the geometric structure in the data points as
well as in the features, which is essential for clustering data
on manifold. In addition, DRCC outperforms RCC on all
the data sets except CSTR. This indicates considering the
geometric structure in the features can further improve the
clustering results at most cases, and verifies our assump-
tion that features also lie on a manifold. Besides, ONMTF
and GNMF usually achieve encouraging results, which fur-
ther strengthens the advantages of co-clustering features and
data points simultaneously, and considering the geometric
structure in the data. Note that DRCC owns all these ad-
vantages.

4.5 Study on the Neighborhood Size
In this subsection, we will investigate the sensitivity with

respect to the neighborhood size k. When we vary the value
of k, we keep the other parameters fixed at the optimal value.
We plot the clustering accuracy with respect to k in Figure
1.

As we can see, DRCC is a little sensitive to the neigh-
borhood size of the graph. Fortunately, it usually achieves
good result when the neighborhood size is large enough, e.g.
k = 10 in our experiments.

4.6 Study on the Regularization Parameter
Next, we will investigate the sensitivity with respect to

the regularization parameter λ (= µ). When we vary the
value of λ, we keep the other parameters fixed at the optimal
value. We plot the clustering accuracy with respect to λ in
Figure 2.

We can see that DRCC is very stable with respect to the
regularization parameter. It achieves consistent good result
with the regularization parameter varying from 100 to 1000.

In summary, we may set k = 10 and λ = µ = 500 in
application for simplicity.

5. CONCLUSIONS AND FUTURE WORKS
In this paper, we propose a Dual Regularized Co-Clustering

(DRCC) method based on semi-nonnegative matrix tri-factorization



Table 3: Clustering Accuracy on the 6 data sets.
Data Sets Kmeans NCut NMF SNMF ONMTF GNMF DRCC RCC

Coil20 0.5864 0.6056 0.4517 0.3678 0.5527 0.6665 0.6938 0.6215
PIE 0.3018 0.3880 0.3952 0.2975 0.3351 0.7583 0.7624 0.7069

CSTR 0.7634 0.6597 0.7597 0.6976 0.7700 0.7437 0.8341 0.8640
Newsgroup4 0.8158 0.6056 0.8805 0.8214 0.8399 0.8877 0.9240 0.8817

WebKB4 0.6973 0.6716 0.6659 0.6214 0.6885 0.7264 0.7361 0.7130
WebACE 0.5142 0.4679 0.4936 0.4007 0.5415 0.5047 0.5549 0.5536

Table 4: Normalized Mutual Information on the 6 data sets.
Data Sets Kmeans NCut NMF SNMF ONMTF GNMF DRCC RCC

Coil20 0.7588 0.7407 0.5954 0.4585 0.7110 0.8136 0.8822 0.7907
PIE 0.6276 0.6843 0.6743 0.5430 0.6787 0.9368 0.9377 0.8078

CSTR 0.6531 0.5761 0.6645 0.5941 0.6716 0.6302 0.6923 0.7167
Newsgroup4 0.7129 0.7212 0.7294 0.6432 0.7053 0.7106 0.7725 0.7488

WebKB4 0.4665 0.4437 0.4255 0.3643 0.4552 0.4571 0.4855 0.4798
WebACE 0.6157 0.5959 0.5850 0.4649 0.6012 0.6007 0.6244 0.5849
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Figure 1: Clustering accuracy with respect to the neighborhood size k.

with two graph regularizers, requiring that the cluster labels
of data points are smooth with respect to the intrinsic data
manifold, while the cluster labels of features are smooth with
respect to the intrinsic feature manifold. DRCC is solved
via alternating minimization, and its convergence is theo-
retically guaranteed. Experiments of clustering on many
benchmark data sets demonstrate that the proposed method
outperforms many state of the art clustering methods.

In our future work, we will investigate other kind of affin-
ity in the graph regularization, e.g. Local Learning Assump-
tion [22], which says the cluster label of each sample can be
predicted by the samples in its neighborhood.
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APPENDIX
A. PROOF OF THEOREM 2.4

Proof. We rewrite Eq.(23) as

L(F) = tr(λFT L+
F F− λFT L−F F

− 2FT A+ + 2FT A− + FB+FT − FB−FT )(33)



By applying Lemma 2.3, we have

tr(FT L+
F F) ≤

∑
ij

(L+
F F′)ijF

2
ij

F′ij

tr(FB+FT ) ≤
∑
ij

(F′B+)ijF
2
ij

F′ij

Moreover, by the inequality a ≤ (a2+b2)
2b

, ∀a, b > 0, we have

tr(FT A−) =
∑
ij

A−
ijFij ≤

∑
ij

A−
ij

F2
ij + F′2ij
2F′ij

To obtain the lower bound for the remaining terms, we use
the inequality that z ≥ 1 + log z, ∀z > 0, then

tr(FT A+) ≥
∑
ij

A+
ijF

′
ij(1 + log

Fij

F′ij
)

tr(FT L−F F) ≥
∑

ijk

(L−F )jkF
′
jiF

′
ki(1 + log

FjiFki

F′jiF
′
ki

)

tr(FB−FT ) ≥
∑

ijk

B−
jkF

′
ijF

′
ik(1 + log

FijFik

F′ijF
′
ik

)

By summing over all the bounds, we can get Z(F,F′), which
obviously satisfies (1) Z(F,F′) ≥ JDRCC(F); (2)Z(F,F) =
JDRCC(F)

To find the minimum of Z(F,F′), we take

∂Z(F,F′)
∂Fij

= 2λ
(L+

F F′)ijFij

F′ij
− 2λ(L−F F′)ij

F′ij
Fij

− 2A+
ij

F′ij
Fij

+ 2A−
ij

Fij

F′ij

+ 2
(F′B+)ijFij

F′ij
− 2(F′B−)ij

F′ij
Fij

and the Hessian matrix of Z(F,F′)

∂2Z(F,F′)
∂Fij∂Fkl

= δikδjl(2λ
(L+

F F′)ij

F′ij
+ 2λ(L−F F′)ij

F′ij
F2

ij

+ 2A+
ij

F′ij
F2

ij

+ 2
A−

ij

F′ij

+ 2
(F′B+)ij

F′ij
+ 2(F′B−)ij

F′ij
F2

ij

)

is a diagonal matrix with positive diagonal elements.
Thus Z(F,F′) is a convex function of F. Therefore, we can

obtain the global minimum of Z(F,F′) by setting ∂Z(F,F′)
∂Fij

=

0 and solving for F, from which we can get Eq.(24).

B. PROOF OF THEOREM 2.6
Proof. We rewrite Eq.(25) as

L(G) = tr(µGT L+
GG− µGT L−GG− 2GT P+

+ 2GT P− + GQ+GT −GQ−GT ) (34)

By applying Lemma 2.3, we have

tr(GT L+
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2
ij
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ij

tr(GQ+GT ) ≤
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Moreover, by the inequality a ≤ (a2+b2)
2b

, ∀a, b > 0, we have

tr(GT P−) =
∑
ij

P−ijGij ≤
∑
ij

P−ij
G2

ij + G′2
ij

2G′
ij

To obtain the lower bound for the remaining terms, we use
the inequality that z ≥ 1 + log z, ∀z > 0, then

tr(GT P+) ≥
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ik(1 + log
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ijG

′
ik

)

By summing over all the bounds, we can get Z(G,G′), which
obviously satisfies (1) Z(G,G′) ≥ JDRCC(G); (2)Z(G,G) =
JDRCC(G)

To find the minimum of Z(G,G′), we take

∂Z(G,G′)
∂Gij

= 2µ
(L+

GG′)ijGij
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is a diagonal matrix with positive diagonal elements.
Thus Z(G,G′) is a convex function of G. Therefore,

we can obtain the global minimum of Z(G,G′) by setting
∂Z(G,G′)

∂Gij
= 0 and solving for G, from which we can get

Eq.(26).


