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Abstract
Collaborative filtering is an important topic in data mining
and has been widely used in recommendation system. In this
paper, we proposed a unified model for collaborative filter-
ing based on graph regularized weighted nonnegative matrix
factorization. In our model, two graphs are constructed on
users and items, which exploit the internal information (e.g.
neighborhood information in the user-item rating matrix)
and external information (e.g. content information such as
user’s occupation and item’s genre, or other kind of knowl-
edge such as social trust network). The proposed method
not only inherits the advantages of model-based method, but
also owns the merits of memory-based method which con-
siders the neighborhood information. Moreover, it has the
ability to make use of content information and any additional
information regarding user-user such as social trust network.
Due to the use of these internal and external information,
the proposed method is able to find more interpretable low-
dimensional representations for users and items, which is
helpful for improving the recommendation accuracy. Ex-
perimental results on benchmark collaborative filtering data
sets demonstrate that the proposed methods outperform the
state of the art collaborative filtering methods a lot.
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1 Introduction

Recommendation systems [1] have received more and
more attention since the amount of information on the
web is increasing rapidly. They attempt to recommend
items, e.g. movies, books, music, news, web pages, etc.,
which are likely to arise the users’ interests. Existing
recommendation systems can be roughly classified into
content-based [2] and collaborative filtering based [3]
[4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]. Content-based
systems make use of profiles of users or items to char-
acterize their nature. In contrast, collaborative filtering
based systems utilize the past user ratings rather than
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user profiles to predict the unknown user ratings. In
the past decades, on account of their general superior
performance, collaborative filtering based systems have
been more popular than content-based ones. There are
also some works on combining content-based and col-
laborative filtering based systems [15] [16] [17].

Collaborative filtering can be categorized into
memory-based methods (a.k.a. neighborhood-based
methods) [3] [4] [5] [11] [13], model-based methods [7]
[8] [9] [10] [12] [14] and the hybrid [6]. Memory-based
methods include user-oriented [3], item-oriented [4] [11]
and hybrid [5] [13]. They mainly use the neighborhood
information of users or items in the user-item rating
matrix. First, they compute similarities between the
active user and other users, or, between the active item
and other items, and apply them to identify the k most
similar neighbors of the active one. Then the unknown
rating is predicted by combining the known rating of
the neighbors. Despite of their success in the industry,
memory-based methods suffer from both the data spar-
sity and the scalability problem. Due to the sparsity
of the user-item rating matrix, memory-based methods
may fail to correctly identify the most similar users or
items, which in turn sacrifices the recommender accu-
racy. On the other hand, when the number of users and
items are very large in real application, the search of k
most similar neighbors is time consuming.

To overcome the limitation of memory-based meth-
ods, model-based approaches have been proposed,
which establish a model using the observed ratings that
can interpret the given data and predict the unknown
ratings. Methods in this category include aspect model
[8] [7], matrix factorization based model [9] [10] [12] [14]
and so on. Due to its efficiency in handling very huge
data sets, matrix factorization based model has become
one of the most popular models among the model-based
methods, e.g. weighted low rank matrix factorization
[9], weighted nonnegative matrix factorization (WNMF)
[12], maximum margin matrix factorization (MMMF)
[10] and probabilistic matrix factorization (PMF) [14].

Although the internal neighborhood information
has been widely used in memory-based methods, it is
rarely used in model-based methods. On the other



hand, external information such as user’s demographic
information, item’s genre information or social trust
network plays very important role in content-based rec-
ommendation systems. For instance, users with simi-
lar occupations may have similar interest in products.
Movies of the same genre may be liked similarly by peo-
ple. And a user usually asks his/her trusted person for
the recommendation on products. Nevertheless, this ex-
ternal information is usually neglected in collaborative
filtering based system.

Based on these observations, in this paper, we pro-
posed a unified model for collaborative filtering based
on graph regularized weighted nonnegative matrix fac-
torization. We construct two graphs on the users and
items respectively, to exploit the internal and exter-
nal information. Thus our method not only inherits
the advantages of model-based methods, but also owns
the merits of memory-based methods which take into
account the neighborhood information. Moreover, our
method has the ability to make use of the user’s demo-
graphic information and item’s genre information which
is used by content-based recommendation systems and
any additional information regarding user-user such as
social trust network. Due to the use of these infor-
mation, our method is able to find more interpretable
low-dimensional representations for users and items,
which consequently improve the recommendation per-
formance. In addition, we present a graph regularized
weighted nonnegative matrix tri-factorization model as
an extension, which is more suitable for graph regular-
ization on both items and users simultaneously. Exper-
iments on benchmark data sets demonstrate that the
proposed methods have a better performance than the
state of the art collaborative filtering methods.

The remainder of this paper is organized as follows.
In Section 2, we introduce problem formulation and
notations. In Section 3 and Section 4, we introduce
user graph and item graph respectively. In Section 5, we
present graph regularized weighted matrix factorization
model for collaborative filtering. In Section 6, we extend
the model to nonnegative matrix tri-factorization. The
experiments on benchmark collaborative filtering data
sets are demonstrated in Section 7. Finally, we draw a
conclusion and point out the future works in Section 8.

2 Problem Formulation & Notations

Before going any further, let’s first introduce the prob-
lem formulation and notations. Suppose we have M
movies and N users, and integer rating values from 1
to K. X ∈ RN×M

+ is the rating matrix, where Xij rep-
resents the rating of user i for movie j. X is sparse
because many elements are missing, and each such ele-
ment Xij is assigned 0 to indicate that item j has not

been rated by user i. Y ∈ RN×M is an indicator ma-
trix where Yij = 1 if user i rated item j and Yij = 0
otherwise.

We denote by xi·, 1 ≤ i ≤ N and x·j , 1 ≤ j ≤ M
the ith row and jth column of X, which represent the
ith user’s ratings to all items and all users’ ratings to
the jth item, respectively.

In matrix factorization based model, we usually seek
two low-rank matrices U ∈ RN×d

+ and V ∈ RM×d
+ . The

row vector ui·, 1 ≤ i ≤ N and vj·, 1 ≤ j ≤ M represent
the low-dimensional representations of users and items
respectively.

3 User Graph

Graph regularization [18] has been widely used in di-
mensionality reduction[19] [20], clustering [21] [22], co-
clustering [23], semi-supervised clustering [24] and semi-
supervised learning [25] [26] [27]. In our study, in or-
der to incorporate the internal and external information
in model-based collaborative filtering, we adopt graph
regularization. Generally speaking, we construct two
graphs: one is the user graph, the other is the item
graph. In this section, we will introduce user graph.
The item graph will be introduced in the next section.

We construct an undirected weighted graph GU =
(VU , EU ) on users, namely user graph, whose vertex
set VU corresponds to users {x1·, . . . ,xN ·}. The graph
regularization on user graph is formulated as

1
2

∑

ij

||ui· − uj·||2WU
ij

=
∑

i,j

ui·WU
ij u

T
i· −

∑

i,j

ui·WU
ij u

T
j·

=
∑

i

ui·DU
iiu

T
i· −

∑

i,j

ui·WU
ij u

T
j·

= tr(UT (DU −WU )U)
= tr(UT LUU)(3.1)

where tr(·) denotes the matrix trace, WU = [WU
ij ] is

the symmetric adjacency matrix which encodes the user
information, DU

ii =
∑

j WU
ij is a diagonal matrix, and

LU = DU −WU is the graph Laplacian [28] of the user
graph GU . The crucial part of graph regularization is the
definition of the adjacency matrix WU , which encodes
desired information. In the following, we will introduce
how to define proper adjacency matrix to encode various
useful information.

3.1 Neighborhood Information The neighbor-
hood information of users in the user-item rating matrix
is widely used in user-oriented memory-based methods
[3] [29]. Since the user-item rating matrix is very sparse,



ordinary matrix factorization does not work well. Here
we will use the neighborhood information of users to
aid matrix factorization to get more interpretable low-
dimensional representations. The basic assumption of
user-oriented memory-based methods is: if two users
have similar ratings on common items, then they prob-
ably have similar ratings on the other items. This can
be embodied by the adjacency matrix on user graph as
follows,
(3.2)

WU
ij =

{
sim(xi·,xj·), if xj· ∈ N (xi·) or xi· ∈ N (xj·)

0, otherwise.

where N (xi·) denotes the k-nearest neighbor of xi· and
sim(xi·,xj·) is the similarity between users. There exist
a number of different similarities in the literature [4],
e.g. cosine distance, Pearson correlation coefficients and
adjusted cosine distance. In our experiment, we use
cosine distance for simplicity.

3.2 User’s Demographic Information Demo-
graphic information of users has been widely used in
content-based recommendation system. User demo-
graphic information includes age, gender and occupa-
tion (e.g. administrator, artist, doctor, educator, en-
gineer, executive and so on). The basic assumption
of content-based recommendation system which uses
user’s demographic information is: if two users have
the same gender, similar ages, and the same occupa-
tion, then they probably have the similar ratings on the
items. We denote by fU

i , the feature vector which char-
acterizes the demographic information of user i, then
the assumption can be embodied by the adjacency ma-
trix on user graph as follows,

(3.3) WU
ij = sim(fU

i , fU
j )

where sim(fU
i , fU

j ) is the similarity between the feature
vectors of user i and user j. In our experiment, we use
cosine distance for simplicity.

3.3 Social Trust Network Traditional recommen-
dation systems ignore the social interactions or rela-
tionship among users. However, the recommendation is
sometimes a social activity. For example, we usually ask
a friend for a recommendation of movies to see or books
to read. [30] revealed that friends are more qualified
to make good and useful recommendations than tradi-
tional recommendation system which does not consider
the social network of users. To this end, [31] proposed
a matrix factorization method to exploit the social net-
work information. In our study, we use a directed graph
to characterize the social trust network, whose adja-

cency matrix is defined as

(3.4) WU
ij =

{
1, if user i trusts user j
0, otherwise.

Since the graph is directed, the graph regularization in
Eq.(3.1) does not work anymore. We turn to directed
graph regularization [32] instead. A direct graph G =
(V, E) consists of a finite vertex set V together with
an edge set E ⊆ V × V. An edge of a directed graph
is an ordered pair [i, j] where i and j are the vertex
indices. Each edge associates a weight Wij . The in-
degree of the ith vertex is defined as D−

i =
∑

j→i Wji,
where j → i denotes the jth vertex has a directed link
pointing to the ith vertex, while out-degree of the ith
vertex is defined as D+

i =
∑

i→j Wij , where i → j
denotes the ith vertex has a directed link pointing to
the jth vertex. Given a weighted directed graph, we
define a transition probability function of random walk
as Pij = Wij/D+

i for all [i, j] ∈ E , and 0 otherwise.
It is obvious that it satisfies

∑
j Pij = 1. Assume the

stationary distribution for ith vertex is Πi. Then it
satisfies

∑
i Πi = 1 and Πj =

∑
i→j ΠiPij . Then graph

regularization on directed graph can be formulated as
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1
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=
1
4
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∑

i→j

ui·ΠiPijuT
j·

+ 2
∑
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uj·ΠjPjiuT
j· − 2

∑

j→i

uj·ΠjPjiuT
i·)

=
∑

j

uj·ΠjuT
j· −

1
2

∑

j

(
∑

i→j

ui·ΠiPijuT
j·

+
∑

j→i

uj·ΠjPjiuT
i·)

= tr(UT (Π− 1
2
(ΠP + PT Π))U)

= tr(UT LU)(3.5)

where L = Π − 1
2 (ΠP + PT Π) is graph Laplacian

of directed graph, Πii = Πi is a diagonal matrix and
P = [Pij ]. Till now, we have introduced the graph
regularization on the directed graph which is associated
to the social trust network.



4 Item Graph

Likewise, we construct an undirected weighted graph
GV = (VV , EV ) on items, namely item graph, whose
vertex set VV corresponds to items {x·1, . . . ,x·M}. The
graph regularization on item graph is formulated as

1
2

∑

ij

||vi· − vj·||2WV
ij

= tr(VT (DV −WV )V)
= tr(VT LV V)(4.6)

where WV = [WV
ij ] is the symmetric adjacency matrix

which encodes the item information, DV
ii =

∑
j WV

ij is
a diagonal matrix, and LV = DV −WV is the graph
Laplacian [28] of the item graph GV .

4.1 Neighborhood Information As in user graph,
the neighborhood information of items in the user-item
rating matrix is also very useful and has been used in
item-oriented memory-based method [4] [11]. The basic
assumption of item-oriented memory-based methods is:
if two items have similar ratings by common users, then
they probably have similar ratings by the other users.
This can be embodied by the adjacency matrix on item
graph as follows,
(4.7)

WV
ij =

{
sim(x·i,x·j), if x·j ∈ N (x·i) or x·i ∈ N (x·j)

0, otherwise.

where N (x·i) denotes the k-nearest neighbor of x·i and
sim(x·i,x·j) is the similarity between items. In our
experiment, we use cosine distance for simplicity.

4.2 Item’s Genre Information Genre information
of items has also been widely used in content-based
recommendation system. Take movie for example, its
genre may be Action, Adventure, Animation, Chil-
dren’s, Comedy, Crime, Documentary, Drama, Fantasy,
Romance, War and so on. The basic assumption of
content-based recommendation system which uses item
genre is if two items have the same genre, then they
probably have the similar ratings by the users. The
basic assumption of content-based recommendation sys-
tem which uses item’s genre information is: if two items
have the same genre, then they probably have the similar
ratings by the users. We denote by fV

i , the feature vec-
tor which characterizes the genre information of item i,
then the assumption can be embodied by the adjacency
matrix on item graph as follows,

(4.8) WV
ij = sim(fV

i , fV
j )

where sim(fV
i , fV

j ) is the similarity between the genre
information of item i and item j. In our experiment, we

use cosine distance for simplicity.

5 Graph Regularized Weighted Nonnegative
Matrix Factorization

Till now, we have introduced graph regularization on
user and item graphs. In this section, we propose graph
regularized weighted nonnegative matrix factorization,
which unifies graph regularization and weighted non-
negative matrix factorization. We first review weighted
nonnegative matrix factorization in the following.

5.1 Weighted Nonnegative Matrix Factoriza-
tion Given a nonnegative rating matrix X ∈ RN×M

+ ,
Weighted Nonnegative Matrix Factorization (WNMF)
[12] aims to find two nonnegative matrices U ∈ RN×d

+

and V ∈ RM×d
+ which minimize the following objective

JWNMF =
N∑

i=1

M∑

j=1

Yij(Xij − (UVT )ij)2

= ||Y ¯ (X−UVT )||2F ,

s.t. U ≥ 0,V ≥ 0,(5.9)

where ¯ is Hadamard product (element-wise product).
|| · ||F is Frobenius norm, Y is the indicator matrix.
Eq.(5.9) can be optimized by iterative multiplicative
updating algorithm as follows

Uij ← Uij
(Y ¯XV)ij

(Y ¯ (UVT )V)ij

Vij ← Vij
((Y ¯X)T U)ij

((Y ¯UVT )T U)ij
(5.10)

5.2 Objective Based on the graph regularizations
on item graph and user graph introduced in previous
sections, we propose a Graph Regularized Weighted
Nonnegative Matrix Factorization (GWNMF), which
minimizes the following objective,

JGWNMF = ||Y ¯ (X−UVT )||2F
+ λtr(UT LUU) + µtr(VT LV V)
s.t. U ≥ 0,V ≥ 0(5.11)

where λ, µ ≥ 0 are regularization parameters balancing
the reconstruction error of WNMF in the first term
and graph regularizations in the second and third term.
When letting λ = µ = 0, GWNMF degenerates to
ordinary weighted nonnegative matrix factorization in
Eq.(5.9). Note that similar models have been proposed
in [21] [22], which address clustering on data manifold.

If we look closely, we can find that there is a
potential problem in Eq.(5.11), when we use graph
regularization on user graph and item graph together.



That is, when setting λ and µ to positive simultaneously,
there is a contradiction between minimizing the three
terms. To overcome this problem, we will extend
our model to Graph Regularized Weighted Nonnegative
Matrix Tri-Factorization in the next section. Here,
we set λ or µ to positive and the other to zero when
we use GWNMF. To make the objective in Eq.(5.11)
lower bounded, when λ = 0, we use L2 normalization
on columns of V in the optimization, and compensate
the norms of V to U. And when µ = 0, we use L2

normalization on columns of U in the optimization, and
compensate the norms of U to V.

5.3 Optimization In the following, we will give the
solution to Eq.(5.11). For the sake of convenience, we
will see both λ and µ as positive in the derivation. As
we see, minimizing Eq.(5.11) is with respect to U and
V, and we cannot give a closed-form solution. We will
present an alternating scheme to optimize the objective.
In other words, we will optimize the objective with
respect to one variable while fixing the other one. This
procedure repeats until convergence.

5.3.1 Computation of U Optimizing Eq.(5.11)
with respect to U is equivalent to optimizing

L(U) = ||Y ¯ (X−UVT )||2F + λtr(UT LUU)
s.t. U ≥ 0(5.12)

The derivative of L(U) with respect to U is

(5.13)
∂L(U)

∂U
= −2Y¯XV+2Y¯(UVT )V+2λLUU

Using the Karush-Kuhn-Tucker complementary condi-
tion [33] for the nonnegativity of U, we get

(5.14) [−Y¯XV + Y¯ (UVT )V + λLUU]ijUij = 0

Since LU may take any signs, we decompose it as
LU = L+

U − L−U , where A+
ij = (|Aij | + Aij)/2 and

A−
ij = (|Aij | −Aij)/2, then

[−Y ¯XV + Y ¯ (UVT )V
+λL+

UU− λL−UU]ijUij = 0(5.15)

Eq.(5.15) leads to the following updating formula

(5.16) Uij ← Uij

√
[Y ¯XV + λL−UU]ij

[Y ¯ (UVT )V + λL+
UU]ij

5.3.2 Computation of V Optimizing Eq.(5.11)
with respect to V is equivalent to optimizing

L(V) = ||Y ¯ (X−UVT )||2F + µtr(VT LV V)
s.t. V ≥ 0(5.17)

The derivative of L(V) with respect to V is
(5.18)
∂L(V)

∂V
= −2(Y¯X)T U+2(Y¯(UVT ))T U+2µLV V

Using the Karush-Kuhn-Tucker complementary condi-
tion [33] for the nonnegativity of V, we get
(5.19)
[−(Y ¯X)T U + (Y ¯ (UVT ))T U + µLV V]ijVij = 0

Since LV may take any signs, we decompose it as
LV = L+

V − L−V , then

[−(Y ¯X)T U + (Y ¯ (UVT ))T U

+µL+
V V − µL−V V]ijVij = 0(5.20)

Eq.(5.20) leads to the following updating formula

(5.21) Vij ← Vij

√
[(Y ¯X)T U + µL−V V]ij

[(Y ¯ (UVT ))T U + µL+
V V]ij

5.4 Convergence Analysis In the following, we will
investigate the convergence of the updating formulas in
Eq.(5.16) and Eq.(5.21). We use the auxiliary function
approach [34] to prove the convergence of the algorithm.

Definition 5.1. [34] Z(h, h′) is an auxiliary function
for F (h) if the conditions

Z(h, h′) ≥ F (h), Z(h, h) = F (h),

are satisfied.

Lemma 5.1. [34] If Z is an auxiliary function for F ,
then F is non-increasing under the update

h(t+1) = arg min
h

Z(h, h(t))

Proof. F (h(t+1)) ≤ Z(h(t+1), h(t)) ≤ Z(h(t), h(t)) =
F (h(t))

Lemma 5.2. [35] For any nonnegative matrices A ∈
Rn×n, B ∈ Rk×k, S ∈ Rn×k,S′ ∈ Rn×k, and A, B are
symmetric, then the following inequality holds

n∑

i=1

k∑
p=1

(AS′B)ipS2
ip

S′ip
≥ tr(ST ASB)

Theorem 5.1. Let
(5.22)
J(U) = tr(λUT LUU−2Y¯XVUT +Y¯(UVT )VUT )



Then the following function

Z(U,U′)

= λ
∑

ij

(L+
UU′)ijU2

ij

U′
ij

− λ
∑

ijk

(L−U )jkU′
jiU

′
ki(1 + log

UjiUki

U′
jiU

′
ki

)

− 2
∑

ij

(Y ¯XV)ijU′
ij(1 + log

Uij

U′
ij

)

+
∑

ij

(Y ¯ (U′VT )V)ijU2
ij

U′
ij

is an auxiliary function for J(U). Furthermore, it is a
convex function in U and its global minimum is

(5.23) Uij = Uij

√
[Y ¯XV + λL−UU]ij

[Y ¯ (UVT )V + λL+
UU]ij

Proof. It can be proved by Lemma 5.2 and the inequal-
ity: z ≥ 1 + log z, ∀z > 0. Please refer to [22] [36] for
more details.

Theorem 5.2. Updating U using Eq.(5.16) will mono-
tonically decrease the value of the objective in Eq.(5.11),
hence it converges.

Proof. By Lemma 5.1 and Theorem 5.1, we can get
that J(U0) = Z(U0,U0) ≥ Z(U1,U0) ≥ J(U1) ≥ . . .
So J(U) is monotonically decreasing. Since J(U) is
obviously bounded below, we prove this theorem.

Theorem 5.3. Updating V using Eq.(5.21) will mono-
tonically decrease the value of the objective in Eq.(5.11),
hence it converges.

Proof. Note the symmetry of U and V in Eq.(5.11), it
can be proved analogously as Theorem 5.2.

6 Graph Regularized Weighted Nonnegative
Matrix Tri-Factorization

We have introduced graph regularized weighted nonneg-
ative matrix factorization in last section. However, as
we previously mentioned, there is a potential problem
in GWNMF when we use item graph regularization and
user graph regularization together. We will solve this
problem by extending GWNMF to Graph Regularized
Weighted Nonnegative Matrix Tri-Factorization.

6.1 Weighted Nonnegative Matrix Tri-
Factorization Given a nonnegative rating matrix

X ∈ RN×M
+ , Weighted Nonnegative Matrix Tri-

Factorization (WNMTF) aims to find three nonnega-
tive matrices U ∈ RN×m

+ , S ∈ Rm×d
+ and V ∈ RM×d

+

which minimize the following objective

JWNMTF =
N∑

i=1

M∑

j=1

Yij(Xij − (USVT )ij)2

= ||Y ¯ (X−USVT )||2F ,

s.t. U ≥ 0,S ≥ 0,V ≥ 0,(6.24)

where ¯ is Hadamard product (element-wise product).
|| · ||F is Frobenius norm, Y is the indicator matrix.

6.2 Objective Again, we propose a Graph Regu-
larized Weighted Nonnegative Matrix Tri-Factorization
(GWNMTF), which minimizes the following objective,

JGWNMTF = ||Y ¯ (X−USVT )||2F
+ λtr(UT LUU) + µtr(VT LV V)
s.t. U ≥ 0,S ≥ 0,V ≥ 0(6.25)

where λ, µ ≥ 0 are regularization parameters balancing
the reconstruction error of WNMTF in the first term
and graph regularizations in the second and third term.
When letting λ = µ = 0, GWNMTF degenerates to
ordinary weighted nonnegative matrix tri-factorization
in Eq.(6.24). Note that similar matrix factorization
models have been proposed in [23] and [24], which
address co-clustering on manifolds, and semi-supervised
co-clustering respectively1. To make the objective
in Eq.(6.25) lower bounded, we use L2 normalization
on columns of U and V in the optimization, and
compensate the norms of U and V to S.

6.3 Optimization

6.3.1 Computation of S Optimizing Eq.(6.25) with
respect to S is equivalent to optimizing

L(S) = ||Y ¯ (X−USVT )||2F
s.t. S ≥ 0(6.26)

The derivative of L(S) with respect to S is
(6.27)

∂L(S)
∂S

= −2UT (Y ¯X)V + 2UT (Y ¯ (USVT ))V

1In [23] [24], the authors omit the nonnegative constraint on
S, thus their models can deal with general input data with mixed

signs rather than nonnegative data. In collaborative filtering, the

elements in the rating matrix are usually positive or missing, i.e.
nonnegative, hence we add nonnegative constraint on S



Using the Karush-Kuhn-Tucker complementary condi-
tion [33] for the nonnegativity of S, we get
(6.28)

[−2UT (Y ¯X)V + 2UT (Y ¯ (USVT ))V]ijSij = 0

Eq.(6.28) leads to the following updating formula

(6.29) Sij ← Sij

√
[UT (Y ¯X)V]ij

[UT (Y ¯ (USVT ))V]ij

6.3.2 Computation of U Optimizing Eq.(6.25)
with respect to U is equivalent to optimizing

L(U) = ||Y ¯ (X−USVT )||2F + λtr(UT LUU)
s.t. U ≥ 0(6.30)

The derivative of L(U) with respect to U is
(6.31)
∂L(U)

∂U
= −2Y¯XVST +2Y¯(USVT )VST +2λLUU

Using the Karush-Kuhn-Tucker complementary condi-
tion [33] for the nonnegativity of U, we get
(6.32)
[−Y ¯XVST + Y ¯ (USVT )VST + λLUU]ijUij = 0

Since LU may take any signs, we decompose it as
LU = L+

U − L−U , then

[−Y ¯XVST + Y ¯ (USVT )VST

+λL+
UU− λL−UU]ijUij = 0(6.33)

Eq.(6.33) leads to the following updating formula

(6.34) Uij ← Uij

√
[Y ¯XVST + λL−UU]ij

[Y ¯ (USVT )VST + λL+
UU]ij

6.3.3 Computation of V Optimizing Eq.(6.25)
with respect to V is equivalent to optimizing

L(V) = ||Y ¯ (X−USVT )||2F + µtr(VT LV V)
s.t. V ≥ 0(6.35)

The derivative of L(V) with respect to V is
(6.36)
∂L(V)

∂V
= −2(Y¯X)T US+2(Y¯(USVT ))T US+2µLV V

Using the Karush-Kuhn-Tucker complementary condi-
tion [33] for the nonnegativity of V, we get
(6.37)
[−(Y¯X)T US+(Y¯(USVT ))T US+µLV V]ijVij = 0

Since LV may take any signs, we decompose it as
LV = L+

V − L−V , then

[−(Y ¯X)T US + (Y ¯ (USVT ))T US

+µL+
V V − µL−V V]ijVij = 0(6.38)

Eq.(6.38) leads to the following updating formula

(6.39) Vij ← Vij

√
[(Y ¯X)T US + µL−V V]ij

[(Y ¯ (USVT ))T US + µL+
V V]ij

6.4 Convergence Analysis In the following, we will
investigate the convergence of the updating formulas in
Eq.(6.29), Eq.(6.34) and Eq.(6.39).

Theorem 6.1. Let
(6.40)
J(S) = tr(−2UT (Y¯X)VST +UT (Y¯(USVT ))VST )

Then the following function

Z(S,S′)

= −2
∑

ij

(UT (Y ¯X)V)ijS′ij(1 + log
Sij

S′ij
)

+
∑

ij

(UT (Y ¯ (US′VT ))V)ijS2
ij

S′ij

is an auxiliary function for J(S). Furthermore, it is a
convex function in S and its global minimum is

(6.41) Sij = Sij

√
[UT (Y ¯X)V]ij

[UT (Y ¯ (USVT ))V]ij

Proof. Please refer to [35].

Theorem 6.2. Updating S using Eq.(6.29) will mono-
tonically decrease the value of the objective in Eq.(6.25),
hence it converges.

Proof. By Lemma 5.1 and Theorem 6.1, we can get that
J(S0) = Z(S0,S0) ≥ Z(S1,S0) ≥ J(S1) ≥ . . . So J(S)
is monotonically decreasing. Since J(S) is obviously
bounded below, we prove this theorem.

Theorem 6.3. Let

L(U) = tr(λUT LUU− 2Y ¯XVST UT

+ Y ¯ (USVT )VST UT )(6.42)

Then the following function

Z(U,U′)

= λ
∑

ij

(L+
UU′)ijU2

ij

U′
ij

− λ
∑

ijk

(L−U )jkU′
jiU

′
ki(1 + log

UjiUki

U′
jiU

′
ki

)

− 2
∑

ij

(Y ¯XVST )ijU′
ij(1 + log

Uij

U′
ij

)

+
∑

ij

(Y ¯ (U′SVT )VST )ijU2
ij

U′
ij



is an auxiliary function for L(U). Furthermore, it is a
convex function in U and its global minimum is

(6.43) Uij = Uij

√
[Y ¯XVST + λL−UU]ij

[Y ¯ (USVT )VST + λL+
UU]ij

Proof. The proof of this theorem is similar with that of
Theorem 5.1, hence we omit it here.

Theorem 6.4. Updating U using Eq.(6.34) will mono-
tonically decrease the value of the objective in Eq.(6.25),
hence it converges.

Proof. By Lemma 5.1 and Theorem 6.3, we can get
that J(U0) = Z(U0,U0) ≥ Z(U1,U0) ≥ J(U1) ≥ . . .
So J(U) is monotonically decreasing. Since J(U) is
obviously bounded below, we prove this theorem.

Theorem 6.5. Updating V using Eq.(6.39) will mono-
tonically decrease the value of the objective in Eq.(6.25),
hence it converges.

Proof. Note the symmetry of U and V in Eq.(6.25), it
can be proved analogously as Theorem 6.4.

7 Experiments

In this section, we conduct several experiments to com-
pare our methods with some state of the art collabo-
rative filtering methods, e.g. Probabilistic Matrix Fac-
torization (PMF) [14] and WNMF [12] on benchmark
collaborative filtering data sets. We will investigate the
impacts of internal and external information. All of our
experiments have been performed on a Intel Core2 Duo
2.8GHz Windows XP machine with 3GB memory.

7.1 Data Sets In order to evaluate our methods, we
use 2 widely used collaborative filtering data sets.

MovieLens100K2 MovieLens100K consists of
100000 movie ratings of 943 users for 1682 movies. The
preference of the user for a specific movie is rated from
1 to 5, and 0 indicates that the movie is not rated by
the user. It is very suitable to evaluate the impacts
of user demographic information and item genre infor-
mation because it consists of demographic information
(e.g. gender, age and occupation) of users and genre of
movies. In detail, we use 2 dimensional feature vector
to characterize the user’s gender, that is, if the user is
male, then the first feature is 1 while the second is 0,
and vice versa. We partition the user into 7 age group:
1-17, 18-24, 25-34, 35-44, 45-49, 50-55, 56+. We use
7 dimensional feature vector to describe the user’s age
group. There are totally 21 occupations: administrator,

2http://www.grouplens.org/node/73

artist, doctor, educator, engineer, entertainment, exec-
utive, healthcare, homemaker, lawyer, librarian, mar-
keting, programmer, retired, salesman, scientist, stu-
dent, technician, writer, other and none. So we use a 21
dimensional feature vector to describe the user’s occu-
pation.We concatenate the 3 feature vectors mentioned
above together to get a totally 30 dimensional feature
vector fU

i for user i. On the other hand, there are 19
genres of movies. Likewise, we use a 19 dimensional fea-
ture vector fV

i for movie i. We also evaluate the impact
of neighborhood information of users and items on this
data set.

Epinions3 In Epinion.com, users can also assign
products or reviewers integer ratings form 1 to 5. These
ratings and reviews will influence future users when
they are deciding whether a product is worth buying
or a movie is worth watching. Every user of Epinions
maintains a ”trust” list which presents a network of
trust relationships between users. This network is called
the ”Web of trust”, and is used by Epinions to re-
order the product reviews such that a user first sees
reviews by users that he or she trusts. So we choose
Epinions data set to investigate the impact of social
trust network for recommendation. The impact of
neighborhood information is also evaluated on this data
set. Note that the original data set consists of 49290
uses who have rated on 139738 different items. For the
memory limitation in our machine, we chose the users
who rated more than 200 ratings and the items which
has more than 100 ratings by the users. Thus we obtain
a subset consists of 2671 users and 1375 items.

Table 1 summarizes the characteristics of the data
sets used in this experiment.

Table 1: Description of the data sets
Data Sets #users #items #ratings

MovieLens100K 943 1682 100000
Epinions 2671 1375 75308

7.2 Evaluation Metrics We use mean absolute er-
ror, which is widely used for evaluating collaborative
filtering results.

Mean Absolute Error MAE is defined as

(7.44) MAE =

∑
i,j |Xij − X̃ij |

N

where Xij denotes the rating user i gave to item j, X̃ij

denotes the predicted rating user i gave to item j.

3http://www.trustlet.org/wiki/Downloaded Epinions dataset



7.3 Methods & Parameter Settings Here we will
introduce the methods which we compared with and
their associated parameter settings.

PMF [14]: The dimensionality of the low dimen-
sional representations is set by the grid {5, 10, 20}. The
regularization parameters in the model is set by the grid
{0.1, 1, 10, 100}. And the number of iterations is set to
1000.

WNMF [12]: The parameter settings of WNMF is
the same as that of PMF.

GWNMF: To investigate the impact of neigh-
borhood information, user demographic information,
item genre information and social trust network, we
use GWNMF. In detail, for neighborhood information
among users, we set µ = 0 and WU as in Eq.(3.2),
referred to User Neighbor GWNMF. For user demo-
graphic information, we set µ = 0 and WU as in
Eq.(3.3), referred to User Demographic GWNMF. For
neighborhood information of items, we set λ = 0 and
WV as in Eq.(4.7), referred to Item Neighbor GWNMF.
For item genre information, we set λ = 0 and WV

as in Eq.(4.8), referred to Item Genre GWNMF. And
for social trust network, we set µ = 0 and WU as in
Eq.(3.4), referred to Social Trust Network GWNMF. In
GWNMF, the regularization parameter λ and µ are set
by searching the grid {0.1, 1, 10, 100}. The dimension-
ality of the low-dimensional representations, i.e. d, is
set by the grid {5, 10, 20}. For Eq.(3.2) and Eq.(4.7), to
avoid parameter tuning, we set the number of nearest
neighbors k to N − 1 and M − 1 respectively, i.e. com-
plete graph. The number of iterations is set to 1000.

GWNMTF: In addition, in order to investigate
the impact of using neighborhood information of users
and items together, and using user demographic and
item genre together, we use GWNMTF. referred to
User Neighbor + Item Neighbor GWNMTF and User
Demographic + Item Genre GWNMTF respectively.
In GWNMTF, the regularization parameters λ and µ
are set equal and they are tuned by searching the grid
{0.1, 1, 10, 100}. The dimensionality of low dimensional
user representation m and item representation d are set
equal too. They are tuned by the grid {5, 10, 20}. The
number of iterations is set to 1500. The other parameter
settings are the same as that in GWNMF.

We randomly select 20%, 50% and 80% ratings as
training set, and the rest as testing set. The random
selection was carried out 10 times independently, and
the average MAE is reported.

7.4 Results The experimental results are shown in
Table 2 and Table 3 respectively.

From the two tables, we observe that:

1. Our methods which incorporate either internal or

external information can improve WNMF greatly,
which is a special case of our model. This verifies
the effectiveness of our methods.

2. As to our methods, the smaller the number of train-
ing ratings (the sparse the user-item rating matrix)
is, the more improvement can be achieved. This is
because when the rating matrix is sparse, the fac-
torization of the user-item matrix has many pos-
sible solutions. In this case, internal information
(i.e. neighborhood information of users and items)
and external information (i.e. user demographic
information, item genre information, social trust
network) can alleviate the problem of sparsity, and
aid the matrix factorization to obtain more inter-
pretable low-dimensional representations of users
and items, which in turn benefit the recommenda-
tion accuracy.

3. User demographic information and item genre in-
formation is more useful than the neighborhood in-
formation. This is consistent with our ordinary in-
tuitions since the external information is more in-
formative than the internal one. The former plays
the role as “class labels” in supervised learning,
while the latter is “unsupervised”. And supervised
learning outperforms unsupervised learning in gen-
eral.

4. Although social trust network benefits the recom-
mendation accuracy, it is not as useful as the neigh-
borhood information. This is probably because
that the social trust network is not very reliable
compared with the past ratings.

5. Using the neighborhood information of users and
items together, or the user’s demographic informa-
tion and item’s genre information together obtains
comparable or better results than using these infor-
mation respectively. We believe if we tune λ and µ
more carefully, we can achieve much better results
by using these information together.

6. In a certain range, the higher the dimensionality of
the low-dimensional representation, the better the
performance is. In our empirical study, when the
dimensionality increase to 50, there is no significant
improvement. On the other hand, it is easy to
show that the higher the dimensionality, the more
computational cost is needed. As a result, in our
experiments, we set it around 10 to get a tradeoff.

7. When the number of training ratings is small,
e.g. 20% (in other words, the user-item matrix
is very sparse), PMF sometimes achieves better



Table 2: MAE comparison on MovieLens100K
Training Data Size 20% 50% 80%

Dimensionality d=5 d=10 d=20 d=5 d=10 d=20 d=5 d=10 d=20
PMF 0.6910 0.6720 0.6256 0.6637 0.6120 0.5400 0.6596 0.6019 0.5190

WNMF 0.7100 0.7185 0.6641 0.6597 0.6016 0.5374 0.6344 0.5827 0.5083
User Neighbor GWNMF 0.6924 0.6728 0.6218 0.6450 0.6015 0.5333 0.6337 0.5821 0.5080
Item Neighbor GWNMF 0.6944 0.6722 0.6198 0.6437 0.5987 0.5310 0.6336 0.5816 0.5058

User Demographic GWNMF 0.6872 0.6591 0.6208 0.6440 0.6006 0.5333 0.6343 0.5813 0.5085
Item Genre GWNMF 0.6848 0.6604 0.6181 0.6430 0.5988 0.5316 0.6330 0.5811 0.5069

User Neighbor + Item Neighbor GWNMTF 0.6840 0.6627 0.6348 0.6496 0.5949 0.5291 0.6305 0.5822 0.5016
User Demographic + Item Genre GWNMTF 0.6846 0.6610 0.6310 0.6523 0.5970 0.5349 0.6271 0.5751 0.5013

Table 3: MAE comparison on Epinions
Training Data Size 20% 50% 80%

Dimensionality d=5 d=10 d=20 d=5 d=10 d=20 d=5 d=10 d=20
PMF 0.8219 0.7894 0.7584 0.6602 0.5763 0.4839 0.6415 0.5415 0.4144

WNMF 0.8604 0.7659 0.6130 0.6606 0.5725 0.4205 0.6337 0.5290 0.3753
Item Neighbor GWNMF 0.7530 0.6534 0.5311 0.6544 0.5614 0.3960 0.6326 0.5251 0.3694
User Neighbor GWNMF 0.7426 0.6493 0.5208 0.6573 0.5547 0.3925 0.6324 0.5232 0.3655

Social Trust Network GWNMF 0.7937 0.6815 0.5272 0.6583 0.5601 0.3893 0.6332 0.5239 0.3630
User Neighbor + Item Neighbor GWNMTF 0.7271 0.6691 0.5579 0.6558 0.5332 0.3837 0.6325 0.5268 0.3704

results than WNMF. In other most cases, WNMF
outperforms PMF.

7.5 Impact of the Regularization Parameters
In this subsection, we will investigate the impact of the
regularization parameters. We vary the value of λ or µ
under different dimensionality of low dimensional rep-
resentations and different numbers of training ratings,
and plot the MAE on movieLens100K in Figure 1 and
the MAE on Epinions in Figure 2. Each column cor-
responds to different number of training ratings, while
each row corresponds to different dimensionality of low-
dimensional representations.

We can see: when the number of training ratings
is small, large regularization parameter (e.g. 10, 100)
is preferred since the internal or external information
is critical for matrix factorization. However, when the
number of training ratings is large, small regularization
parameter (e.g. 0.1, 1) is suitable since the factorization
of rating matrix itself works well enough.

8 Conclusion and Future Works

In this paper, we propose a graph regularized nonnega-
tive matrix factorization model for collaborative filter-
ing. We construct two graphs on the item as well as
user side, to utilize the internal and external informa-
tion. Experiments on benchmark data sets demonstrate
that the proposed methods outperform many state of
the art collaborative filtering methods.

In our future work, we will investigate combining
both internal information and external information, to
aid matrix factorization. This corresponds to mixed
graph regularization on users and items in our model.
On the other hand, we will investigate incorporating

internal and external information in PMF [14].
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