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The Rise of Deep Learning
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The Rise of Deep Learning–Over-parameterization

The evolution of the winning entries on the ImageNet

Alex Krizhevsky et al. 2012. “Imagenet classification with deep convolutional neural networks”. In Advances in neural
information processing systems, 1097–1105
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Empirical Observations for DNNs

Fitting random labels and random pixels on CIFAR10

Chiyuan Zhang et al. 2016. “Understanding deep learning requires rethinking generalization”. arXiv preprint
arXiv:1611.03530
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Empirical Observations for DNNs

Training ResNet of different sizes on CIFAR10.

Behnam Neyshabur et al. 2018. “Towards Understanding the Role of Over-Parametrization in Generalization of Neural
Networks”. arXiv preprint arXiv:1805.12076
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Optimization of Neural Networks

I Fully connected neural network:

fW(x) = v>σ(W>
Lσ(W>

L−1 · · ·σ(W>
1 x) · · · ))

with weight matrix Wl ∈ Rm×m and v ∈ {±1}m.

I σ(·) is the activation function, e.g., ReLU: σ(t) = max(0, t), sigmoid, etc.

I Given a training sample S = {(x1, y1), . . . , (xn, yn)},

min
W

LS(W) =
1

n

n∑
i=1

`[fW(xi), yi].

I `(·, ·) denotes the loss function, e.g., cross-entropy loss, square loss, etc.
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Optimization of Neural Networks

Question 1

Why over-parameterized neural networks trained by gra-
dient descent can fit training data with arbitrary labels?

Challenges:

I The objective training loss is highly nonconvex or even
nonsmooth.

I Conventional optimization theory can only guarantee
finding first-order stationary points or second-order
stationary points.
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Optimization of Shallow Networks

Early Work:
I A line of research (Goel et al. 2016; Tian 2017; Du et al. 2017; Li and Yuan 2017;

Zhong et al. 2017; Zhang et al. 2018) on two-layer neural networks assumes a
underlying teacher network, and essentially does parameter recovery

Recent Work:
I Li and Liang (2018): When the data comes from mixtures of well-separated

distributions, stochastic gradient descent (SGD) learns two-layer ReLU networks
for multi-class classification problem (using cross-entropy loss) if the neural net-
work width satisfies m = Ω(poly(l, k, ε−1)) (l: number of mixtures, k: number
of classes, ε target expected error).

I Du et al. (2018): When the training data matrix is not degenerate (i.e., no
duplicate data), gradient descent (GD) optimizes two-layer ReLU networks for
regression problem (using square loss) if the neural network width satisfies m =
Ω(n6/λ4

0) (n: sample size, λ0: smallest eigenvalue of some gram matrix).

How to prove the convergence
of GD/SGD for training DNNs?
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Optimization of Deep Networks

I Allen-Zhu et al. (2018): When any two data points are well separated, both
GD and SGD optimize deep ReLU networks for regression problem (using square

loss) if the neural network width satisfies m = Ω̃(poly(L, n)) (n: sample size, L:
neural network depth).

I Du et al. (2018): When the training data matrix is not degenerate, GD optimizes
deep neural networks with smooth activation functions for regression problem
(using square loss) if the neural network width satisfies m = Ω

(
poly(n)2O(L)

)
.

I Zou et al. (2018): When any two data from different classes are well sepa-
rated, both GD and SGD optimize deep ReLU networks for binary classification
problem (with a class of loss functions) if the neural network width satisfies

m = Ω̃(poly(L, n)).
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Convergence of GD for Training DNNs

Theorem (Zou et al. (2018), Informal)

If any two data points from different classes are separated by a constant
φ and the neural network width satisfies

m = Ω̃
(
n14L16/φ4

)
then with high probability, gradient descent converges to a point that
achieves zero training error within the following iteration number,

K = O
(
n5L3/φ

)
.

I The over-parameterization condition and iteration complexity are polyno-
mial in all problem parameters.

Similar results have also been proved in Allen-Zhu et al. (2018) and Du et al. (2018) for regression problem with square
loss.
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Comparison with Existing Work

Table: Over-parameterization conditions and iteration complexities of GD for
training deep neural networks.

Over-para. condition Iteration complexity ReLU?

Du et al. (2018) Ω
(

2O(L)·n4

λ4
min(K

(L))

)
O
(

2O(L)·n2 log(1/ε)

λ2
min(K

(L))

)
no

Allen-Zhu et al. (2018) Ω̃
(
n24L12

φ8

)
O
(
n6L2 log(1/ε)

φ2

)
yes

Zou et al. (2018) Ω̃
(
n14L16

φ4

)
O
(
n5L3

φ

)
yes

K(L) is the conjugate kernel (Daniely (2017)) for L-hidden-layer neural network.
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(
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Zou and Gu (2019) Ω̃
(
n8L12

φ4

)
O
(
n2L2 log(1/ε)

φ

)
yes
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Overview of Proof Technique

W(W(0), τ) :=
{
W = {Wl}Ll=1 : ‖Wl −W

(0)
l ‖F ≤ τ, l ∈ [L]

}
For large enough width m:

I For W ∈ W(W(0), τp), τp =
O(poly(n,L)), LS(W) enjoys good
curvature properties (e.g., gradient
dominance and nearly smooth).
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W(W(0), τ) :=
{
W = {Wl}Ll=1 : ‖Wl −W

(0)
l ‖F ≤ τ, l ∈ [L]

}
For large enough width m:

I For W ∈ W(W(0), τp), τp =
O(poly(n,L)), LS(W) enjoys good
curvature properties (e.g., gradient
dominance and nearly smooth).

I Gradient descent converges with tra-
jectory length τopt ≤ O(poly(n) ·
m−1/2).

I Sufficiently large m can guarantee
that τopt ≤ τp.
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Generalization of Deep Neural Networks

Question 2

Why an over-parameterized neural network can generalize
even when it interpolates the training data? What kind
of data can be learned by over-parameterized networks?
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Existing Work

Uniform convergence based generalization bounds (Neyshabur et
al. 2015; Bartlett et al. 2017; Neyshabur et al. 2017; Golowich et al. 2017;
Arora et al. 2018; Li et al. 2018) study

I Bartlett et al. (2017) gives a Rademacher complexity based
generalization error bound:

Õ

(√
m

n

L∏
l=1

‖Wl‖2

[
L∑

l=1

‖W>
l −W

(0)>
l

‖2/32,1

‖Wl‖
2/3
2

]3/2)

I Neyshabur et al. (2018) provides a bound using the PAC-Bayes
framework

Õ

(
L

√
m

n

L∏
l=1

‖Wl‖2

[
L∑

l=1

(
√
m‖Wl −W

(0)
l
‖F )2

‖Wl‖22

]1/2)

Cannot provide generalization bounds indepen-
dent of network width in the practical setting.
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Algorithm-dependent Bounds for Shallow Networks

I Li and Liang (2018): When the data comes from mixtures of well-separated
distributions, SGD learns two-layer ReLU networks for multi-class classification
problem.

I Allen-Zhu et al. (2018): Over-parameterized three-layer ReLU networks can
learn three-layer narrower networks with smooth activation functions when trained
with SGD.

I Arora et al. (2019): GD can train a two-layer ReLU network with fixed second-

layer weights to achieve a generalization error of the form Õ(
√

y>(H∞)−1y/n)

How to prove algorithm-dependent
generalization bounds for DNNs?
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Algorithm-dependent Bounds for Deep Networks

I Daniely (2017): A neural network of large enough size is competitive with
the best function in the conjugate kernel class of the network. The training
is essentially only on the last layer (the hidden layer updates are negligible).

I Cao and Gu (2019): Over-parameterized ReLU networks can compete
with the best function in the neural tangent random feature function class.
The generalization bound can also be written in the form Õ(

√
y>(Θ(L))−1y/n)

(y: label vector, Θ(L): gram matrix of neural tangent kernel (Jacot et al.
2018)).
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Algorithm-dependent Bounds for Deep Networks

Theorem (Cao and Gu (2019), informal)

For any R > 0, if m ≥ Ω̃
(
poly(R,L, n)

)
, then with high probability, SGD

returns Ŵ that satisfies

E
[
L0−1
D (Ŵ)

]
≤ inf

f∈F(W(0),R)

{
4

n

n∑
i=1

`[yi · f(xi)]

}
+O

[
LR√
n

+

√
log(1/δ)

n

]
,

where

F(W(0), R) =
{
fW(0)(·) + 〈∇WfW(0)(·),W〉 : W ∈ W(0, R ·m−1/2)

}
.

I Trade-off in the bound:
I When R is small, first term is large, second term is small.
I When R is large, first term is small, second term is large.

I When R = O(1), the second term is standard large-deviation error.
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Algorithm-dependent Bounds for Deep Networks

Corollary (Cao and Gu (2019), informal)

Let y = (y1, . . . , yn)> and λ0 = λmin(Θ(L)). If m ≥ Ω̃
(
poly(L, n, λ−10 )

)
, then

with high probability, SGD returns Ŵ that satisfies

E
[
L0−1
D (Ŵ)

]
≤ Õ

[
L ·
√

y>(Θ(L))−1y

n

]
+O

[√
log(1/δ)

n

]
.

where Θ(L) is the neural tangent kernel (Jacot et al. 2018).

Θ
(L)
i,j := limm→∞m

−1〈∇WfW(0)(xi),∇WfW(0)(xj)〉.

The “classifiability” of the underlying data distribution
D can also be measured by the quantity y>(Θ(L))−1y.
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Overview of Proof Technique

Key observations

I Deep ReLU networks are almost linear in terms of their parameters
in a small neighbourhood around random initialization

fW′(xi) ≈ fW(xi) + 〈∇fW(xi),W
′ −W〉.

I L(xi,yi)(W) is Lipschitz continuous and almost convex

‖∇Wl
L(xi,yi)(W)‖F ≤ O(

√
m), l ∈ [L],

L(xi,yi)(W
′) & L(xi,yi)(W) + 〈∇WL(xi,yi)(W),W′ −W〉.

Optimization for Lipschitz and (almost) convex
functions

+
Online-to-batch conversion
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Summary

For wide enough deep neural networks

I GD and SGD can find global minima of training loss
on regular training data with arbitrary labeling.

I Neural networks trained by SGD can achieve Õ
(
n−1/2

)
generalization error if the training data admits small
y>(Θ(L))−1y.
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Future Work and Open Problems

I For optimization, the best condition on the neural network width is
Ω̃(n8) (Zou and Gu 2019), can we weaken this condition?

I For generalization, some recent results show that neural networks
can beat kernel regression on handcrafted learning problems (Allen-
Zhu et al. 2019, Wei et al. 2019). How to show it in the general
setting?
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Thank you!
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