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Abstract
Text classification is a very important task in information
retrieval and data mining. In vector space model (VSM),
document is represented as a high dimensional vector, and
a feature extraction phase is usually needed to reduce the
dimensionality of the document. In this paper, we pro-
pose a feature extraction method, named Local Relevance
Weighted Maximum Margin Criterion (LRWMMC). It aims
to learn a subspace in which the documents in the same class
are as near as possible while the documents in the different
classes are as far as possible in the local region of each docu-
ment. Furthermore, the relevance is taken into account as a
weight to determine the extent to which the documents will
be projected. LRWMMC is able to find the low dimensional
manifold embedded in the high dimensional ambient space.
In addition, We generalize LRWMMC to Reproducing Ker-
nel Hilbert Space (RKHS), which can resolve the nonlinear-
ity of the input space. We also generalize LRWMMC to
tensor space which is suitable for a new document repre-
sentation, named tensor space model (TSM). On the other
hand, in order to utilize the large amount of unlabeled docu-
ments, we also present a Semi-Supervised LRWMMC, which
aims to find a projection inferred from the labeled samples,
as well as the unlabeled samples. Finally, we present a fast
algorithm based on QR-decomposition to make the meth-
ods proposed in this paper apply for large scale data set.
Encouraging experimental results on benchmark text classi-
fication data sets indicate that the proposed methods out-
perform many existing feature extraction methods for text
classification.
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1 Introduction

Text classification [1] is one of the core issues in infor-
mation retrieval and data mining. In text classification,
an initial data set of pre-classified documents is par-
titioned into a training set and a testing set that are
subsequently used to construct and evaluate classifiers.
For high dimensional text classification problems, a di-
mensionality reduction phase is often applied so as to
reduce the size of the document representations. This
has both the effect of reducing over fitting, and learning
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a semantic latent subspace. Dimensionality reduction
techniques include two types: (1) feature selection: to
select a subset of most representative features from the
input feature set [2] [3], and (2) feature extraction: to
transform the input space to a smaller feature space.
Compared with feature selection, feature extraction can
not only reduce the dimensionality of the input space,
but also exploit the latent semantic subspace of the in-
put space.

Many feature extraction methods [4] [5] [6] [7] [8]
[9] [10] [11] have been proposed in the past decades,
however, most of these methods assume that the doc-
uments are sampled from a Euclidean space. Recent
studies suggest that the documents are actually sam-
pled from a nonlinear low-dimensional manifold which
is embedded in the high-dimensional ambient space [12]
[13].

In this paper, we proposed a feature extraction
method, named Local Relevance Weighted Maximum
Margin Criterion (LRWMMC) for text classification.
It aims to learn a subspace in which the documents
in the same class are as near as possible while the
documents in the different classes are as far as possible
in the local region of each document. Furthermore, the
relevance is taken into account as a weight to determine
the extent to which the documents will be projected.
LRWMMC not only inherits the good property of
Maximum Margin Criterion [11], but also is able to
find the low dimensional manifold embedded in the high
dimensional ambient space.

Due to the nonlinearity of the input space, linear
method usually cannot map the documents to a sub-
space, such that the documents in the same class are
near enough while the documents in the different classes
are far enough. Kernel method [14] alleviates this prob-
lem by first mapping the input space to a high dimen-
sional feature space, and then finding a subspace of the
feature space. In [15], a kernel LSI was proposed, called
Latent Semantic Kernel (LSK). In this paper, we gen-
eralize LRWMMC to Reproducing Kernel Hilbert Space
(RKHS) [14], named Kernel LRWMMC, which can re-
solve the nonlinearity of the input space.

All the methods mentioned above are based on the
document representation, named Vector Space Model
(VSM). Recently, a novel document representation,
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named Tensor Space Model (TSM) [16], was proposed,
which can exploit the high order correlation between
words and may be a potential direction of text represen-
tation. Hence, we also generalize LRWMMC to tensor
space, named Tensor LRWMMC.

On the other hand, while text classification frees
organizations from the need of manually organizing
document databases, it still needs professionals to label
a large enough training data set for learning a classifier,
which requires much expensive human labor and much
time. Furthermore, compared with the large amount
of documents increasing every day, the labeled samples
are always insufficient. To address this problem, semi-
supervised learning [17], which aims to learn from
partially labeled data, provides a solution. In this
paper, we present a Semi-Supervised LRWMMC, which
aims to learn a subspace, inferred from the labeled
samples, as well as the unlabeled samples.

Finally, a fast algorithm based on QR-
decomposition is presented to make the methods
proposed in this paper apply for large scale data set.

Encouraging experimental results on benchmark
text classification data sets indicate that the proposed
methods outperform many existing feature extraction
methods for text classification.

The remainder of this paper is organized as follows.
In Section 2, we will review some methods closely
related to our method. In Section 3 we will propose
a feature extraction method named Local Maximum
Margin Criterion for text classification. We generalize
LRWMMC to RKHS and tensor space in Section 4
and Section 5 respectively. In Section 6, we present
Semi-Supervised LRWMMC. Finally, we present a QR-
decomposition based fast algorithm in Section 7. The
experiments on standard text classification datasets
are demonstrated in Section 8. Finally, we draw a
conclusion in Section 9.

2 Related Works

In this section, we will briefly review the methods
mostly related with ours.

The Vector Space Model (VSM) is widely used
for document representation. In VSM, each docu-
ment is represented as a bag of words. Let W =
{w1, w2, . . . , wd} be the complete vocabulary set of the
document corpus after the stop words removal and
words stemming operations. The term vector xi of doc-
ument di is defined as

xi = [x1i, x2i, . . . , xdi]T

xji = tji log(
n

idfj
),(2.1)

where tji denotes the term frequency of word wj ∈ W

in document di, idfj denotes the number of documents
containing word wj , and n denotes the total number of
documents in the corpus. In addition, xi is normalized
to unit length. Using xi as the ith column, we construct
the d × n term-document matrix X. This matrix will
be used to conduct text classification.

In text classification literature, the most popular
feature extraction method is Latent Semantic Indexing
(LSI) [4]. It aims to learn a subspace by minimizing
the mean squared error in which sense it is equivalent
to Principal Component Analysis (PCA). However, LSI
does not take into account the class information, it is
an unsupervised method and it does not always per-
form well, sometimes even worse than original term
vector [18]. To address this problem, several variants
of LSI integrating the class information were proposed.
[5] first proposed the concept of local LSI, which per-
formed SVD on a local region of each class so that the
most important local structure, which is crucial in sep-
arating relevant documents from irrelevant documents,
could be captured. A drawback is that the local region
is defined by only relevant/positive documents which
contain no discriminative information, which makes the
improvement of classification performance very limited.
[6] extended the local region by introducing some irrel-
evant/negative documents which are the most difficult
to be distinguished from the relevant documents and is
found to be more effective than using only relevant doc-
uments. [7] proposed a Local Relevance Weighted LSI
(LRW-LSI) method which gives different weight to each
document in the local region according to its relevance.
It should be noted that these local LSI methods men-
tioned above have to perform a separate SVD in the
local region of each class, thus they use different pro-
jections for different testing documents. [8] proposed
a clustered LSI (CLSI) based on low rank matrix ap-
proximation. Based on CLSI, [9] proposed a Centroid
Representatives (CM) method for text classification.

Linear Discriminant Analysis (LDA) is a famous
feature extraction method. It aims to learn a subspace,
in which the between class variance is maximum while
the within class variance is minimum, i.e.

(2.2) max tr((AT SwA)−1(AT SbA)),

where Sb =
∑c

l=1 nl(ml − m)(ml − m)T is called
between-class scatter matrix, ml and nl are mean vector
and size of class l respectively, m =

∑c
l=1 nlml is

the overall mean vector, Sw =
∑c

l=1 Sl is the within-
class scatter matrix, Sl is the covariance matrix of
class l. The solution of LDA are composed of the
eigenvectors of the matrix S−1

w Sb corresponding to the
largest eigenvalues. There is little work [18] using LDA
for document classification. The reason is that LDA
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involves the inverse and eigen-decomposition of large
and dense matrices. Most recently, [10] proposed a
spectral regression method to train LDA in linear time,
which makes applying LDA for document classification
practical. However, LDA still suffers several other
drawbacks: (1) Small Sample Size (SSS) problem: when
the size of the data set is smaller than the dimension of
the feature space, the within-class scatter matrix Sw will
be singular which makes the generalized eigen-problem
unsolvable; (2) it is only optimal in the case that
the data distribution of each class satisfies Gaussian
assumption with an identical covariance matrix; (3) it
can only extract at most c − 1 features where c is the
number of classes.

The most related method to our work is Maximum
Margin Criterion (MMC) [11]. MMC has been shown to
be more effective than LDA. It aims to learn a subspace,
in which the sample is close to those in the same class
but far from those in the different classes, i.e.

(2.3) max tr(AT (Sb − Sw)A),

where tr(·) denotes the matrix trace and AT A = I. We
can see that there is no need for computing any matrix
inversion when optimizing the above criterion.

3 Local Relevance Weighted Maximum Margin
Criterion

3.1 Quantitative Measure of Relevance Al-
though we have mentioned ”relevant” many times, we
have not given a quantitative measure of relevance. In
this subsection, we give several candidate measures of
relevance.

The simplest measure of relevance between docu-
ments can be calculated by the cosine distance as

(3.4) r(xi,xj) =
xT

i xj

||xi|| · ||xj || .

We can see that the range of relevance is [0, 1].
r(xi,xj) = 1 if and only if xi = xj , that means xi

and xj refer to the same document. And r(xi,xj) = 0
if and only if xi ⊥ xj , that means there is no common
word shared by these two documents.

Since xi is normalized to unit length, the cosine
distance degenerates to inner product

(3.5) r(xi,xj) = xT
i xj .

The other relevance measures include Information
Gain (IG), χ2 statistic (CHI), Mutual Information (MI)
and so on. For details of these relevance measures,
please refer to [2][3].

In our study, we use Eq.(3.5) as the relevance
measure.

3.2 Local Relevant Region Definition MMC as-
sumes that the data points are sampled from a Eu-
clidean space, and treats the data points as a whole.
When the data points are sampled from a nonlinear low-
dimensional manifold embedded in the high-dimensional
ambient space, which is usually the case in document
classification [12] [13], MMC may fail to find the cor-
rect latent subspace. A natural treatment for the data
sampled from a manifold is to deal with the data region
by region, based on the assumption that the manifold
is locally homeomorphism to a Euclidean space. Rather
than considering the local region of each class [5] [6] [7],
we consider the local region of each document. Similar
settings can be found in [19] [20]. In detail, for each
document, we define two kinds of local relevant region.

Definition 3.1. Within Class Local Relevant Re-
gion: For each document xi, its within class local
relevant region is the set of its k most relevant doc-
uments which are in the same class. Denoted by
Nw(xi) = {xj |yj = yi, 1 ≤ j ≤ k}

Definition 3.2. Between Class Local Relevant Region:
For each document xi, its between class local relevant
region is the set of its k most relevant documents which
are in the different classes. Denoted by Nb(xi) =
{xj |yj 6= yi, 1 ≤ j ≤ k}.

3.3 LRWMMC We aim to learn a subspace in which
the documents in the same class are as near as possible
while the documents in the different classes are as
far as possible in the local region of each document.
With the definition of local relevant region, the idea
mentioned above can be formulated in a more concise
way. That is, we aim to find a subspace in which
the documents in the Within Class Local Relevant
Region are as near as possible, while the documents
in the Between Class Local Relevant Region are as far
as possible. Furthermore, the relevance is taken into
account as a weight to determine the extent to which the
documents will be projected. More concretely, in the
Within Class Local Relevant Region, the less relevant
two documents are, the more attention we pay for
them, pooling them as near as possible in the subspace,
while in Between Class Local Relevant Region, the more
relevant two documents are, the more attention we
pay for them, pooling them as far as possible in the
subspace. This idea is formulated by Maximum Margin
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Criterion for each document as follows,
∑

i

∑

xj∈Nb(xi)

r(xi,xj)||AT xi −AT xj ||2

−
∑

i

∑

xj∈Nw(xi)

(1− r(xi,xj))||AT xi −AT xj ||2.

(3.6)

As we have mentioned above, the range of r(xi,xj) is
[0, 1]. As a result, the weight 1 − r(xi,xj) in Within
Class Local Relevant Region and the weight r(xi,xj)
in Between Class Local Relevant Region are both non-
negative. This makes the Maximum Margin Crite-
rion correct and reasonable. Since in our setting, the
Maximum Margin Criterion weighted by relevance is
conducted on each document, we call Eq.(3.6) Local
Relevance Weighted Maximum Margin Criterion (LR-
WMMC). The rationale of LRWMMC is shown in Fig-
ure 1.

By defining an adjacency matrix W
(3.7)

Wij =





r(xi,xj), if xj ∈ Nb(xi) or xi ∈ Nb(xj)
r(xi,xj)− 1, if xj ∈ Nw(xi) or xi ∈ Nw(xj)

0, otherwise.

Eq.(3.6) can be formulated as
∑

i,j

||AT xi −AT xj ||2Wij

= 2
∑

i,j

(xT
i AAT xi)Wij − 2

∑

i,j

(xT
i AAT xj)Wij

= 2
∑

i,j

tr(AT xiWijxT
i A)− 2

∑

i,j

tr(AT xiWijxT
j A)

= 2
∑

i

tr(AT xiDiixT
i A)− 2

∑

i,j

tr(AT xiWijxT
j A)

= 2tr(AT X(D−W)XT A)
= 2tr(AT XLXT A)

(3.8)

where Dii =
∑

j Wij is called degree matrix, and L =
D−W is called graph Laplacian [19].

Now we rewrite the Local Relevance Weighted Max-
imum Margin Criterion (LRWMMC) as

max tr(AT XLXT A)
s.t. AT A = I(3.9)

If we expand A as A = (a1, . . . ,am), then Eq.(3.9) is
equivalent to

max
m∑

i=1

aT
i XLXT ai

s.t. aT
i ai = 1,aT

i aj = 0(i 6= j).(3.10)

Using the Lagrangian method, we can easily find that
the optimal A in Eq.(3.10) is composed of the m
eigenvectors corresponding to the largest m eigenvalues
of XLXT .

We summarize the LRWMMC method in Algorithm
1.

Algorithm 1 Local Relevance Weighted Maximum
Margin Criterion

Input: Training set {xi, yi}n
i=1, Local Relevant Re-

gion size k, desired dimensionality m;
Output: A ∈ Rd×m;
1. Construct the with-class local relevant region and
between class local relevant region for each xi;
2. Calculate the adjacent matrix W by Eq.(3.7), and
L = D−W;
3. Calculate the projection A as the m eigenvectors
corresponding to the largest m eigenvalues of XLXT .

3.4 Discussion The advantages of LRWMMC in-
clude four-fold:

1. It inherits the properties of MMC, hence it does not
suffer from SSS problem, and it can extract more
than c− 1 features, etc.

2. It exploits the local class information, which is more
discriminative than global class information;

3. Since LRWMMC considers the local region of each
document and deals with the data region by region,
it is able to find nonlinear low-dimensional manifold
which is embedded in the high-dimensional ambient
space;

4. It takes into account the relevance weight in the
local relevant region, hence it is more reasonable
and robust, which will be illustrated in detail in
the following;

It is worthwhile noting that, [21] proposed a Dis-
criminant Neighborhood Embedding (DNE), which is
in fact also a variant of MMC. Although in their set-
ting, the authors constructed two graphs, the essence
of DNE is also a local MMC with the adjacency matrix
being defined as
(3.11)

Wij =





1, if xj ∈ Nb(xi) or xi ∈ Nb(xj)
−1, if xj ∈ Nw(xi) or xi ∈ Nw(xj)
0, otherwise.

Our method is different from theirs. We can see that
our method pays different attentions to the data points
in the local relevant region by relevance weight, while
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Figure 1: The rationale of LRWMMC: (a) The original local relevant region of document t (the red circle in the
center) (b) Within class relevant region of document t with k = 3; (c) Between class relevant region of document
t with k = 3; (d) The resulted subspace after LRWMMC projection.

DNE generally pays equal attention to them in both
Within Class Local Relevant Region and Between Class
Local Relevant Region. DNE fails to exploit the concise
relevance information in the local region, which may
benefit the classification performance a lot.

Furthermore, when the data distribution is sparse
in the input space, which is usually the case in text
classification, paying equal attention to the data points
in the local region may even ruin the feature extraction
algorithm. For example, in the Between Class Local
Relevant Region, the least relevant data point may be
much more irrelevant than the most relevant data point.
If we pay as much attention to the least relevant data
point as to the most relevant data point, it may prevent
us from pooling the data points in the Within Class
Local Relevant Region near enough.

In our experiment, we will see that the performance
of DNE is encouraging only when the size of local
relevant region is very small, e.g. k = 1, 3. In contrast,
our method performs very well when k varied in a very
wide range, e.g. k ∈ [1, 30].

4 Kernel LRWMMC

Kernel methods have been widely used in non-linear
dimensionality reduction, and also been successfully
used for text classification [15]. To this end, we will
address kernelization of LRWMMC.

Due to the nonlinearity of the input space, linear
method usually cannot map the documents to a sub-
space, such that the documents in the same class are
near enough while the documents in the different classes
are far enough. Kernel method [14] alleviates this prob-
lem by first mapping the input space to a high dimen-
sional feature space, and then finding a subspace of the
feature space. In the following, we utilize the kernel
trick [14] to generalize LRWMMC to Reproducing Ker-
nel Hilbert Space (RKHS), namely Kernel LRWMMC.

We consider the problem in a feature space F
induced by some nonlinear mapping φ : Rd → F . For a
proper chosen φ, the inner product 〈, 〉 in F is defined

as

(4.12) 〈φ(x), φ(y)〉 = K(x,y),

where K(, ) is a positive semi-definite kernel function.
The mostly used kernel functions include:

1. Polynomial Kernel:K(x,y) = (1 + 〈x,y〉)d;

2. Gaussian Kernel:K(x,y) = exp(− ||x−y||2
σ2 ).

Let Φ = [φ(x1), φ(x2), . . . , φ(xn)] denote the data
matrix in RKHS, then Eq.(3.10) can be written as
follows:

(4.13) max
m∑

i=1

aT
i ΦLΦT ai.

According to Representor Theorem [14], ai are linear
combinations of φ(x1), . . . , φ(xn). There exist coeffi-
cients αj

i , j = 1, 2, . . . , n, such that

(4.14) ai =
n∑

j=1

αj
i φ(xj) = Φαi,

where αi = (α1
i , α

2
i , . . . , α

n
i )T .

Submit Eq.(4.14) into Eq.(4.13), we obtain

max
m∑

i=1

aT
i ΦLΦT ai

= max
m∑

i=1

αT
i ΦT ΦLΦT Φαi

= max
m∑

i=1

αT
i KLKαi,(4.15)

where K is the kernel matrix with element Kij =
K(xi,xj). The optimal αi, 1 ≤ i ≤ m in Eq.(4.15)
is the m eigenvectors corresponding to the m largest
eigenvalues of KLK.

We summarize the Kernel LRWMMC method in
Algorithm 2.

1140 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



Algorithm 2 Kernel Local Relevance Weighted Maxi-
mum Margin Criterion

Input: Training set {xi, yi}n
i=1, Local Relevant Re-

gion size k, desired dimensionality m, Kernel type,
Kernel Parameters;
Output: A ∈ Rd×m;
1. Construct the kernel matrix K on the training set;
2. Construct the with-class local relevant region and
between class local relevant region for each φ(xi);
3. Calculate the adjacent matrix W by Eq.(3.7), and
L = D−W;
4. Calculate the projection αi, 1 ≤ i ≤ m as
the m eigenvectors corresponding to the largest m
eigenvalues of KLK.

5 Tensor LRWMMC

All the methods mentioned above are based on Vector
Space Model (VSM). Recently, a novel document repre-
sentation, named Tensor Space Model (TSM) [16], was
proposed, which can exploit the high order correlation
between words and may be a potential direction of text
representation. Hence, we will discuss tensorization of
LRWMMC.

Several tensor-based methods [22][23][24] have been
proposed in machine learning and data mining litera-
ture. Here, we generalize LRWMMC to tensor space.
Since the proposed approach is mostly based on ten-
sor algebra (or multi-linear algebra), we first introduce
the notation and basic definition of tensor algebra. For
more details about tensor algebra, please refer to [25].

5.1 Tensor Algebra Scalars are denoted by lower
case letters (a, b, . . .), vectors by bold lower case let-
ters (a,b, . . .), matrices by bold upper case letters
(A,B, . . .), and high-order tensors by calligraphic up-
per case letters (A,B, . . .).

5.1.1 Notation and Terminology A tensor is a
higher order generalization of a vector (first order
tensor) and a matrix (second order tensor). From
a multi-linear algebra view, tensor is a multi-linear
mapping over a set of vector spaces. The order of tensor
A ∈ RI1×...In...IN is N , where In is the dimensionality
of the nth order. Elements of A are denoted as
Ai1...in...iN

, 1 ≤ in ≤ In.

5.1.2 Mode-n Flattening The mode-n vectors of
a Nth order tensor A are the In dimensional vectors
obtained from A by varying index in while keeping
the other indices fixed. The mode-n vectors are the
column vectors of mode-n flattening matrix A(n) ∈

RIn×(I1...In−1In+1...IN ) that results by mode-n flattening
the tensor A. For example, matrix column vectors are
referred to as mode-1 vectors and matrix row vectors
are referred to as mode-2 vectors.

Figure 2: Flattening a 3th order tensor, which is
flattened in 3 ways to obtain matrices comprising its
mode-1, mode-2 and mode-3 vectors.

5.1.3 Mode-n Product A generalization of the
product of two matrices is the product of a tensor
and a matrix. The mode-n product of a tensor A ∈
RI1×...In...IN by a matrix U ∈ RIn×Jn , denoted by
A ×n U, is a tensor B ∈ RI1×...×In−1×Jn×In+1×...×IN

whose entries are
(5.16)
(A×n U)i1...in−1jnin+1...iN

=
∑

in

Ai1...in−1in+1...iN
Uinjn .

In general, a tensor X ∈ RI1×I2...IN can multiply a
sequence of matrices {Ui}N

i=1 ∈ RIi×Ji as X ×1 U1 ×2

U2 . . . ×N UN , which can be written as X ∏N
i=1×iUi

for clarity. From the definition above, we can easily find
that the mode-n product B = A×n U can be computed
via the matrix multiplication B(n) = UT A(n), followed
by a re-tensorization to undo the mode-n flattening.

5.1.4 Scalar Product The scalar product of two
tensors A,B ∈ RI1...In...IN , is defined as 〈A,B〉 =∑

i1
. . .

∑
iN
Ai1...iN

Bi1...iN
. The Frobenius norm of a
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tensor A is ||A|| =
√
〈A,A〉.

5.2 Tensor LRWMMC Given n tensors
{X1, . . . ,Xn} ∈ RI1×...In...IN , Tensor LRWMMC
aims to find a sequence of projections Uk ∈ RIk×Jk ,
which maximizes the LRWMMC in the tensor metric
induced by Frobenius norm of a tensor:

(5.17)
∑

i,j

||Xi

N∏

k=1

×kUk −Xj

N∏

k=1

×kUk||2Wij .

Such type of optimization can be solved approximately
by employing an iterative scheme [22]. In the following,
we will adopt such an iterative scheme to solve the
optimization problem.

Given U1, . . . ,Uk−1,Uk+1, . . . ,UN , denote Y\ki as

(5.18) Y\ki = Xi×1U1 . . .×k−1Uk−1×k+1Uk+1 . . .UN

Then Eq.(5.17) can be written as

∑

i,j

||Xi

N∏

k=1

×kUk −Xj

N∏

k=1

×kUk||2Wij

=
∑

i,j

||Y\ki ×k Uk − Y\kj ×k Uk||2Wij

=
∑

i,j

||UT
k Y\k

i(k) −UT
k Y\k

j(k)||2Wij

= 2tr(UT
k

∑

i,j

Wij(Y
\k
i(k) −Y\k

j(k))(Y
\k
i(k) −Y\k

j(k))
T Uk)

= 2tr(UT
k TkUk)

(5.19)

where Tk =
∑

i,j Wij(Y
\k
i(k) − Y\k

j(k))(Y
\k
i(k) − Y\k

j(k))
T .

The optimal Uk in Eq.(5.19) is composed of the Jk

eigenvectors corresponding to the largest Jk eigenvalues
of Tk.

We summarize the Tensor LRWMMC method in
Algorithm 3.

6 Semi-Supervised LRWMMC

Semi-supervised learning, which can exploit the large
amount of unlabeled samples to improve classification,
is successfully used in text classification [26]. In this
section, we will present a semi-supervised version of
LRWMMC.

LRWMMC considers finding the optimal projection
purely on the labeled training set. While text classifi-
cation frees organizations from the need of manually
organizing document bases, it still needs professionals
to label a large enough training data set for learning

Algorithm 3 Tensor Local Relevance Weighted Maxi-
mum Margin Criterion

Input: Training set {Xi, yi}n
i=1, Local Relevant Re-

gion size k, desired dimensionality J1, J2 . . . , JN ;
Output: A sequence of projections Uk ∈ RIk×Jk ;
1. Construct the within class local relevant region
and between class local relevant region for each Xi;
2. Calculate the adjacent matrix W by Eq.(3.7);
3. Initialize Uk = Ik where Ik is any Ik × Jk

orthogonal matrix;
for t = 1 to Tmax do

for k = 1 to N do
(a)Calculate Y\ki by Eq.(5.18);
(b)Calculate Y\k

i(k) by mode-k flattening of Y\ki ;

(c)Calculate Tk =
∑

i,j Wij(Y
\k
i(k) −

Y\k
j(k))(Y

\k
i(k) −Y\k

j(k))
T ;

(d)Calculate the projection Uk as the Jk eigen-
vectors corresponding to the largest Jk eigenval-
ues of Tk;

end for
end for

a classifier, which requires much expensive human la-
bor and much time. Furthermore, compared with the
large amount of documents increasing every day, the
labeled samples are always insufficient. That is, in re-
ality, it is possible to acquire a large set of unlabeled
data rather than labeled data. To address this problem,
semi-supervised learning [17], which aims to learn from
partially labeled data, provides a solution. Thus, we
extend LRWMMC to incorporate the unlabeled data.
In general, semi-supervised learning can be categorized
into two classes: (1) transductive learning: to estimate
the labels of the given unlabeled data; and (2) induc-
tive learning: to induce a decision function which has a
low error rate on the whole sample space. Our method
belongs to inductive learning. Other semi-supervised
inductive methods in text classification include Co-EM
[26] and Semi-Supervised Discriminant Analysis (SDA)
[27]. Although there are many other semi-supervised
methods such as [28] [29], they are transdutive learning
methods, which are not very practical in large scale text
classification.

Semi-supervised learning is formulated as follows.
Given a point set X = {x1, . . . ,xl,xl+1, . . . ,xn} ⊂ Rd,
and a label set L = {1, . . . , c}, the first l points xi, 1 ≤
i ≤ l are labeled as yi ∈ L and the remaining points
xu, l + 1 ≤ u ≤ n are unlabeled.

We define another adjacent matrix W(2) for both
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labeled and unlabeled samples as
(6.20)

W
(2)
ij =

{
r(xi,xj), if xj ∈ N(xi) or xi ∈ N(xj)

0, otherwise.

where N(xi) denotes the k nearest neighbor of xi. W(2)

reflects the pairwise relevance of all the documents.
In dimensionality reduction, there is an assumption

that nearby points are likely to have the same embed-
ding. Thus, a natural regularizer can be defined as

(6.21)
∑

i,j

|| 1√
D

(2)
ii

AT xi − 1√
D

(2)
jj

AT xj ||2W (2)
ij .

where D(2) is the degree matrix corresponding to the
adjacency matrix W(2). This regularization incurs a
heavy penalty if relevant documents xi and xj are
mapped far apart. Therefore, minimizing it is an
attempt to ensure that if xi and xj are relevant, then
AT xi and AT xj are near as well. By similar derivation
of Eq.(3.8), Eq.(6.21) is equivalent to

(6.22) 2tr(AT XL(2)XT A),

where L(2) = I − D−1/2W(2)D−1/2 is the normalized
graph Laplacian corresponding to W(2).

Define an adjacency matrix W(1) for labeled sam-
ples

(6.23) W(1) =
[

Wl×l 0
0 0

]
,

where Wl×l is defined in Eq.(3.7) for l labeled samples.
Then the objective function of Semi-Supervised

Local Maximum Margin Criterion is

max(tr(AT XL(1)XT A)− λtr(AT XL(2)XT A))
= max tr(AT X(L(1) − λL(2))XT A),(6.24)

where λ is a positive regularization parameter. The
optimal A in Eq.(6.24) is composed of the m eigen-
vectors corresponding to the largest m eigenvalues of
X(L(1) − λL(2))XT .

We summarize the Semi-Supervised LRWMMC
method in Algorithm 4.

7 Fast Algorithm

The computational complexity of the proposed methods
in this paper (except Tensor LWRMMC, since the
dimensionality of TSM is usually not very high, e.g. 27
in our experiment, the original algorithm in Algorithm 3
is sufficiently efficient) is high, due to that it involves in
the eigen-decomposition of a large matrix, e.g. XLXT

in Algorithm 1. More concretely, the size of XLXT

Algorithm 4 Semi-Supervised Local Relevance
Weighted Maximum Margin Criterion

Input: Training set {xi, yi}n
i=1, Local Relevant Re-

gion size k, desired dimensionality m;
Output: A ∈ Rd×m;
1. Construct the with-class local relevant region and
between class local relevant region for each labeled
samples xi;
2. Calculate the adjacent matrix W(1) by Eq.(6.23);
3. Calculate the adjacent matrix W(2) for both
labeled and unlabeled samples by Eq.(6.20);
4. Calculate the projection A as the m eigenvec-
tors corresponding to the largest m eigenvalues of
X(L(1) − λL(2))XT .

is d × d, where d is the dimensionality of the data.
And the time complexity of the eigen-decomposition is
O(d3). As a result, when d is very high, e.g. document,
the eigen-decomposition is very time consuming. To
this end, a fast algorithm is urgently required. To
alleviate computational complexity, we adopt QR [30]
decomposition, which is also adopted in [31] [32]. In the
following, we will present a QR-based fast algorithm.

It is worthwhile noting that although the following
derivation is based on Algorithm 1, the QR-based fast
algorithm also works for the other methods presented
in this paper, e.g. Kernel LRWMMC in Section 4 and
Semi-Supervised LRWMMC in Section 6.

Let X = QR be the QR-decomposition of X, where
Q ∈ Rd×t has orthonormal columns, i.e. QT Q = I, R ∈
Rt×n is an upper triangular matrix, and t = rank(X)
is the rank of X. Then the projection A ∈ Rd×m can
be expressed as A = QV, where V ∈ Rt×m is arbitrary
orthogonal matrix. Substitute A = QV and X = QR
into Eq.(3.9), then Eq.(3.9) can be rewritten as

max tr(VT QT QRLRT QT QV)
= max tr(VT RLRT V)(7.25)

where VT V = I. Hence, the optimal V is composed of
the the m eigenvectors corresponding to the largest m
eigenvalues of RLRT . After we obtain the optimal V,
the optimal A can be computed as A = QV.

It should be noted that RLRT is of size t× t, which
is much smaller than XLXT , since t ¿ d. The time
complexity of eigen-decomposition for RLRT is O(t3).
And the time complexity of OR-decomposition for X is
O(t2n). As a result, the total time complexity of the fast
algorithm is O(t3+t2n), while the total time complexity
of Algorithm 1 is O(d3). So the fast algorithm is much
more efficient than the original algorithm.
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8 Experiments

In this section, we compare our method with the
state of the art methods on three benchmark text
classification data sets. We choose Nearest Neighbor as
the classification algorithm. All of our experiments have
been performed on an AMD Athlon 64 X2 dual 4400+
2.4GHz Windows XP machine with 2GB memory.

8.1 Data Sets We use three publicly available
datasets:

1. Reuters215781 We use the ModLewis split of the
database into training and testing parts. Since the
aim is classification, in which each document be-
longs to an exclusive category, we discard docu-
ments with no label or with multiple labels. Fur-
thermore, those rare classes that do not occur at
least once in both training and testing set are dis-
carded. The resulting training set contains 6535
documents, and the test set 2570 documents with
52 document classes.

2. TREC-92 This is the dataset used for the filter-
ing track in TREC-9, the 2000 Text Retrieval Con-
ference. We use a subset of the dataset, namely
Ohsumed set. It was pointed out that this set is
much more challenging than the Reuters set. By
similar preprocessing of Retuters, we get 634 train-
ing and 3038 test documents from 63 categories.

3. 20Newsgroup3 We use the 20 Newsgroups sorted
by date version. There are 18846 documents, from
20 different newsgroups, with 11314 (60%) training
and 7532 (40%) testing.

8.2 Evaluation Metrics To evaluate the effective-
ness of classification, we firstly calculate the average
precision and recall by micro-averaging and macro-
averaging [1] in Table 1.

Table 1: Average precision and recall by micro-
averaging and macro-averaging

Microaveraging Macroaveraging

Precesion(p) p =
∑c

i=1 TPi∑c
i=1 TPi+FPi

p =
∑c

i=1
T Pi

T Pi+F Pi

c

Recall(r) r =
∑c

i=1 TPi∑c
i=1 TPi+FNi

r =
∑c

i=1
T Pi

T Pi+F Ni

c

And we use the single number metric F1 score [1]
which is defined as the harmonic mean of the precision

1http://www.daviddlewis.com/resources/testcollections/
2http://trec.nist.gov/data/t9 filtering.html
3http://people.csail.mit.edu/jrennie/20Newsgroups/

and recall to measure the classification performance

(8.26) F1 =
2rp

r + p
.

8.3 Experiment 1 In this experiment, we compare
LRWMMC with some state of the art methods, e.g.
LSI [4], CLSI [8], CM [9] and DNE [21]. The im-
plementation of LSI, CLSI and CM are based on the
toolbox [33]. The implementation of LDA is based on
[10]. The implementation of LRWMMC is based on QR-
decomposition based fast algorithm. For LRWMMC
and DNE, the size of local relevant region k is set by
grid search {1, 3, 5, 10, 20, 30, 40, 50}, and the best clas-
sification result is selected.

The text classification results are shown in Table 2.
We can find that LRWMMC outperforms other

methods on all the data sets. The outstanding per-
formance of LRWMMC mainly owes to the utilization
of discriminate information in the local relevant region
of each documents, rather than the discriminate infor-
mation in the local region of each topic (class). And
LRWMMC outperforms DNE due to it takes into ac-
count the relevance weight in the local relevant region.

Furthermore, we investigate the performance of
LRWMMC and DNE with respect to the size of the
local relevant region, i.e. k. The results are shown in
Figure 3. We can see that the performance of DNE
is encouraging only when the size of local relevant
region is very small, e.g. k = 1, 3. As k increases,
the performance of DNE degenerates very much. In
contrast, our method performs very good when k varied
in a very wide range, e.g. k ∈ [1, 30]. This advantage
mainly owes to the local relevance weight, which makes
our method more robust for text classification,

8.4 Experiment 2 In this experiment, we compare
Kernel LRWMMC with LSK [15] and Kernel Discrim-
inant Analysis (KDA) [34], which are state of the art
kernel methods. The implementation of KDA is based
on [34] which is very efficient. The implementation of
Kernel LRWMMC is based on QR-decomposition based
fast algorithm. We use Gaussian kernel for all the ker-
nel based methods. The hyper-parameter σ in Gaussian
kernel is tuned by 5-fold cross validation on the train-
ing set, and the best σ for each method is chosen in the
testing.

The text classification results are shown in Table 3.
We can find that Kernel LRWMMC outperforms

LSK and KDA on all the data sets. It should be noted
that Kernel LRWMMC also outperforms LRWMMC,
the reason is that by nonlinear mapping, Kernel LR-
WMMC can find even better projection which projects
the documents in the same class as near as possible,
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Table 2: Classification results on Reuters
Method Reuters21578 TREC-9 20Newsgroup

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
LSI 0.9018 0.7319 0.8421 0.7714 0.4987 0.4901
CLSI 0.9371 0.7422 0.8723 0.8222 0.5175 0.5088
CM 0.9156 0.7275 0.8776 0.8315 0.5319 0.5274
LDA 0.9267 0.7305 0.8575 0.7828 0.5625 0.5571
DNE 0.9421 0.7875 0.9098 0.8504 0.6432 0.6396
LRWMMC 0.9552 0.8097 0.9115 0.8886 0.6616 0.6604
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Figure 3: Classification results (microF1) with respect to the size of local relevant region, i.e. k.

Table 3: Classification results of kernel methods
Method Reuters21578 TREC-9 20Newsgroup

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
LSK 0.9159 0.7892 0.8575 0.7875 0.5174 0.5119
KDA 0.9349 0.8067 0.8821 0.8016 0.5951 0.5872
Kernel LRWMMC 0.9656 0.8129 0.9271 0.9043 0.7127 0.7109

while the documents in the different classes as far as
possible, in the local relevant region of each document.

8.5 Experiment 3 In this experiment, we compare
Tensor LRWMMC with High Order SVD (HOSVD)
[16]. HOSVD is the generalization of SVD to tensor
space. As a result, HOSVD can be seen as generalized
LSI for TSM. The construction of the Tensor Space
Model (TSM) is according to [16]. More concretely,
we use a 3-order tensor to represent each document
and index this document by the 26 English letters. All
the other characters except the 26 English letters are
treated as the same symbol, denoted as ∗. The character
string in each document is separated 3 characters by 3
characters with overlap. For example, we separate the
following sentence,

It said it plans ...
as
It*,t*s,*sa,sai,aid,id*,d*i,*it,it*,...

Thus, each document is a 27×27×27 3-order tensor,
and is normalized to unit length. And the corpus is a
27× 27× 27× n 4-order tensor, where n is the number
of documents in the corpus.

The text classification results are shown in Table 4.
We can find that Tensor LRWMMC outperforms

HOSVD on all the data sets. However, when we
compare TSM with VSM in Table 2, we find that TSM
does not always outperform VSM as we expected. The
reason may be that the construction of the TSM is just
a preliminary strategy [16]. In the future work, we will
investigate other kinds of strategies for constructing the
TSM.

8.6 Experiment 4 In this experiment, we com-
pare Semi-Supervised LRWMMC with Co-EM [26]
and Semi-Supervised Discriminant Analysis (SDA)
[27]. Co-EM is the most popular inductive semi-
supervised learning algorithm for text classification.
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Table 4: Classification results with tensor representation
Method Reuters21578 TREC-9 20Newsgroup

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
HOSVD 0.8514 0.6917 0.8271 0.7319 0.5172 0.5087
Tensor LRWMMC 0.9133 0.7649 0.8810 0.8275 0.6739 0.6529

The implementation of Semi-Supervised LRWMMC
is based on QR-decomposition based fast algorithm.
We randomly split the training set into labeled
and ”unlabeled” set for semi-supervised learning.
And use the testing set for inductive classification.
For Reuters21578, we vary the number of labeled
samples by {200, 500, 1000, 2000, 3000, 4000, 5000};
for TREC-9, we vary the number of labeled
samples by {200, 300, 400, 500, 600}; for 20News-
group, we vary the number of labeled samples by
{2000, 4000, 6000, 8000, 10000}, and the rest samples
are treated as ”unlabeled”. The regularizer λ in
Semi-Supervised LRWMMC is set by searching the grid
{4−3, 4−2, 4−1, 40, 41, 42, 43}. The LRWMMC trained
on the labeled samples is used as the baseline. Since
the labeled samples are randomly chosen, we repeat
this experiment 10 times and calculate the average
result.

The results of inductive classification are shown in
Figure 4.

We can find that Semi-Supervised LRWMMC out-
performs the Co-EM and SDA on all the data sets. It
should be noted that as the number of labeled sam-
ples increases, the performance of LRWMMC increases
dramatically. For Reuters dataset, when the number
of labeled samples increases to 4000, and for TREC9
dataset, when that increases to 500, LRWMMC even
outperforms Co-EM and SDA. This strengthens the ef-
fectiveness of LRWMMC again.

9 Conclusion

The contributions of this paper include five folds: (1)
We proposed a feature extraction method, named Local
Relevance Weighted Maximum Margin Criterion (LR-
WMMC) for text classification; (2) We presented a Ker-
nel LRWMMC to resolve the nonlinearity of the input
space; (3) We presented a Tensor LRWMMC for TSM;
(4) We presented a Semi-Supervised LRWMMC, which
utilizes both the labeled and unlabeled samples. (5) We
presented a fast algorithm for the methods proposed in
this paper. Encouraging experimental results on bench-
mark text classification data sets indicate that the pro-
posed methods are superior to many existing feature
extraction methods for text classification.
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