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Deep Learning is Everywhere

Speech Recognition Machine Translation

Image Recognition Recommendation Systems
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Deep Learning Problems Are HARD

I Various architectures, layer types, activation functions ...
I Highly nonconvex optimization loss surface

…

… …

… …

Input Layer Hidden Layer Output Layer

Right figure from https://www.cs.umd.edu/ tomg/projects/landscapes/
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Optimization in Deep Learning

I The optimization problems in deep learning can be formalized as
follows:

min f(θ) := Eξf(θ; ξ), (1)

where f(θ; ξ) is nonconvex
I For example, f(θ) = 1/n

∑n
i=1 fi(θ)
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Stochastic Gradient Descent

θt+1 = θt − αtgt where gt = ∇ft(θt)

Advantages:
I Simple and efficient
I Low computation complexity

Disadvantages:
I Slow to converge
I Easily get “trapped” in suboptimal solutions
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SGD + Momentum
Introduce a new momentum term, which accumulates the previous
stochastic gradients, just like in Physics objects can accumulate
momentum when moving.

mt = βmt−1 + gt

θt+1 = θt − αtmt
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AdaGrad (Duchi et al., 2012)[1]

AdaGrad modifies the universal learning rate into adaptive learning
rate for each dimension, based on past gradients computed for each
dimension[2] .

θt+1 = θt − αt
gt√
vt

where vt =
1

t

t∑
j=1

g2
j

I First to use adaptive learning rate for each dimension
I Proved to converge faster than SGD in sparse gradient cases
I Also works for non-sparse cases empirically

[1] Duchi, John, Elad Hazan, and Yoram Singer. ”Adaptive subgradient methods for online learning
and stochastic optimization.” Journal of Machine Learning Research 12.Jul (2011): 2121-2159.

[2] With slightly abuse of notation, the division between two vectors means element-wise division,
and the square on vector means element-wise square.
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RMSprop (Hinton et al., 2012)[1]

RMSprop uses the exponential moving average of the gradient to
adjust the learning rate:

vt = βvt−1 + (1− β)g2
t

θt+1 = θt − αt
gt√
vt

I Works well empirically

[1] Hinton, Geoffrey, Nitish Srivastava, and Kevin Swersky. ”Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent.” Cited on (2012): 14.
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Adam (Kingma & Ba, 2015)[1]

Adam combines RMSprop (Hinton et al., 2012) with momentum
acceleration

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

θt+1 = θt − αt
mt√
vt

I Easy to tune, default parameter setting works for most problems
I Empirically converge faster than most other adaptive methods on

training dataset

[1] Kingma, Diederik P., and Jimmy Ba. ”Adam: A method for stochastic optimization.” arXiv
preprint arXiv:1412.6980 (2014).
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AmsGrad (Reddi et al., 2018)[1]

AmsGrad adds an extra max() step upon Adam to keep a “long term
memory” (keep the largest value in history).

θt+1 = θt − αt
mt√
v̂t

where mt = βmt−1 + (1− β)gt

vt = βvt−1 + (1− β)g2
t

v̂t = max(v̂t−1,vt)

I Fixing the possible non-convergence issues found in Adam
I State-of-the-art in adaptive gradient method
I Empirically even faster than Adam

[1] Reddi, Sashank J., Satyen Kale, and Sanjiv Kumar. ”On the convergence of adam and beyond.”
(2018).
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Generalization Gap of Adam (Wilson et al.,2017)

Adam generalizes worse for largely over-parameterized problems, e.g.,
modern CNN architectures

Figure from Wilson, Ashia C., et al. ”The marginal value of adaptive gradient methods in machine
learning.” , Advances in Neural Information Processing Systems. 2017.
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In Practice...

I Recent advances in designing neural network architectures
(VGGNet, ResNet, WideResNet, DenseNet, ...) are all reporting
their performances by training their models with SGD with
momentum because of the generalization gap of Adam

I Adaptivity, on the other hand, gives faster convergence at early
stages in training
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A Question to Ask...

I Can we take the best from both Adam and SGD with momentum,
i.e., design an algorithm that not only enjoys the fast convergence
rate as Adam, but also generalizes as well as SGD with
momentum?
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What’s Wrong with Adam?

I “Small Learning Rate Dilemma”: Adam usually takes a much
smaller learning rate than SGD. After several rounds of decaying,
the learning rate of the Adam is too small to make any significant
progress in the training process

I Reasons for the small learning rate in Adam? Adaptive terms
based on previous gradients could be highly skewed, and we have
to use smaller learning rate to keep some dimensions from
exploding
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Control the Adaptivity in Adam

I Solution: control the adaptivity in Adam
I Less adaptivity means larger learning rate is allowed and the

“Small Learning Rate Dilemma” can be avoided
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Partially Adaptive Momentum Estimation (Padam)

I Padam adds the partial adaptive parameter p to control the
adaptivity in the denominator

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

v̂t = max(v̂t−1,vt)

θt+1 = θt − αt
mt

v̂p
t

p ∈ (0, 1/2] is a tuning parameter
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What p Should We Choose?

I For Padam, p can be chosen from (0, 1/2]

I Adam corresponds to Padam with p = 1/2, which is largest possible p to
guarantee convergence

I Padam with a proper adaptive parameter p, will enable us to adopt a
larger learning rate to avoid the “small learning rate dilemma”
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Theory of Convergence for Convex Optimization [1]

I Regret: characterize the sum of all previous loss function values ft(θt)
relative to the performance of the best fixed parameter θ∗ from a feasible
set.

RT =
T∑

t=1

(
ft(θt)− ft(θ

∗)
)
, where θ∗ = argmin

θ∈X

T∑
t=1

ft(θ)

I Goal: to show that R(T ) = o(T ), so that when T → ∞, R(T )/T
converge to 0.

I Assumption: f is convex, i.e. ft(y) ≥ ft(x) +∇ft(x)
>(y − x)

[1] Chen, Jinghui, and Quanquan Gu. ”Closing the Generalization Gap of Adaptive Gradient
Methods in Training Deep Neural Networks.” arXiv preprint arXiv:1806.06763 (2018).
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Theory of Convergence for Convex Optimization

Theorem 1 (Padam, Convex)

Under convex assumption, suppose X has bounded diameter, and ft
has bounded gradient, we have

RT ≤ C1

d∑
i=1

√
T · v̂pT,i + C2

d∑
i=1

‖g1:T ,i‖2 + C3d.

I Similar to Adam and Amsgrad, the regret of Padam can be considerably
better than online gradient descent (which is known to have a regret
bound of O(

√
dT )) when

∑d
i=1 ‖g1:T ,i‖2 �

√
dT and

∑d
i=1 v̂

p
T,i �

√
d.
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Theory of Convergence for Convex Optimization

Corollary 2 (Padam, Convex)

The regret bound for Padam satisfies

RT = Õ(
√
T ).

I It implies that Padam attains RT = o(T ) for all situations (no matter
whether the data features are sparse or not). This suggests that Padam
indeed converges to the optimal solution when the loss functions are
convex, as shown by the fact that limT→∞ RT /T → 0.
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Theory of Convergence for Nonconvex Optimization[1]

I What about the convergence result for nonconvex functions?
I We first give the convergence result for Adam-type algorithms

under nonconvex setting.

We need the following assumptions:
I f is L-smooth, where for any x,y ∈ Rd,

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2.
I f has G∞-bounded stochastic gradient, where for each x and ξ,

‖∇f(x; ξ)‖∞ ≤ G∞.

[1] Zhou, Dongruo, et al. ”On the convergence of adaptive gradient methods for nonconvex
optimization.” arXiv preprint arXiv:1808.05671 (2018).
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Theory of Convergence for Nonconvex Optimization

Theorem 3 (Adam-type, Nonconvex)
Suppose that f is L-smooth and has G∞-bounded stochastic gradient,
p ∈ [0, 1/2], β1 < β2p

2 and αt = α for t = 1, . . . , T . Then for any
q ∈ [max{0, 4p− 1}, 1], the output θout of Padam satisfies that

E
[∥∥∇f(θout)

∥∥2
2

]
≤ M1

Tα
+

M2d

T
+

M3αd
q

T (1−q)/2
E
( d∑

i=1

‖g1:T,i‖2
)1−q

,

where M1,M2 and M3 are constants independent of T, α and d.
I Similar to Adam and AmsGrad in convex cases, our analysis shows that

the convergence results should be better when
∑d

i=1 ‖g1:T ,i‖2 �
√
dT .
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Theory of Convergence for Nonconvex Optimization

Corollary 4 (Padam, Nonconvex)
Suppose that p ∈ [0, 1/4]. With the fact that

∑d
i=1 ‖g1:T,i‖2 �

√
dT

(Duchi et al., 2011) (Reddi et al., 2018) and specific choice of α, we
have

E
[∥∥∇f(θout)

∥∥2
2

]
= O

(
d1/4√
T

+
d

T

)
.

I It implies that Padam attains E‖∇f(θout)‖22] = O(1/
√
T ), which is also

attained by SGD and AmsGrad.
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Proof Sketch

mt = β1mt−1 + (1− β1)gt

vt = β1vt−1 + (1− β1)g
2
t

v̂t = max(v̂t−1,vt)

θt+1 = θt − αt
mt

v̂p
t

I Hard to analyze because of the momentum term mt and adjusting
learning rate αtv̂

−p!
I How do we deal with them?
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Deal with Momentum mt via Auxiliary Sequence

I To deal with momentum: introduce an auxiliary sequence

zt = θt +
β1

1− β1
(θt − θt−1).

I We have

zt+1 − zt =
β1

1− β1

(
αt−1V̂

−p
t−1 − αtV̂

−p
t

)
mt−1 − αtV̂

−p
t gt,

which involves both mt and gt into analysis!
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Adjusting Learning Rate αtV̂
−p

I Key property by the definition of αt and V̂−p:

αt−1V̂
−p
t−1 � αtV̂

−p
t ,

which allows us to treat αtV̂
−p
t as a single decreasing scalar

learning rate.
I Easy to analyze!
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Final Proof Roadmap

We have

f(zt+1) ≤ f(zt) +∇f(zt)
>(zt+1 − zt) +

L

2
‖zt+1 − zt‖22

= f(zt) +∇f(xt)
>(zt+1 − zt)︸ ︷︷ ︸
I1

+ (∇f(zt)−∇f(xt))
>(zt+1 − zt)︸ ︷︷ ︸

I2

+
L

2
‖zt+1 − zt‖22︸ ︷︷ ︸

I3

.

I With the G∞-bounded gradient assumption, we can bound
E∇‖f(θout)‖22 by bounding I1, I2, I3 seprately!
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Comparison of Convergence Rates

Algorithm E‖∇f(θout)‖22
Padam (p ∈ [0, 1/4]) O

(
d1/4√

T
+ d

T

)
Adam/AmsGrad (p = 1/2) O

(√
d
T + d

T

)
SGD O

(√
d
T

)
The convergence rate of Padam has a better dependence on data
dimension d compared with Adam and SGD1.

1Here we still assume that f has G∞-bounded stochastic gradient.
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Experimental Setup

I CNN Architectures: VGGNet, ResNet, WideResnet
I Baseline Methods: SGD + Momentum, Adam, Amsgrad
I Datasets: CIFAR10, CIFAR100, ImageNet

Sample VGGNet Sample ResNet Block
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CIFAR-10 Experiments

I Train loss and test error (top-1 error) of three CNN architectures
on CIFAR-10.
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CIFAR-10 Experiments

I Test accuracy of VGGNet on CIFAR-10. Bold number indicates
the best result.

Methods Test Accuracy (%)

25th Epoch 50th Epoch 75th Epoch 100th Epoch

SGD Momentum 84.25± 0.59 91.01± 0.09 92.64± 0.14 92.72± 0.08
Adam 87.55± 0.48 90.74± 0.21 91.43± 0.36 91.41± 0.04
Amsgrad 88.73± 0.41 91.62± 0.12 91.87± 0.07 92.04± 0.06
Padam 87.73± 0.60 92.11± 0.27 92.85± 0.23 92.86± 0.11
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CIFAR-100 Experiments

I Train loss and test error (top-1 error) of three CNN architectures
on CIFAR-100.
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CIFAR-100 Experiments

I Test accuracy of VGGNet on CIFAR-100. Bold number indicates
the best result.

Methods Test Accuracy (%)

25th Epoch 50th Epoch 75th Epoch 100th Epoch

SGD Momentum 52.12± 0.65 66.53± 0.33 70.43± 0.24 70.78± 0.11
Adam 52.35± 0.47 61.73± 0.30 62.18± 0.15 62.20± 0.13
Amsgrad 58.39± 0.36 65.31± 0.31 66.32± 0.25 66.36± 0.14
Padam 60.28± 0.25 69.69± 0.30 71.05± 0.24 71.10± 0.08
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ImageNet Experiments

I Top-1 and Top-5 error for VGGNet and ResNet on ImageNet
dataset.
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(a) Top-1 Error for VGGNet
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(b) Top-5 Error for VGGNet
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(c) Top-1 Error for ResNet
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(d) Top-5 Error for ResNet
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Sensitivity Analysis

I Plots for sensitivity of p (Left) and ‖θt − θ0‖2 against training
epochs (Right). Both experiments adopts ResNet on CIFAR-10
dataset.

(a) Sensitivity of p
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(b) ‖θt − θ0‖2 (p = 1/8)
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Summary

I We propose a new algorithm Padam, which generalizes the original
Adam algorithm.

I We prove that under both convex and nonconvex setting, Padam
achieves the state-of-art convergence result.
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Future Work

I Optimality of dependence on dimension is still open.
I Only consider the convergence result for training loss,

generalization result remains unknown.
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Thank you!
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