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Abstract

Fisher score is one of the most widely used su-
pervised feature selection methods. However,
it selects each feature independently accord-
ing to their scores under the Fisher criterion,
which leads to a suboptimal subset of fea-
tures. In this paper, we present a generalized
Fisher score to jointly select features. It aims
at finding an subset of features, which max-
imize the lower bound of traditional Fisher
score. The resulting feature selection prob-
lem is a mixed integer programming, which
can be reformulated as a quadratically con-
strained linear programming (QCLP). It is
solved by cutting plane algorithm, in each it-
eration of which a multiple kernel learning
problem is solved alternatively by multivari-
ate ridge regression and projected gradient
descent. Experiments on benchmark data
sets indicate that the proposed method out-
performs Fisher score as well as many other
state-of-the-art feature selection methods.

1 Introduction

High-dimensional data in the input space is usually
not good for classification due to the curse of dimen-
sionality [15]. Tt significantly increases the time and
space complexity for processing the data. Moreover,
in the presence of many irrelevant and/or redundant
features, learning methods tend to over-fit and become
less interpretable. A common way to resolve this prob-
lem is feature selection [21, 5], which reduces the di-
mensionality by selecting a subset of features from the
input feature set. It is often used to reduce the com-
putational cost and remove irrelevant and redundant
features for problems with high dimensional data.

Generally speaking, feature selection methods can be
categorized into three families: filter-based, wrapper-
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based and embedded methods [5]. Filter-based meth-
ods rank the features as a pre-processing step prior to
the learning algorithm, and select those features with
high ranking scores. Wrapper-based methods score the
features using the learning algorithm that will ulti-
mately be employed. Embedded methods combine fea-
ture selection with the learning algorithm. The design
of embedded method is tightly coupled with a specific
learning algorithm, which in turn limits its application
to other learning algorithms. In our study, we focus on
filter-based methods for supervised feature selection.

Filter-based feature selection is usually cast into a bi-
nary selection of features which maximizes some per-
formance criterion. In the past decade, a number
of performance criteria have been proposed for filter-
based feature selection, such as mutual information
[10], Fisher score [15], ReliefF [17], Laplacian score [6],
Hilbert Schmidt Independence Criterion (HSIC) [18]
and Trace Ratio criterion [12], among which Fisher
score is one of the most widely used criteria for super-
vised feature selection due to its general good perfor-
mance. In detail, given a set of d features, denoted by
S, the goal of filter based feature selection is to choose
a subset of m < d features, denoted by 7, which max-
imizes some criterion F',

* = F 4T = 1
7" =argmax F(T),s.4.|T| =m (1)
where | - | is the cardinality of a set. Eq.(1) is a com-

binatorial optimization problem. Finding the global
optimal solution for Eq.(1) is NP hard. One common
heuristic approach addresses this issue by first comput-
ing a score for each feature independently according to
the criterion F', and then selecting the top-m ranked
features with high scores. However, the features se-
lected by the heuristic algorithm is suboptimal. On
the one hand, since the heuristic algorithm computes
the score of each feature individually, it neglects the
combination of features, which means evaluating two
or more than two features together. For example, it
could be the case that the scores of feature a and fea-



ture b are both low, but the score of the combination
ab is very high. In this case, the heuristic algorithm
will discard feature a and b, although they should be
selected. On the other hand, they cannot handle re-
dundant features. For instance, the scores of feature a
and feature b are very high, but they are highly corre-
lated. In this case, the heuristic algorithm will select
both feature a and b, while either feature a or b could
be eliminated without loss in the subsequent learning
performance. In fact, many studies have shown that
removing redundant features can result in performance
improvement [1, 23, 14].

In this paper, in order to overcome the above problems,
we present a generalized Fisher score for feature selec-
tion. Rather than selecting each feature individually,
the proposed method selects a subset of features simul-
taneously. It aims to find a subset of features, which
maximize the lower bound of traditional Fisher score.
It is able to consider the combination of features, and
eliminate the redundant features. The resulting fea-
ture selection problem is a mixed integer program-
ming, which is further reformulated as a quadratically
constrained linear programming (QCLP) [3]. It can be
solved by cutting plane algorithm [8], in each iteration
of which a multiple kernel learning problem is solved
by multivariate ridge regression and projected gradient
descent [16] alternatively. Experiments on benchmark
data sets indicate that the proposed method outper-
forms many state of the art feature selection methods.

The remainder of this paper is organized as follows. In
Section 2, we briefly review Fisher score. We present
the generalized Fisher score in Section 3. The exper-
iments on benchmark data sets are demonstrated in
Section 4. Finally, we draw a conclusion in Section 5.

1.1 Notation

The generic problem of supervised feature selection
is as follows. Given a data set {(x;,y;)}7~,; where
x; € R4 and y; € {1,2,...,c}, we aim to find a feature
subset of size m which contains the most informative
features. We use X = [x1,Xo,...,X,] € R¥*™ to rep-
resent the data matrix. x’/ denotes the jth row of X.
1 is a vector of all ones with an appropriate length. 0
is a vector of all zeros. I is an identity matrix with
an appropriate size. Without loss of generality, we as-
sume that X has been centered with zero mean, i.e.,

Y1 % =0.
2 A Brief Review of Fisher Score

In this section, we briefly review Fisher score [15] for
feature selection, and discuss its shortcomings.

The key idea of Fisher score is to find a subset of fea-

tures, such that in the data space spanned by the se-
lected features, the distances between data points in
different classes are as large as possible, while the dis-
tances between data points in the same class are as
small as possible. In particular, given the selected m
features, the input data matrix X € R¥*™ reduces to
Z ¢ R™*",  Then the Fisher Score is computed as
follows,

Fz) = «{@G)E+m}, @

where v is a positive regularization parameter, S, is
called between-class scatter matrix, and S; is called
total scatter matrix, which are defined as

Sy = > i — )iy, — )"
k=1

S = ) (m-@)(z—p)T, 3)
i=1

where fi;, and nj are the mean vector and size of the
k-th class respectively in the reduced data space, i.e.,
Z, i = p_y il is~ the overall mean vector of the
reduced data. Since S; is usually singular, we add a
perturbation term I to make it positive semi-definite.

Since there are (i) candidate Z’s out of X, the fea-
ture selection problem is a combinatorial optimization
problem and very challenging. To alleviate the dif-
ficulty, the widely used heuristic strategy [15, 6] is to
compute a score for each feature independently accord-
ing to the criterion F'. In other word, it only considers
xJ € RY™ 7™ In this case, there are only (‘11) = d can-
didates. Specifically, let /ﬂ; and Ui be the mean and
standard deviation of k-th class, corresponding to the
j-th feature. Let y/ and ¢/ denote the mean and stan-
dard deviation of the whole data set corresponding to
the j-th feature. Then the Fisher score of the j-th
feature is computed below,
- 22:1 nk(l‘i - N])Z

F(x)) = (09)2 ; (4)

where (07)2 = Y20_, ng(a])?. After computing the
Fisher score for each feature, it selects the top-m
ranked features with large scores. Because the score
of each feature is computed independently, the fea-
tures selected by the heuristic algorithm is suboptimal.
More importantly, as we mentioned before, the heuris-
tic algorithm fails to select those features which have
relatively low individual scores but a very high score
when they are combined together as a whole. In ad-
dition, it cannot handle redundant features. This mo-
tivates us to propose a generalized Fisher score which
can resolve these problems.



3 The Proposed Method

In this section, we first present an equivalent formu-
lation of Fisher score, based on which we present our
method.

3.1 Equivalent Formulation of Fisher Score

We introduce an indicator variable p, where p =
(p1,...,pa)T and p; € {0,1},i = 1,...,d, to repre-
sent whether a feature is selected or not. In order to
indicate that m features are selected, we constrain p
by p?1 = m. Then the Fisher Score in Eq.(2) can be
equivalently formulated as follows,

F(p) = tr{(diag(p)Spdiag(p))
(diag(p)(S: + 7I)diag(p)) ™'},
s.t. p <€ {0,1}% pT1 =m, (5)

where diag(p) is a diagonal matrix whose diagonal ele-
ments are p;’s, S, and S; are the between-class scatter
matrix and total scatter matrix respectively, which are
defined as

S, = py— )"

S = - (6)

C
> k(g — p)(
k=1

n
Z(Xi — ) (x;
i=1
where p;, and nj are mean vector and size of kth
class respectively in the input data space, i.e., X,
B = > _, kM, is the overall mean vector of the orig-
inal data.

3.2 Generalized Fisher Score

However, the problem in Eq.(5) is still not easy to max-
imize due to its combinatorial nature. In this paper,
we turn to maximize its lower bound as follows.

Theorem 3.1. The optimal value of the objective
function in Eq.(5) is lower bounded by the optimal
value of the objective function in the following prob-
lem,

F(W,p) = tr{(W"diag(p)Ssdiag(p)W)
(W7 diag(p)(S: + 1) diag(p) W)},
s.t. p € {0,1}4 pT1 =m. (7)

where W € Réxe,

Proof. The key is to prove that for any feasible p, the
objective function of Eq.(5) is lower bounded by the
objective function of Eq.(7). The detailed proof will
be included in the longer version of this paper. 0

We call the feature selection criterion in Eq.(7) as
Generalized Fisher Score. It is easy to show that
given p, Eq.(7) can be seen as Regularized Discrimi-
nant Analysis (RDA) [15] in the reduced feature space,
i.e., diag(p)X, which is a Rayleigh Quotient problem
[4] (also known as Ratio Trace problem), and can be
solved by eigen-decomposition. However, when p is
also a variable, the problem is difficult to solve. Recent
study [22] established the relationship between RDA
and multi-variate linear regression problem, which pro-
vides a regression-based solution for RDA. This mo-
tivates us to solve the problem in Eq.(7) in a similar
manner. In the following, we present a theorem, which
establishes the equivalence relationship between the
problem in Eq.(7) and the problem in Eq.(8).

Theorem 3.2. The optimal p that mazximize the prob-
lem in Eq.(7) are the same as the optimal p that min-
imize the following problem

. 1 . ¥
min  S||X7 diag(p)W — [} + 1 [W]3,

p,W
st.  pe{0,1}4pT1=m. (8)
where H = [hy,... h,] € R"*¢, and hy is a column

vector whose i-th entry is given by

no_ /T ifv: — k
= Ve~ Vo v ©
-/, otherwise.

Proof. The sketch of the proof is: for any feasible W,
the optimal p that maximizes the problem in Eq.(7) is
the same as the optimal p that minimizes the problem
in Eq.(8). It is built upon Lemma 4.1 in [22]. The
detailed proof will be included in the longer version of
this paper. O

Note that the above theorem holds under the condition
that X is centered with zero mean. It is interesting to
note that, in general, the optimal W for the optimiza-
tion problem in Eq.(7) is different from the optimal W
for the problem in Eq.(8).

3.3 The Dual Problem

According to Theorem 3.2, we can solve the multivari-
ate ridge regression like problem in Eq.(8) instead of
the Ratio Trace problem in Eq.(7). Let

U = X" diag(p)W — H. (10)

The optimization problem in Eq.(8) is equivalent to
the following optimization problem,

. 1 ¥
minp, w §IIUII% + §|IWII2F
st.  U=X"diag(p)W - H

pe{0,1}%p"1=m. (11)



We consider the dual problem of Eq.(11).
grangian function of Eq.(11) is as follows,

The La-

1
L o= U+

— tr(VI(XTdiag(p)W — H - U)), (12)

y
2w

where V is a Lagrangian multiplier. Taking the deriva-
tive of L with respect to U and W and setting them
to zero, we obtain

oL
_ = V:
90 U+ 0
a—L = AW —diag(p)XV =0 (13)
w = 7 iag(p =0.
It follows that
U = -V
1
W = —diag(p)XV. (14)
Y

Thus we obtain the following dual problem of Eq.(11)

tr(VIH) —

min max
P

s.t. p € {0,1}¢,

For notational simplicity, we denote the objective func-
tion in Eq.(15) as

f(V,p)=tr(VIH) — tr VT(% Ed:ij +I)V
- (16)
where K; = (x)Tx7 and
P = {plp € {0,1}",p"1 = m}. (17)
Then Eq.(15) is simplified as

i . 1
mig max f(V, p) (18)

By interchanging the order of minpep and maxy in
Eq. (18), we obtain

max min f(V,p). (19)

According to the minimax theorem [9], the optimal
value of the objective function in Eq.(18) is an upper
bound of that in Eq.(19).

The problem in Eq.(19) is a convex-concave optimiza-
tion problem, and therefore its optimal solution is the
saddle point of f(V,p) subject to the constraint in
Eq.(17). Let (V*,p*) be the optima to Eq.(19). For
any feasible p and V, we have

fV,p?) < (V7 p") < f(V7,p). (20)

ltr(VT(%XTdiag(p)X +1)V)

pl1=m. (15)

To solve the problem in Eq.(19), one possible solution
is to relax the indicator variable p; to [0, 1] and trans-
form it into a multiple kernel learning problem [16]. It
involves d base kernels, where d is the number of fea-
tures. However, when the number of features is very
huge, e.g., thousands, even the state of the art mul-
tiple kernel learning methods [16, 20] cannot handle
it. Borrowing the idea used in [11, 19], we introduce
an additional variable 8 € R, then the problem in Eq.
(19) can be reformulated equivalently as follows

max max —0
v o0
s.t.0 > —f(V,p'),p' € P. (21)

Note that each p' € P corresponds to one con-
straint, so the above optimization problem has (i)
constraints. The optimization problem in Eq.(21)
is a Quadratically Constrained Linear Programming

(QCLP) [3].

Taking the dual problem of the inner maximization
problem in Eq(21), we obtain the following problem,
|P|
. ¢
m\z}xgg}\ ; M f(V,pY)
P
= Af(V 22
min maXZ +f(V,p") (22)
where A = {\¢| >, At = 1, \¢ > 0}. The equality holds
due to the fact that the objective function is concave
in V and convex in A.

3.4 Alternating Minimization

Eq.(22) can be seen as a multiple kernel learning
problem [16]. Following the technique used in the
state of the art multiple kernel learning [16], we op-
timize Eq. (22) in an alternative way. In particular,
we alternatively solve V given the kernel weights A,
and update the kernel weights A by fixing V. Let

g\, V) = Z‘P‘ f(V,p'), we denote the gradient
of g()\ V) with respect to A¢ by Vi, g(A, V), which is
calculated as

d
1
—%tr(VTZ PLK,V). (23)

j=1

VagA V) =

Then we use projected gradient descent to update A;.
The gradient of g(A, V) with respect to V is

|7’| d

ZZptK +IDV.  (24)

tljl

So V has a closed-form solution as
|7’\ d

= Z)\thtK +1)” (25)



which can be solved as a linear system problem. One
can also solve W in the primal and then compute V
based on Eq.(10). The advantage is that the primal
problem is a multivariate ridge regression, which can
be solved very efficiently via iterative conjugate gradi-
ent type algorithms such as LSQR [13].

3.5 Cutting Plane Acceleration

Given P, the above multiple kernel learning prob-
lem has optimization variables (V, ) with (i) con-
straints, which is impractical to solve. Fortunately,
cutting plane technique [8] enables us to deal with this
problem, which keeps a polynomial sized subset 2 of
working constraints and computes the optimal solu-
tion to Eq. (22) subject to the constraints in . In
detail, the algorithm adds the most violated constraint
in Eq. (21) into © in each iteration. In this way, a suc-
cessively strengthening approximation of the original
problem is solved. And the algorithm terminates when
no constraint in Eq. (21) is violated.

The remaining thing is how to find the most violated
constraint in each iteration. Since the feasibility of a
constraint is measured by the corresponding value of
f, the most violated constraint is the one which owns
the largest 8. Hence, it could be calculated as follows

—f(V
arg max f(V,p)

d
= argmaxtr(VT K.V
gp€7)7( ( ;p] iV)
d

= ;i 2
arg rggg; 5P (26)

where s; = x’VVT(x7)T. Note that its optimal so-
lution can be obtained by first sorting s; and then
setting the first m numbers corresponding to d; to 1
and the rests to 0.

We summarize the algorithm to solve the problem in
Eq. (22) in Algorithm 1. Note that the final selected
features are the union set of the features corresponding
to each constraint p’ € Q7.

3.6 Theoretical Analysis

The convergence property of Algorithm 1 is stated in
the following theorem.

Theorem 3.3. Let (V*,0%) be the global optimal solu-
tion of Eq. (21), l; = max;<;<; miny —f(V,p’) and
uy = miny <j<¢ maxpep —f(V7,p), then

With the number of iteration t increasing, the sequence

Algorithm 1 Generalized Fisher Score for Feature
Selection

Input:C and m;
Output:V and ;
Initialize V = 11,17 and ¢ = 1;
Find the most violated constraint p!, and set ; =
{p'}h
repeat
Initialize A = %1;
repeat
Solve for V using Eq.(25) under the current A;
Solve for A using gradient descent as in Eq.
(23);
until converge
Find the most violated constraint p‘*! and set
Q1 =Q Up'™h
t=t+1;
until converge

{l;} is monotonically increasing and the sequence {u;}
is monotonically decreasing.

In each outer iteration of our algorithm, it needs to
find the most violated p and solve a multiple kernel
learning problem. Finding the most violated p can be
obtained exactly by finding the m largest ones from
d coefficients s;, which takes only O(mlogd)time. To
solve the multiple kernel learning problem, in each in-
ner iteration, we need to solve one multivariate ridge
regression problem, which can be solved efficiently by
LSQR [13] and scales linearly in the number of training
samples n. Hence the time complexity of multiple ker-
nel learning is proportional to the complexity of ridge
regression. In summary, the total time complexity of
the proposed method is O(T'(¢ns + slogm)), where T
is the number of iterations needed to converge, s is
the average number of nonzero features among all the
training samples, ¢ is the number of classes. In our
experiments, 10 outer-iterations usually leads to con-
verge. Thus, the proposed method is computationally
very efficient.

4 Experiments

In our experiments, we empirically evaluate the ef-
fectiveness of the proposed method. We compare
the proposed method to the state-of-art feature selec-
tion methods: Fisher Score [15], Laplacian Score [6],
Hilbert Schmidt Independence Criterion (HSIC) [18]
and Trace Ratio criterion [12]. Note that Trace Ratio
criterion can use either Fisher score or Laplacian score
like criteria. So we use Trace Ratio (FS) and Trace
Ratio (LS) to represent them respectively. After fea-
ture selection, 1-Nearest Neighbor classifier is used for



classification. The implementations of Laplacian score
and Trace Ratio criterion are downloaded from the
authors’ websites. For HSIC, we use linear kernel on
both data and labels. The parameters of the compared
methods are tuned according to their original papers.

4.1 TUCI Data Sets

In the first part of our experiments, we use a subset
of UCI machine learning benchmark data set [2], e.g.,
ionosphere, sonar, protein and soybean.

Table.1 summarizes the characteristics of the data sets
used in our experiments. All datasets are standardized
to be zero-mean and normalized by standard deviation
for each dimension. This normalization is also applied
for the data used in the rest of our experiments.

Table 1: Description of the UCI data sets

datasets #samples | #features | #classes
ionosphere 351 34 2
sonar 208 60 2
protein 116 20 6
soybean 307 35 19

We randomly choose 50% of the data for training and
the rest for testing. Since the training samples are
randomly chosen, we repeat this process 20 times and
calculate the average result. The number of selected
features is set to be 50% of the dimensionality of the
data. Note that the number of selected features in
GFS is controlled indirectly by m. We need to gradu-
ally increase m to reach the chosen number of selected
features. The regularization parameter v in GFS is
tuned by 5-fold cross validation on the training set
by searching the grid {50,100, 200, ...,500}. This pa-
rameter tuning approach is used throughout our ex-
periments.

The classification results of the feature selection meth-
ods are summarized in Table 2. We observe that
the proposed generalized Fisher score outperforms the
other feature selection methods consistently on all the
data sets. The improvement arises from two aspect:
(1) GFS is able to consider the combination of fea-
tures; and (2) it can handle redundant features. We
will analyze it in more detail in the next part.

In addition, it is very interesting to find that there
is no significant difference between Fisher score (or
Laplacian score) and the corresponding Trace Ratio
criterion. This is consistent with the observation in
[24]. Tt is not surprising because both Trace Ratio
criterion and Ratio Trace criterion essentially optimize
quite similar objective functions. As far as we know,
there is no theoretical evidence which supports that

one of these two criteria is superior to the other.

Furthermore, although the performance of Fisher score
is not as good as the proposed method, it is compa-
rable to and even much better than the other feature
selection methods on 3 out of 4 data sets. This indi-
cates that Fisher score is still among the state of the
art methods. It also implies the superiority of Fisher
criterion for feature selection over the other criteria.

4.2 Face Recognition

In the second part of our experiments, we evaluate the
proposed method on the ORL face recognition data
set’. It contains 10 images for each of the 40 human
subjects, which were taken at different times, varying
the lighting, facial expressions and facial details. The
original images (with 256 gray levels) have size 92 x
112, which are resized to 32 x 32 for efficiency. For
each person, we randomly choose 5 images for training
and the rest for testing. We repeat this experiment 20
times and calculate the average result.

The face recognition results of the feature selection
methods when the number of selected features is 100
are shown in Table 3.

Table 3: Recognition results on the ORL data set when
the number of selected features is 100

Methods Acc
HSIC 74.47+3.08
Fisher Score 86.92+2.76
Laplacian Score 77.104+2.88
Trace Ratio(FS) | 86.78+3.65
Trace Ratio(LS) | 77.03+2.93
GFS 88.78+2.82

As can be seen, generalized Fisher score outperforms
the other feature selection methods. To take a closer
look at the performance with respect to the number
of selected features, we plot the recognition accuracy
with respect to the number of selected features of all
the feature selection methods on the ORL data set in
Figure 1. Since the number of selected features for the
GFS is controlled by m, we increase m gradually from
1 with step size 1 and obtain a increasing number of
selected features.

We can see that with only a very small number of fea-
tures, generalized Fisher score can achieve significant
better result than the other methods. It can be inter-
preted from two aspects: (1) GFS selects features si-
multaneously, which considers the discriminative com-
bination of features. For example, suppose feature
combination ab has a very high score, while feature

"http://www.cl.cam.ac.uk/Research /DTG /attarchive:

pub/data



Table 2: Classification results on the UCI data sets when 50% data are used for training and the number of

selected features is set to be 50% of the dimensionality of the data.

Methods ionosphere sonar protein soybean
HSIC 87.97£2.15 81.70+3.61 59.3948.71 86.54+4.23
Fisher Score 87.97+1.96 81.31+3.48 67.63+£6.77 | 76.31+£3.28
Laplacian Score | 83.29+2.10 80.87+3.51 67.19+6.64 78.10£3.77
Trace Ratio(FS) | 88.23+2.32 81.36+3.19 67.724£6.52 | 76.54+3.80
Trace Ratio(LS) | 83.66+£2.48 81.07+3.50 68.60+£6.05 | 77.91+3.34
GFS 89.144+2.02 | 82.33+3.97 | 69.21+5.87 | 87.06+2.50

Accuracy(%)

r
o
J M Fisher score

50 {’ i Laplacian score
----- Trace Ratio(FS)
451/ —— Trace Ratio(LS)
GFS

T

10 2‘0 3‘0 4‘0 5‘0 éO 7‘0 80 9‘0 1 60

number of features
Figure 1: Recognition results of the feature selection
methods with respect to the number of selected fea-
tures on the ORL data set

a and b have relatively low scores respectively. Then
GFS can select ab at an early stage, while Fisher score
as well as the other feature selection methods would
select a and b respectively at a very late stage (i.e. un-
til quite a lot of low-score features are selected); and
(2) GFS is able to discard the redundant features, as a
result, it can select as many as non-redundant features
at an early stage.

are asymmetric and hence non-redundant. Since the
face image is roughly axially symmetric, one pixel in a
pair of axially symmetric pixels is redundant given the
other one is selected. Furthermore, the selected pixels
by GFS are mostly around the eyebrow, the corner of
eyes, nose and mouth, which, in our experience, are
more discriminative to distinguish face images of dif-
ferent people than those features selected by Fisher
score. This is why GFS outperforms Fisher score.

4.3 Digit Recognition

In the third part of our experiments, we evaluate
the proposed method on the USPS handwritten digit
recognition data set [7]. A popular subset? containing
2007 16 x 16 handwritten digit images is used in our
experiments. We randomly choose 50% of the data
for training and the rest for testing. This process is
repeated 20 times.

Table 4 summarizes the digit recognition results of the
feature selection methods when the number of selected
features is 100, while Figure 3 depicts the classification
accuracy with respect to the number of selected fea-
tures of all the feature selection methods on the USPS
data set.

F | 1
== Tt o === o
Table 4: Recognition results on the USPS data set
L | when the number 0{1 sglected featull&es is 100
i 5 i Methods cc
» . i -
£ '! é “;' HSIC 85.61+1.06
(a) Fisher Score (b) GFS Fisher Score 91.85+0.82
Laplacian Score 83.90+1.05
Figure 2: The selected features by (a) Fisher score, ?race gagogg; géggfl)gi
race atlo . .
and (b) GFS on the ORL data set TS 92.69L1.16

In order to give an intuitive picture, we display the
first 100 features selected by Fisher score and the pro-
posed GFS in Figure 2. It is shown that the distri-
bution of selected features (pixels) by Fisher score is
highly skewed. Most features distribute in the non-
face region. It implies that the features selected by
Fisher score are not discriminative. In contrast, the
features selected by GFS distribute widely across the
face region. Additionally, the selected features (pixels)

Again, generalized Fisher score performs the best on
this data set. Furthermore, GFS gets very good re-
sult even when the number of selected features is
very small. For example, with only 10 features, GFS
can achieve an accuracy of about 80%, while orig-

inal Fisher score only gets roughly 50% accuracy.

*http://www-stat-class.stanford.edu/~tibs/
ElemStatLearn/data.html



Fisher score
Laplacian score

----- Trace Ratio(FS)

—— Trace Ratio(LS)

GFS

T

2‘0 3‘0 4‘0 5‘0 éO 7‘0 80 9‘0 160
number of features
Figure 3: Recognition results of the feature selection

methods with respect to the number of selected fea-
tures on the USPS data set

This again strengthens the advantage of the proposed
method.

5 Conclusion

In this paper, we presented a generalized Fisher score
for feature selection. It finds a subset of features
jointly, which maximize the lower bound of traditional
Fisher score. The resulting feature selection problem
is a mixed integer programming, which is reformu-
lated as a quadratically constrained linear program-
ming (QCLP). It can be solved by cutting plane al-
gorithm, in each iteration of which a multiple kernel
learning problem is solved by multivariate ridge re-
gression and projected gradient descent. Experiments
on benchmark data sets indicate that the proposed
method outperforms many state of the art feature se-
lection methods.
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