New Variance Reduction Algorithms for Nonconvex Finite-Sum Optimization

Quanquan Gu

Nov 8, 2018

Computer Science Department UCLA This is a joint work with Dongruo Zhou and Pan Xu

2 Finding first-order stationary points

Background

2 Finding first-order stationary points

Finding second-order stationary points

4 Summary

Problem Setup

General Finite-sum Optimization problem:

$$\min_{\mathbf{x}\in\mathbb{R}^d} F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}), \ f_i \text{ can be nonconvex.}$$

▶ NP-hard to solve in general. (Hillar & Lim, 2013).

Figure: The landscape view of a nonconvex function.

Some Finite-sum function Examples

- Very common in machine learning.
- Non-convex regularized logistic regression (Reddi et al., 2016b).

$$f_i(\mathbf{x}) = y_i \log \phi(\mathbf{z}_i^{\top} \mathbf{x}) + (1 - y_i) \log[1 - \phi(\mathbf{z}_i^{\top} \mathbf{x}))] + \lambda \sum_{j=1}^d \frac{\mathbf{x}_{(j)}^2}{1 + \mathbf{x}_{(j)}^2},$$

where $\phi(\mathbf{x})$ is the sigmoid function.

Two layer neural network,

$$f_i(\mathbf{W}) = \left[y_i - \frac{1}{\sqrt{m}}\sum_{r=1}^m a_r \sigma(\mathbf{w}_r^\top \mathbf{x}_i)\right]^2,$$

where $\sigma(x) = \max\{x, 0\}$ is ReLU function.

2 Finding first-order stationary points

Finding second-order stationary points

4 Summary

• We aim at finding ϵ -first order stationary points $\tilde{\mathbf{x}}$ of $F(\mathbf{x})$, where

$$\|\nabla F(\widetilde{\mathbf{x}})\|_2 \le \epsilon. \tag{2.1}$$

We use the number of stochastic gradient computations to measure the algorithm performance.

Algorithm 1 GD

- 1: Input: \mathbf{x}_0 , η , S
- 2: for s = 1, ..., S do

3:
$$\mathbf{x}_{s} \leftarrow \mathbf{x}_{s-1} - \eta \cdot \nabla F(\mathbf{x}_{s-1}).$$

- 4: end for
- 5: **Output:** Uniformly choose \mathbf{x}_{out} from $\{\mathbf{x}_s\}$.

Algorithm 2 SGD

1: **Input:** x_0 , η , B, S.

2: for
$$s = 1, ..., S$$
 do

3: Uniformly choose index set $\mathcal{I}_B \subset [n], |\mathcal{I}_B| = B.$

4:
$$\mathbf{x}_{s} \leftarrow \mathbf{x}_{s-1} - \eta \cdot \nabla f_{\mathcal{I}_{B}}(\mathbf{x}_{s-1}).$$

- 5: end for
- Output: Uniformly choose x_{out} from {x_s}.

- To converge to an ϵ -first order stationary point,
 - GD: $O(n\epsilon^{-2})$ stochastic gradient computations;
 - ▶ SGD: $O(\epsilon^{-4})$ stochastic gradient computations.
- GD: more computations per iteration, less iterations.
 SGD: less computations per iteration, more iterations.
- Can we combine them?

- ► For SGD,
 - $\blacktriangleright \mathbf{v} = \nabla f_{\mathcal{I}_B}(\mathbf{x}),$
 - $\blacktriangleright \mathbb{E}\mathbf{v} = \nabla F(\mathbf{x}),$
 - $\mathbb{E} \|\mathbf{v} \nabla F(\mathbf{x})\|_2^2 \leq \sigma^2$,

where the variance of \mathbf{v} remains constant!

► Using reference point **x**₀ and reference gradient **g** to reduce the variance of gradient estimator.

$$\mathbf{v} = \nabla f_{\mathcal{I}_b}(\mathbf{x}) - \nabla f_{\mathcal{I}_b}(\mathbf{x}_0) + \mathbf{g} = \nabla f_{\mathcal{I}_b}(\mathbf{x}) - \nabla f_{\mathcal{I}_b}(\mathbf{x}_0) + \nabla F(\mathbf{x}_0),$$

$$\mathbb{E} \mathbf{v} = \nabla F(\mathbf{x}),$$

$$\mathbf{E} \|\mathbf{v} - \nabla F(\mathbf{x})\|_2^2 \le O(\|\mathbf{x} - \mathbf{x}_0\|_2^2)$$

where the variance of gradient estimator is decreasing!

Algorithm 3 SVRG (Outer loop)	Algorithm 4 SVRG-Epoch
1: Input: $\widetilde{\mathbf{x}}_{0}$, η , B , b , S , T .	1: Input: x_0 , η , b , B , S , T .
2: for $s = 1,, S$ do	2: $\mathbf{g} \leftarrow \nabla F(\mathbf{x}_0)$.
3: $\widetilde{\mathbf{x}}_{s} \leftarrow$	3: for $t = 1, \ldots, T$ do
SVRG-Epoch($\widetilde{\mathbf{x}}_{s-1}, \eta, B, b, T$).	4: Randomly pick \mathcal{I}_b with size b .
4: end for	5: $\mathbf{v} \leftarrow$
5: Output: Uniformly choose xout	$ abla f_{{\mathcal I}_b}({\mathsf z}_{t-1}) - abla f_{{\mathcal I}_b}({\mathsf z}_0) + {\mathbf g}$
from $\{\mathbf{x}_s\}$.	6: $\mathbf{x}_t \leftarrow \mathbf{x}_{t-1} - \eta \cdot \mathbf{v}$.
	7: end for
	8: Output: Uniformly choose x out
	from $\{\mathbf{x}_t\}$.

^[1] Johnson, Rie, and Tong Zhang. "Accelerating stochastic gradient descent using predictive variance reduction." Advances in neural information processing systems. 2013.

Algorithm 5 SCSG	(Outer	loop)	
------------------	--------	-------	--

- 1: Input: $\tilde{\mathbf{x}}_0$, η , B, b, S, T.
- 2: for s = 1, ..., S do
- 3: $\widetilde{\mathbf{x}}_{s} \leftarrow$ SCSG-Epoch $(\widetilde{\mathbf{z}}_{s-1}, \eta, B, b, T)$.
- 4: end for
- 5: **Output:** Uniformly choose \mathbf{x}_{out} from $\{\mathbf{x}_s\}$.
- Algorithm 6 SCSG-Epoch1: Input: \mathbf{x}_0 , η , b, B, S, T.2: Randomly pick \mathcal{I}_B with size B.3: $\mathbf{g} \leftarrow \nabla f_{\mathcal{I}_B}(\mathbf{x}_0)$.4: for t = 1, ..., T do5: Randomly pick \mathcal{I}_b with size b.6: $\mathbf{v} \leftarrow$ $\nabla f_{\mathcal{I}_k}(\mathbf{x}_{t-1}) \nabla f_{\mathcal{I}_k}(\mathbf{x}_0) + \mathbf{g}$
 - 7: $\mathbf{x}_t \leftarrow \mathbf{x}_{t-1} \eta \cdot \mathbf{v}$.
 - 8: end for
 - Output: Uniformly choose x_{out} from {x_t}.

^[1] Lei, Lihua, et al. "Non-convex finite-sum optimization via scsg methods." Advances in Neural Information Processing Systems. 2017.

• To converge to an ϵ -first order stationary point,

Algorithm	Stochastic gradient computations
GD	$O(n\epsilon^{-2})$
SGD	$O(\epsilon^{-4})$
SVRG	
(Allen-Zhu et al., 2016)	$O(n^{2/3}\epsilon^{-2})$
(Reddi et al., 2016)	
SCSG	$O(p^{2/3}c^{-2} \wedge c^{-10/3})$
(Lei et al., 2017)	$O(n + \epsilon + (\epsilon +))$

Strictly improves upon GD & SGD!

- For SVRG ,
 - $\mathbf{v} = \nabla f_{\mathcal{I}_b}(\mathbf{x}) \nabla f_{\mathcal{I}_b}(\mathbf{x}_0) + \nabla F(\mathbf{x}_0) = \mathbf{g}^{(1)} + \mathbf{g}^{(0)}, \\ \mathbf{g}^{(1)} = \nabla f_{\mathcal{I}_b}(\mathbf{x}) \nabla f_{\mathcal{I}_b}(\mathbf{x}_0), \mathbf{g}^{(0)} = \nabla F(\mathbf{x}_0).$
- \blacktriangleright Only use two reference points $(\textbf{x},\textbf{x}_0)$ and two reference gradients $(\textbf{g}^{(1)},\textbf{g}^{(0)})$
- Using more than two reference points and reference gradients!

∨ = g^(K) + ··· + g⁽¹⁾ + g⁽⁰⁾,
 g^(l) =
$$\nabla f_{\mathcal{I}_l}(\mathbf{x}^{(l)}) - \nabla f_{\mathcal{I}_l}(\mathbf{x}^{(l-1)}), 1 \le l \le K,$$

 g⁽⁰⁾ = $\nabla F(\mathbf{x}^{(0)}).$

 x_t = x_{t-1} - η**v**.

Stochastic Nested Variance Reduced Gradient Descent(SNVRG)^[1]

Algorithm 7 SNVRG (Outer loop)1: Input: $z_0, \eta, B, S, K, \{B_l\}, \{T_l\}$.2: for s = 1, ..., S do3: $[y_s, z_s] \leftarrow$
SNVRG-Epoch
 $(z_{s-1}, \eta, B, K, \{B_l\}, \{T_l\})$.4: end for5: Output: Uniformly choose y_{out}
from $\{y_s\}$.

Algorithm 8 SNVRG-Epoch 1: Input: $\mathbf{x}_0, \eta, B, K, \{B_l\}, \{T_l\}.$ 2: Randomly pick \mathcal{I}_B with size B. 3: $\mathbf{g}_0^{(0)} \leftarrow \nabla f_{\mathcal{I}_R}(\mathbf{x}_0), \, \mathbf{x}_0^{(0)} \leftarrow \mathbf{x}_0$ 4: $\mathbf{g}_{0}^{(l)} \leftarrow 0, \mathbf{x}_{0}^{(l)} \leftarrow \mathbf{x}_{0}, l \in [K]$ 5: $\mathbf{v}_0 \leftarrow \sum_{l=0}^{K} \mathbf{g}_0^{(l)}, \mathbf{x}_1 \leftarrow \mathbf{x}_0 - \eta \cdot \mathbf{v}_0$ 6: for $t = 1, ..., \prod_{l=1}^{K} T_l - 1$ do 7: Update $\{\mathbf{x}_{t}^{(l)}\}\$ and $\{\mathbf{g}_{t}^{(l)}\}\$ $\mathbf{v}_t \leftarrow \sum_{l=1}^{K} \mathbf{g}_t^{(l)} + \mathbf{g}_t^{(0)}$ 8: 9: $\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t - \eta \cdot \mathbf{v}_t$ 10: end for 11: **Output:** $[\mathbf{x}_{out}, \mathbf{x}_{\prod_{i=1}^{K} T_i}]$, \mathbf{x}_{out} from $\{\mathbf{x}_{0 \le t \le \prod_{i=1}^{K} T_i}\},\$

- ► Update parameters: batch size parameters {B_l}, loop length parameters {T_l}.
- Let r be the smallest number where t can be divided by $\prod_{l=r+1}^{K} T_l$.
- Update rules for reference points $\{\mathbf{x}_t^{(l)}\}$:
 - $\mathbf{x}_t^{(1)}, \dots, \mathbf{x}_t^{(r-1)}$ remain the same as $\mathbf{x}_{t-1}^{(1)}, \dots, \mathbf{x}_{t-1}^{(r-1)}$

Set
$$\mathbf{x}_t^{(r)}, \ldots, \mathbf{x}_t^{(K)} \leftarrow \mathbf{x}_t$$
.

- Update rules for reference gradients $\{\mathbf{g}_t^{(l)}\}$:
 - We do not need to upgrade reference gradients unless they have changed!
 - $\mathbf{g}_t^{(1)}, \dots, \mathbf{g}_t^{(r-1)}$ remain the same as $\mathbf{g}_{t-1}^{(1)}, \dots, \mathbf{g}_{t-1}^{(r-1)}$
 - ► For $r \leq l \leq K$, randomly pick up \mathcal{I} with size B_l , set $\mathbf{g}_t^{(l)} \leftarrow \nabla f_{\mathcal{I}}(\mathbf{x}_t^{(l)}) - \nabla f_{\mathcal{I}}(\mathbf{x}_t^{(l-1)})$.

 $K = 2, T_1 = 2, T_2 = 3$ as an example.

Reference points:

$$\textbf{x}_0^{(0)} \leftarrow \textbf{x}_0, \textbf{x}_0^{(1)} \leftarrow \textbf{x}_0, \textbf{x}_0^{(2)} \leftarrow \textbf{x}_0,$$

Reference gradients:

$$\begin{split} \mathbf{g}_{0}^{(0)} &\leftarrow \nabla f_{\mathcal{I}_{0}}(\mathbf{x}_{0}^{(0)}), \\ \mathbf{g}_{0}^{(1)} &\leftarrow \nabla f_{\mathcal{I}_{1}}(\mathbf{x}_{0}^{(1)}) - \nabla f_{\mathcal{I}_{1}}(\mathbf{x}_{0}^{(0)}), \\ \mathbf{g}_{0}^{(2)} &\leftarrow \nabla f_{\mathcal{I}_{2}}(\mathbf{x}_{0}^{(2)}) - \nabla f_{\mathcal{I}_{2}}(\mathbf{x}_{0}^{(1)}), \end{split}$$

Updating rule:

$$\mathbf{x}_1 \leftarrow \mathbf{x}_0 - \eta (\mathbf{g}_0^{(0)} + \mathbf{g}_0^{(1)} + \mathbf{g}_0^{(2)}).$$

Figure: Iterate t = 0.

Reference points:

$$\mathbf{x}_1^{(0)} \leftarrow \mathbf{x}_0^{(0)}, \mathbf{x}_1^{(1)} \leftarrow \mathbf{x}_0^{(1)}, \mathbf{x}_1^{(2)} \leftarrow \mathbf{x}_1,$$

Reference gradients:

$$\begin{split} \mathbf{g}_{1}^{(0)} &\leftarrow \mathbf{g}_{0}^{(0)}, \\ \mathbf{g}_{1}^{(1)} &\leftarrow \mathbf{g}_{0}^{(1)}, \\ \mathbf{g}_{1}^{(2)} &\leftarrow \nabla f_{\mathcal{I}_{2}}(\mathbf{x}_{1}^{(2)}) - \nabla f_{\mathcal{I}_{2}}(\mathbf{x}_{1}^{(1)}), \end{split}$$

Updating rule:

$$\mathbf{x}_2 \leftarrow \mathbf{x}_1 - \eta (\mathbf{g}_1^{(0)} + \mathbf{g}_1^{(1)} + \mathbf{g}_1^{(2)}).$$

Figure: Iterate t = 1.

Reference points:

$$\mathbf{x}_2^{(0)} \leftarrow \mathbf{x}_1^{(0)}, \mathbf{x}_2^{(1)} \leftarrow \mathbf{x}_1^{(1)}, \mathbf{x}_2^{(2)} \leftarrow \mathbf{x}_2,$$

Reference gradients:

$$egin{aligned} & \mathbf{g}_2^{(0)} \leftarrow \mathbf{g}_1^{(0)}, \ & \mathbf{g}_2^{(1)} \leftarrow \mathbf{g}_1^{(1)}, \ & \mathbf{g}_2^{(2)} \leftarrow
abla f_{\mathcal{I}_2}(\mathbf{x}_2^{(2)}) -
abla f_{\mathcal{I}_2}(\mathbf{x}_2^{(1)}). \end{aligned}$$

Updating rule:

$$\mathbf{x}_3 \leftarrow \mathbf{x}_2 - \eta (\mathbf{g}_2^{(0)} + \mathbf{g}_2^{(1)} + \mathbf{g}_2^{(2)}).$$

Figure: Iterate t = 2.

Reference points:

$$\mathbf{x}_{3}^{(0)} \leftarrow \mathbf{x}_{2}^{(0)}, \mathbf{x}_{3}^{(1)} \leftarrow \mathbf{x}_{3}, \mathbf{x}_{3}^{(2)} \leftarrow \mathbf{x}_{3},$$

Reference gradients:

$$\begin{split} & \mathbf{g}_{3}^{(0)} \leftarrow \mathbf{g}_{2}^{(0)}, \\ & \mathbf{g}_{3}^{(1)} \leftarrow \nabla f_{\mathcal{I}_{1}}(\mathbf{x}_{3}^{(1)}) - \nabla f_{\mathcal{I}_{1}}(\mathbf{x}_{3}^{(0)}), \\ & \mathbf{g}_{3}^{(2)} \leftarrow \nabla f_{\mathcal{I}_{2}}(\mathbf{x}_{3}^{(2)}) - \nabla f_{\mathcal{I}_{2}}(\mathbf{x}_{3}^{(1)}), \end{split}$$

Updating rule:

$$\mathbf{x}_4 \leftarrow \mathbf{x}_3 - \eta (\mathbf{g}_3^{(0)} + \mathbf{g}_3^{(1)} + \mathbf{g}_3^{(2)}).$$

Figure: Iterate t = 3.

Reference points:

$$\mathbf{x}_4^{(0)} \leftarrow \mathbf{x}_2^{(0)}, \mathbf{x}_3^{(1)} \leftarrow \mathbf{x}_3, \mathbf{x}_3^{(2)} \leftarrow \mathbf{x}_3,$$

Reference gradients:

$$\begin{split} \mathbf{g}_{3}^{(0)} &\leftarrow \mathbf{g}_{2}^{(0)}, \\ \mathbf{g}_{3}^{(1)} &\leftarrow \nabla f_{\mathcal{I}_{1}}(\mathbf{x}_{3}^{(1)}) - \nabla f_{\mathcal{I}_{1}}(\mathbf{x}_{3}^{(0)}), \\ \mathbf{g}_{3}^{(2)} &\leftarrow \nabla f_{\mathcal{I}_{2}}(\mathbf{x}_{3}^{(2)}) - \nabla f_{\mathcal{I}_{2}}(\mathbf{x}_{3}^{(1)}), \end{split}$$

Updating rule:

$$\mathbf{x}_4 \leftarrow \mathbf{x}_3 - \eta (\mathbf{g}_3^{(0)} + \mathbf{g}_3^{(1)} + \mathbf{g}_3^{(2)}).$$

Figure: Iterate t = 4.

Reference points:

$$\textbf{x}_{5}^{(0)} \gets \textbf{x}_{4}^{(0)}, \textbf{x}_{5}^{(1)} \gets \textbf{x}_{4}^{(1)}, \textbf{x}_{5}^{(2)} \gets \textbf{x}_{5},$$

Reference gradients:

$$\begin{split} & \mathbf{g}_5^{(0)} \leftarrow \mathbf{g}_4^{(0)}, \\ & \mathbf{g}_5^{(1)} \leftarrow \mathbf{g}_4^{(1)}, \\ & \mathbf{g}_5^{(2)} \leftarrow \nabla f_{\mathcal{I}_2}(\mathbf{x}_5^{(2)}) - \nabla f_{\mathcal{I}_2}(\mathbf{x}_5^{(1)}), \end{split}$$

Updating rule:

$$\mathbf{x}_{6} \leftarrow \mathbf{x}_{5} - \eta (\mathbf{g}_{5}^{(0)} + \mathbf{g}_{5}^{(1)} + \mathbf{g}_{5}^{(2)}).$$

Figure: Iterate t = 5.

Theoretical Results

Assumptions:

- (Optimal Gap) $F(\mathbf{x}_0) \inf_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \leq \Delta_F$
- (Smoothness) For each *i*, f_i is *L*-smooth, where $\|\nabla f_i(\mathbf{x}) \nabla f_i(\mathbf{y})\|_2 \le L \|\mathbf{x} \mathbf{y}\|_2$.
- (Variance Bounded) For any **x**, $\mathbb{E}_i \|\nabla f_i(\mathbf{x}) \nabla F(\mathbf{x})\|_2^2 \leq \sigma^2$

Theorem (Complexity analysis for SNVRG)

With specific parameter choices, SNVRG will find an ϵ -first order stationary point within

$$\widetilde{O}\left(\left[\frac{\sigma^2}{\epsilon^2} \wedge n + \frac{L\Delta_F}{\epsilon^2}\left[\frac{\sigma^2}{\epsilon^2} \wedge n\right]^{1/2}\right]\right)$$

stochastic gradient computations.

Algorithm	Stochastic gradient computations
GD	$O(n\epsilon^{-2})$
SGD	$O(\epsilon^{-4})$
SVRG	
(Allen-Zhu et al., 2016)	$O(n^{2/3}\epsilon^{-2})$
(Reddi et al., 2016)	
SCSG	$O(n^{2/3}c^{-2} \wedge c^{-10/3})$
(Lei et al., 2017)	$O(n + \epsilon + k \epsilon +)$
SNVRG	$\widetilde{O}(-1/2) = 2 + (-3)$
(this paper)	$O(n + \epsilon - \sqrt{\epsilon^{-\epsilon}})$

SNVRG strictly better than SCSG by a factor $\Omega(n^{1/6} \wedge \epsilon^{-1/3})$.

Gradient Complexity Comparison

Baseline Algorithms

- ► SGD (SGD)
- SGD with momentum (SGD-momentum)
- ADAM (ADAM) (Kingma et al., 2014)
- SCSG (SCSG) (Lei et al., 2017)
- SNVRG with K = 2 (**SNVRG**)

Benchmark Optimization Problems

LeNet-5 on

- MNIST (LeCun et al., 1998a)
- CIFAR10 (Krizhevsky, 2009)
- SVHN (Netzer et al., 2011)

Experimental Results

2) Finding first-order stationary points

4 Summary

Second-order stationary points

- ▶ We can find first-order stationary point via SNVRG, however.....
- Is first-order stationary point enough?

• **Goal:** To find an (ϵ_g, ϵ_H) -second-order staionary point **x** such that $\|\nabla F(\mathbf{x})\| \leq \epsilon_g$, $\lambda_{\min}(\nabla^2 F(\mathbf{x})) \geq -\epsilon_H$

Cubic Regularization of Newton Method^[1]

Cubic Regularization

Starting from $\boldsymbol{x}_0,$ iteratively execute

$$m_t(\mathbf{h}) = \langle \nabla F(\mathbf{x}_t), \mathbf{h} \rangle + \frac{1}{2} \langle \nabla^2 F(\mathbf{x}_t) \mathbf{h}, \mathbf{h} \rangle + \frac{M}{6} \|\mathbf{h}\|_2^3$$
$$\mathbf{x}_{t+1} = \mathbf{x}_t + \operatorname*{argmin}_{\mathbf{h} \in \mathbb{R}^d} m_t(\mathbf{h})$$

• Minimize cubic regularized subproblem $m_t(\mathbf{h})$ in each iteration.

Theorem (Informal)

Under certain conditions, \mathbf{x}_t converges to an $(\epsilon, \sqrt{\epsilon})$ -second-order staionary point within $O(1/\epsilon^{3/2})$ number of iterations.

• Expensive to compute $\nabla f(\mathbf{x})$ and $\nabla^2 f(\mathbf{x})$ when *n* is large.

^[1] Nesterov, Yurii, and Boris T. Polyak. "Cubic regularization of Newton method and its global performance." Mathematical Programming 108.1 (2006): 177-205.

Stochastic Variance-Reduced Cubic Regularization (SVRC)^[1]

The Proposed SVRC

- Operates with epochs.
- At *t*-th iteration of (s + 1)-th epoch, we have

$$m_t^{s+1}(\mathbf{h}) = \langle \mathbf{v}_t^{s+1}, \mathbf{h} \rangle + \frac{1}{2} \langle \mathbf{U}_t^{s+1} \mathbf{h}, \mathbf{h} \rangle + \frac{M_{s+1,t}}{6} \|\mathbf{h}\|_2^3$$
$$\mathbf{x}_{t+1}^{s+1} = \mathbf{x}_t^{s+1} + \operatorname*{argmin}_{\mathbf{h} \in \mathbb{R}^d} m_t^{s+1}(\mathbf{h})$$

- Penalty parameters M_t^{s+1}
- semi-stochastic gradient $\mathbf{v}_t^{s+1} \approx \nabla F(\mathbf{x}_t^{s+1})$
- semi-stochastic Hessian $\mathbf{U}_t^{s+1} \approx \nabla^2 F(\mathbf{x}_t^{s+1})$.

Dongruo Zhou, Pan Xu, Quanquan Gu; Proceedings of the 35th International Conference on Machine Learning, PMLR 80:5990-5999, 2018

Semi-stochastic gradient and Hessian

▶ Reference point $\hat{\mathbf{x}}^s = \mathbf{x}_0^{s+1}$, reference gradient $\mathbf{g}^s = \nabla f(\hat{\mathbf{x}}^s)$ and reference Hessian $\mathbf{H}^s = \nabla^2 f(\hat{\mathbf{x}}^s)$.

$$\mathbf{v}_{t}^{s+1} = \frac{1}{b_{g}} \sum_{i_{t} \in I_{g}} \nabla f_{i_{t}}(\mathbf{x}_{t}^{s+1}) - \nabla f_{i_{t}}(\widehat{\mathbf{x}}^{s}) + \mathbf{g}^{s}$$
$$- \left(\frac{1}{b_{g}} \sum_{i_{t} \in I_{g}} \nabla^{2} f_{i_{t}}(\widehat{\mathbf{x}}^{s}) - \mathbf{H}^{s}\right) (\mathbf{x}_{t}^{s+1} - \widehat{\mathbf{x}}^{s}),$$
$$\mathbf{U}_{t}^{s+1} = \frac{1}{b_{h}} \left(\sum_{j_{t} \in I_{h}} \nabla^{2} f_{j_{t}}(\mathbf{x}_{t}^{s+1}) - \nabla^{2} f_{j_{t}}(\widehat{\mathbf{x}}^{s})\right) + \mathbf{H}^{s},$$

- ▶ I_g and I_h are index sets, $|I_g| = b_g$, $|I_h| = b_h$, b_g , $b_h \ll n$.
- ► Unlike subsampled gradient and Hessian which have unchanged variances, the variances of v_t^{s+1} and U_t^{s+1} are reduced.

Second Order Oracle (SO)

Given an index i and a point \mathbf{x} , one second-order oracle (SO) call returns such a triple:

 $[f_i(\mathbf{x}), \nabla f_i(\mathbf{x}), \nabla^2 f_i(\mathbf{x})]$

Cubic Subproblem Oracle(CSO)

Given a vector **g**, a Hessian matrix **H** and a positive constant θ , one Cubic Subproblem Oracle (CSO) call returns \mathbf{h}_{sol} , where \mathbf{h}_{sol} can be solved exactly as follows

$$m{h}_{\mathsf{sol}} = \operatorname*{argmin}_{m{h} \in \mathbb{R}^d} \langle m{g}, m{h}
angle + rac{1}{2} \langle m{h}, m{H}m{h}
angle + rac{ heta}{6} \|m{h}\|_2^3.$$

Convergence Analysis

Assumptions:

- (Optimal Gap) $F(\mathbf{x}_0) \inf_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \leq \Delta_F$
- (Hessian Lipschitz) For each *i*, f_i is ρ -Hessian Lipschitz, where $\|\nabla^2 f_i(\mathbf{x}) \nabla^2 f_i(\mathbf{y})\|_2 \le \rho \|\mathbf{x} \mathbf{y}\|_2$.

Theorem (Complexity analysis for SVRC)

With specific parameter choices, SVRC will find an $(\epsilon, \sqrt{\rho\epsilon})$ -second-order staionary point within SO complexity

$$O\left(n+\frac{\Delta_F\sqrt{\rho}n^{4/5}}{\epsilon^{3/2}}\right),$$

and CSO complexity

$$O\left(\frac{\Delta_F\sqrt{\rho}}{\epsilon^{3/2}}\right).$$

Algorithm	SO calls	CSO calls	Smoothness
Cubic regularization (Nesterov & Polyak, 2006)	$O(n\epsilon^{-3/2})$	$O(\epsilon^{-3/2})$	No
Subsampled cubic (Kohler & Lucchi, 2017)	$\widetilde{O}(\epsilon^{-7/2}+\epsilon^{-5/2})$	$O(\epsilon^{-3/2})$	Yes
Subsampled cubic (Xu et al., 2017)	$\widetilde{O}(n\epsilon^{-3/2}+\epsilon^{-5/2})$	$O(\epsilon^{-3/2})$	Yes
SVRC (this paper)	$\widetilde{O}(n^{4/5}\epsilon^{-3/2})$	$O(\epsilon^{-3/2})$	No

- SVRC does not need gradient Lipschitz assumption (smoothness).
- SVRC is strictly better than cubic regularization by a factor Ω(n^{1/5}), and better than subsampled cubic when ε ≪ n^{-2/5}.

Baseline Algorithms

- Adaptive cubic regularization (Adaptive Cubic) (Cartis et al., 2011)
- subsampled cubic regularization (Subsampled Cubic) (Kohler & Lucchi, 2017)
- Stochastic cubic regularization (Stochastic Cubic) (Tripuraneni et al., 2017)
- Gradient cubic regularization (Gradient Cubic) (Carmon & Duchi, 2016)
- Trust region Newton method (TR) (Conn et al., 2000)

Benchmark Optimization Problems

- Nonconvex Regularized logistic regression (Reddi et al., 2016b)
- Nonlinear least square (Xu et al., 2017a)
- Robust linear regression (Barron, 2017)

Experimental Results

Background

2 Finding first-order stationary points

3 Finding second-order stationary points

- ► To find first-order stationary points, SNVRG is near optimal.
- To find second-order stationary points, optimality is still an open problem!

Any Questions?