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ABSTRACT 
As the performance gap between the processor cores and the memory 
subsystem increases, designers are forced to develop new latency 
hiding techniques. Arguably, the most common technique is to utilize 
multi-level caches. Each new generation of processors is equipped with 
higher levels of memory hierarchy with increasing sizes at each level. 
In this paper, we propose 5 different techniques that will reduce the 
data access times and power consumption in processors with multi-
level caches. Using the information about the blocks placed into and 
replaced from the caches, the techniques quickly determine whether an 
access at any cache level will be a miss. The accesses that are identified 
to miss are aborted. The structures used to recognize misses are much 
smaller than the cache structures. Consequently the data access times 
and power consumption is reduced. Using SimpleScalar simulator, we 
study the performance of these techniques for a processor with 5 cache 
levels. The best technique is able to abort 53.1% of the misses on 
average in SPEC2000 applications. Using these techniques, the 
execution time of the applications are reduced by up to 12.4% (5.4% on 
average), and the power consumption of the caches is reduced by as 
much as 11.6% (3.8% on average).  

1. INTRODUCTION 
It is known that the performance of processor cores increase 

at a faster pace than the access times to memory resulting in an 
increasing performance problem. As this gap grows, designers 
are forced to develop techniques to close this gap. The most 
common technique is to use multiple-levels of memory 
hierarchy. Two level on-chip caches have been one of the 
common properties of high-end microprocessors in the recent 
years, and high-end processors have started employing three 
levels of on-chip caches (e.g. three levels of on-chip caches on 
McKinley [6]). If the trends continue, the next generation 
processors will use 4, 5, or even more levels of on-chip caches. 
In this paper, we propose techniques that will improve the 
cache access times and reduce the power consumption of 
processors with multi-level (more than 2) caches.  

Two important factors limit the size of the level 1 caches and 
hence force designers use multiple level caches. First, the 
access times of caches increase with their size. Second, 
aggressive processors perform multiple accesses to the caches 
in a single cycle. Therefore, designers cannot build arbitrary 
sizes of caches. On the other hand, in general the cache 
footprints of the applications are increasing, therefore there is 
an increasing need for accessing large amounts of data at faster 
speeds. Hence, cache miss ratios are likely to increase or at least 
stay the same in next generation processors.  
 

Figure 1. Different Mostly No Machine (MNM) positions in a 
processor with 3 cache levels. In (a) the MNM and L1 cache are 

accessed in parallel, in (b) MNM is accessed only after the L1 miss.  

We propose techniques to quickly identify a set of misses. 
Consider a 5 level memory hierarchy. If we can determine that the 
first three levels of cache accesses are going to miss and the 
request will be supplied from the fourth level of hierarchy, we can 
bypass the accesses to the first three levels. Thereby, the delay 
of the data access will be reduced and the power consumed by 
the misses can be prevented. The techniques identify misses for 
both instruction and data cache accesses. The first proposed 
technique uses the information about the replaced blocks from 
the caches and determines the exact location of the accessed 
block. Other techniques store partial information about which 
addresses are kept in a certain cache level. Using this information 
a decision is made whether the access may hit or will definitely 
miss. These techniques are built into a Mostly No Machine 
(MNM) which is accessed either in parallel with the level 1 
cache(s) or is accessed only after a level 1 cache miss. Figure 1 
depicts the two positions. In Figure 1 (a), the MNM is accessed 
in parallel with the level 1 instruction and data caches (the 
instruction and data caches are not drawn separately in Figure 1 
for brevity). At this position, the MNM identifies some (but not 
all) cases where the L2 cache will miss. In these cases, the access 
to L2 cache can be bypassed, directly accessing level 3 cache. 
Similarly, level 3 cache accesses can be bypassed directly 
sending requests to the main memory. Once a miss is determined, 
the decision is tagged along with the data request and 
propagates with the access through the cache levels. This tag 
forces caches to bypass if they are identified to miss by the 
MNM. Since the MNM structures are much smaller than the 
corresponding cache structures, the MNM reduces the delay 
and power consumption of the cache system. 

Power consumption is one of the important issues in the 
modern processors. As the semiconductor feature size is 
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reduced, more logic units can be packed into a given area. This 
reduces the delay of logic units, but increases the overall power 
consumption of the processor. Therefore, with each new 
generation of processors, the total power consumption as well 
as the power per area tends to increase, putting the overall 
execution of the processor in danger. Caches consume a 
significant portion of the overall power in the processors. By 
quickly identifying the misses, we show that power reduction 
can be achieved. Specifically, in this paper we 
§ present experimental results showing the fraction of the 

power consumed by the cache misses in a processor with 
multi-level caches, 

§ present novel techniques that use partial information about 
the blocks in a cache to identify whether the cache access 
will be a hit or a miss,  

§ use miss bypassing to improve cache access times, and 
§ show through simulation that by using the techniques 

power reductions and performance improvements are 
achieved.  

We next present motivational data. In Section 2, we give an 
overview of the MNM and discuss the complexity of employing 
an MNM. Section 3 presents the different MNM techniques we 
have considered. In Section 4, we present the experimental 
results. Section 5 discusses the related work. In Section 6 we 
conclude the paper with a summary.   

1.1 Effects of Cache Misses 
The MNM is useful when there is considerable number of 

cache misses and these misses can be identified using small 
structures utilized by the MNM. Hence, we have first performed 
simulations to see the fraction of delay and power consumption 
caused by cache misses. We simulate SPEC2000 applications 
using processors with different levels of caches. The processors 

used in the simulations for 2 and 3 level caches are 4-way 
processors. The results for 5 and 7 level caches are obtained 
using an 8-way processor with resources (RUU size, LSQ size, 
etc.) twice of the processor for 2 and 3 level cache simulations. 
The time effects of misses are measured in data access time. We 
define the data access time to be the average time spent 
between when the CPU makes a request to the L1 cache and the 
time the data is supplied to the CPU. If all requests are satisfied 
by the level 1 cache, the data access time is equal to the level 1 
cache latency. In other cases, it is the sum of number of 
requests satisfied by each memory level including the main 
memory weighted with the latency of accessing the data in that 
memory level. Section 2 presents a formula to calculate the data 
access time using the hit rates at each cache level. The misses 
increase the data access times, because if the data will be 
supplied by the nth level cache, all the cache levels before n will 
be accessed causing unnecessary delay. If these misses are 
known in advance and not performed, the data access time will 
be reduced.  

Figure 2 presents the time fraction of the data access times 
caused by cache misses. Each bar in the figure represents the 
fraction of time spent for cache misses in the respective 
configuration. For example, a 30% fraction for a processor with 5 
levels of cache means that on an average access, 30% of the 
time is spent accessing caches that miss and 70% of the time is 
actually spent in the correct cache level to access the data. We 
see that as the number of levels is increased, the fraction of 
misses increases. In the simulated processor with 5 levels, the 
misses cause 25.5% of the data access times. In Section 4, we 
will show that such a fraction can have significant effect on the 
performance. 

Fraction of Misses in Data Access Time
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Figure 2. Fraction of time spent for cache misses in the overall data access times.  

Fraction of Misses in Power Consumption
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Figure 3. Fraction of cache power consumption for cache misses in the overall cache power consumption.  



Figure 3 presents the fraction of power consumption of the 
caches caused by cache misses. Similar to data access times, as 
the number of levels is increased, the fraction generally 
increases. The fraction reduces for 181.mcf and 179.art for higher 
levels of caches, because these applications have relatively high 
miss ratios for the lower level caches. The miss ratios are larger 
for low-level caches. Therefore, the fraction of misses in data 
access times increase with higher levels of caches, but the 
fraction in power consumption decreases, because power 
consuming larger caches have small miss rates. Nevertheless, we 
see that on average approximately 18% of the overall cache 
power is consumed for the misses in the processor with 5 level 
caches. These results show that the effects of cache misses will 
become an important factor in both data access times and power 
consumption, motivating the exploration of techniques to 
minimize the negative effects of cache misses. 

2. MOSTLY NO MACHINE OVERVIEW  
In this section, we discuss how a processor should be 

modified to utilize the MNM techniques and also give an 
overview of how the MNM works. The MNM propagates the 
decision with the help of additional tags. When the MNM 
identifies a miss, miss signals for each cache level is generated 
and is tagged to the control signals sent to the higher levels of 
caches. There is a miss bit for each level of cache (except the 
level 1). The ith miss bit dictates whether the access should be 
performed at level i, or whether the address should be bypassed 
to the next cache level without performing any access to the 
cache structure. Another possible approach might be to 
implement control buses from the MNM to each cache level. 
This will reduce the data access times even further, but might 
increase the processor complexity.   

There are several locations where the MNM can be realized. 
Figure 1 depicts two possible locations of an MNM in a 
processor. In Figure 1 (a) (parallel MNM), the L1 cache(s) and 
the MNM are accessed in parallel. In this configuration, the 
number of ports in the MNM is equal to the sum of ports in the 
level 1 data and instruction caches. When the address is given 
to the MNM, it identifies which cache has a block that contains 
the specific address. When the L1 cache miss is detected, we 
know which caches to access, because in all techniques, the 
MNM delay is smaller than the L1 delay. Hence, the miss signals 
are generated prior to the detection of L1 cache miss, and it is 
tagged to the control signals after the L1 miss detection. In 
Figure 1 (b) (serial MNM), the MNM is accessed only after level 
1 cache misses. The advantage of this configuration is the 
reduced power consumption by the MNM and the reduced 
complexity of the MNM block due to fewer ports required. If the 
level 1 hit ratios are high, the parallel MNM will not generate any 
useful information for most of the accesses. The serial MNM, on 
the other hand, has the disadvantage of higher cache access 
times. For the serial MNM, the access times to any cache level 
except the level 1 caches are increased by the delay of the 
MNM.   

Another possible configuration is to employ a distributed 
MNM that identifies the misses before each cache level. The 
misses are recognized using information about the blocks in 

each cache level. This information can be distributed to each 
cache. Such a configuration will have better power consumption, 
but will increase the access times.  

To incorporate an MNM into a processor, the cache structures 
should be modified. Each cache structure should be extended 
with logic to detect the miss signal and bypass the access if 
necessary. In the parallel MNM, the bus to the L1 core should 
also be accessed by the MNM (this can be achieved by 
snooping). In the serial MNM, the request generated by the L1 
is sent to the MNM, which forwards the request to the L2. This 
modification is necessary to guarantee the synchronization 
between the access and the miss signal. The data supplied from 
the L2 cache, on the other hand, will be directly sent back to the 
L1. So, there is need for separate address/data busses between 
the L1 and L2 cache. If the number of cache levels is increased, 
there might be separate instruction and data caches behind the 
first level (e.g. separate level 2 instruction and data cache). In 
such a cache system, the MNM is still placed between the level 
1 and level 2 caches. For such a system, the MNM will have two 
inputs  (from level 1 data and instruction caches) and two 
outputs (to level 2 instruction and data caches). The final 
modification needed by the MNM is that each cache has to send 
the information about the blocks that are replaced from the 
cache. This information is needed for the bookkeeping required 
at the MNM. Since the request for a block goes through the 
MNM, the block address that will be placed into any cache can 
be easily calculated. But, as we will show in the next section, the 
MNM also needs information when a block is replaced from the 
cache. This can be achieved through separate bus signals sent 
from each cache to the MNM indicating the block address 
replaced or these addresses can be attached to the blocks sent 
to the level 1 caches.  

As explained in the previous sections, the MNM improves the 
data access times. In the following, we develop an analytical 
model to approximate the benefits of any MNM technique. 
Equation 1 presents the formula to calculate the average data 
access time in a processor with multiple cache levels.  

Σi=1 to memory_levels  (Πn=1 to i-1 miss_raten) * 
(cache_hit_time i * (1 - miss_ratei) + 
cache_miss_time i * miss_ratei) 

Equation 1. Data access times without MNM  
The cache_hit_time corresponds to time to access data at a 

cache and cache_miss_time is the time to detect a miss in a 
cache. The data access times in case when an MNM is utilized 
can be found using Equation 2.  

Σi=1 to memory_levels  (Πn=0 to i-1 miss_raten) * 
(cache_hit_time i * (1 - miss_ratei) + 
cache_miss_time i * MNM_abortedi * 

miss_ratei) 

Equation 2. Data access times with MNM  

3. MNM TECHNIQUES 
This section presents the proposed techniques for identifying 

cache misses. The first technique gathers information about the 
blocks that are replaced from the caches. The remaining 



techniques store information about the blocks stored in the 
cache. All the techniques except the first technique, has 
separate structures storing information about the different 
caches. When a decision has to be made, the collective 
information is processed by accessing all the structures in 
parallel and interpreting the data stored in these structures.  

When a block is placed into a cache, all the bytes in that block 
are placed into the cache. Therefore, to recognize misses, there 
is no need to store information about the exact bytes that are 
stored in a cache. Instead in all the techniques, the block 
addresses are stored. The block address is composed of the tag 
and the index sections of an address. Figure 4 shows the block 
address portion of an address. For example, if the cache has 
128-byte block size, each address is shifted 7 bits right before it 
is entered to the MNM. Therefore, in the remainder of this 
paper, an address entered to the MNM corresponds to a block 
address placed into or replaced from the cache.  

The techniques do not assume the inclusion property of 
caches. In other words, we assume that if cache level i contains 
a block b, block b is not necessarily contained in cache level 
i+1. In addition, the MNM checks for the misses on cache level 
i+1, even if it cannot identify a miss in cache level i. Since the 
miss signals are propagated with the access, level i+1 can still 
bypass the access even if the access is performed in cache level 
i. For example, if the MNM identifies the miss in L3 cache but 
could not identify at L2 cache, first the L2 cache will be 
accessed. If it misses, the L3 cache will be bypassed because a 
miss was identified for the cache. In all the techniques, a miss 
for a cache level is indicated by a high output of the MNM 
structures.  
 

 

 

 

Figure 4. Portion of the address used by the MNM. 

3.1 Replacements MNM (RMNM) 
The Replacements MNM stores the addresses that are 

replaced from the caches. If a block is replaced from a cache, it 
means that the address is not present in the specific cache 
anymore. Therefore, access to the address will miss. Note that 
cold misses cannot be captured with this technique.  

The information about the replaced blocks is stored in an 
RMNM cache. The RMNM cache is addressed by the 
addresses of the current reference or the address of the block 
being replaced. They are shifted according to the block size of 
the level 2 cache(s). Therefore, if a block is replaced from a 
cache with a larger block size, multiple accesses to the RMNM 
cache are necessary. Specifically, there will be (block sizeLARGE / 
block sizeL2) accesses performed to the RMNM cache indicating 
that accesses to any of the addresses will miss. Instead of 
storing the replaced blocks from each cache in a separate 
RMNM cache, we have chosen to have a single RMNM cache 
that stores information about each cache level. The RMNM 

cache has a block size of (n-i) bits, where n corresponds to 
number of separate caches and i correspond to the number of 
level 1 caches. Each bit in the block corresponds to a cache and 
there is no information stored about the first level caches. 
When ith bit for an address is set, that means the block is 
replaced from the cache and hence a miss will occur for the 
access. Table 1 shows a scenario for a 2-level cache structure, 
where a sequence of addresses is accessed by the core. Since 
there are only two levels of caches, each RMNM block contains 
a single bit indicating the hit/miss for the second level cache. 
Table 1 shows the block addresses placed into and replaced 
from the caches and the RMNM cache. When the block with 
address 0x2FC0 is replaced from the L2 cache, it is placed into 
the RMNM cache and the subsequent access, which will miss, 
is captured by the RMNM.  
Table 1. An example scenario showing how the RMNM works. 
The abbreviations are: pl. stands for placed into the cache, repl. 
stands for replaced from the cache.  

 Event 

Access L1 L2 RMNM cache 

0x2FF4 pl. 0x2FF0 pl. 0x2FC0  

0x20F4 repl.0x2FF0 
pl. 0x20F0 

repl.0x2FC0 
pl. 0x20C0 

place 0x2FC0 with 
data 1  

0x2FF4 repl.0x20F0 
pl. 0x2FF0 

repl.0x20C0 
pl. 0x2FC0 

The miss at level 2 
cache is identified. 

3.2 Sum MNM (SMNM) 
The sum technique stores information regarding the relative 

locations of the bit values on the addresses that are high. 
Specifically, for each access a hash value is generated. If the 
hash value of the access does not match any of the hash values 
of the existing cache blocks, a miss is captured. The specific 
hash function is given in Figure 5. The result of the function is 
sum value that is modified in the for loop. Figure 6 shows the 
design of the circuit implementing the sum mechanism. The 
figure is drawn with the SUM_WIDTH value equal to 3. The D 
flip-flops at the bottom of the Figure 6 store the hash values for 
the addresses in the cache. At the start of the execution, the 
bits are reset. Then, when a block is placed into the cache, the 
address is placed into the circuit as input and the resulting hash 
value is stored in the flip-flops. On an access, if the hash value 
of the requested address is equal to one of the hash values in 
the flip-flops, then the access is performed (output of the 
design will be zero). If it does not match any of the hash values, 
then, the corresponding cache access is bypassed. Note that 
the complexity of the logic units is O(SUM_WIDTH4), whereas 
the number of flip-flops at the bottom is O(SUM_WIDTH3). 
Specifically, we need  

1 + sum_width * (sum_width + 1) * (2sum_width + 1) / 6 

Equation 3. Number of D Flip-flops for the sum circuit.  

D flip-flops at the bottom of Figure 6, which is 
O(SUM_WIDTH3). The amount of logic for each level can be 

tag index offset 

Block address 



estimated by Equation 3. Since there are sum_width levels, the 
total logic units will be bounded by O(SUM_WIDTH4). 

sum = 0; 
for (i = 1; i < (SUM_WIDTH + 1); i++) { 
 if (tag & 0x1) 
  sum += i * i; 
 tag = tag >> 1; 
} 

Figure 5. Sum hash function  

S u m  V a l u e

E
xa

m
in

ed
 B

lo
ck

 A
dd

re
ss

I n v e r t e r

Inver te r

I n v e r t e r

Q Q
SET

CLR

D

S
et

M i s s  S i g n a l

I n v e r t e r

Q Q
SET

CLR

D

Q Q
SET

CLR

D

Q Q
SET

CLR

D

Q Q
SET

CLR

D

Q Q
SET

CLR

D

Q Q
SET

CLR

D

Q Q
SET

CLR

D

Pu l l -Up  T rans is to rs

 
Figure 6. Circuit implementing the sum mechanism (checker)  

We name the design in Figure 6, which examines a portion of 
the tag, a checker circuit. Some SMNM configurations use 
multiple checkers that examine different portions of the block 
address. The SMNM configuration for each cache level is 
denoted by sumwidthxreplication, where sumwidth equals to 
the sum_width at each checker and the replication is the number 
of parallel checkers implemented. For example, SMNM_12x3 
means that there are 3 parallel checkers each with sum_width 
equal to 12. Regardless of the sum_width, if there are multiple 
checkers, the first one examines the least significant bits, the 
second examines the bits starting from the 7th leftmost bit and 
the third one examines the bits starting from the 13th. Figure 7 
shows how multiple checkers work in parallel. The configuration 
drawn is SMNM_10x2. Each checker applies the algorithm 
presented above. Then, if any of the checkers capture a miss 
(return 0), the access is bypassed.  

 

 
 

Figure 7. SMNM example.  

3.3 Table MNM (TMNM) 
The third technique proposed is called the Table MNM. 

TMNM stores the least significant N bits of the block 
addresses in the caches. If the least significant N bits of the 
access do not match any one of the stored values, then the 
access can be bypassed.  

The values are stored in the TMNM table, an array of size 2N 
bits. The least significant N bits of the address are used to 
address the TMNM table. The locations corresponding to the 
addresses stored in the caches are set to 0 and the remaining 

locations are set to 1. During an access, the least significant N 
bits of the block access address are used to address this table. 
The value stored at the corresponding location is used as the 
miss signal. An example TMNM for N equals to 6 is drawn in 
Figure 8. The cache in the example only has two blocks with the 
block addresses as shown in the figure. When the request 
comes to the MNM, the corresponding position is calculated 
and the bit position is read from the TMNM table. In Figure 8, 
this location is high, which means that the access is going to be 
miss and can be bypassed. There can be several block 
addresses that are mapped to the same bit position in the 
TMNM table. Therefore the values at the TMNM tables are 
counters instead of single bits. We use a counter of 3 bits in our 
simulations. When a new block is placed into the cache, the 
counter value at the corresponding position is incremented 
unless it is saturated. If a block is replaced from a cache, the 
corresponding counter value is decremented unless the counter 
is saturated. A saturated value occurs when there are 8 different 
blocks that are mapped to the same location. In this case, we 
cannot conclude whether there are 8 or more blocks mapped to 
the same location, therefore the counter becomes an indicator 
that any access mapped to this position “may be a hit”. The 
counter values are reset when the caches are flushed.  

Similar to the SMNM, we have performed simulations with 
multiple tables examining different portions of the address. 
Therefore each TMNM is defined as TMNM_nxreplication, 
where n corresponds to the number of bits  checked by each 
table and replication is the number of tables examining different 
positions of the address.  
Access:    …100001 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 0 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 0 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 0 1 1 1 1 1 

1 1 1 1 1 1 1 1 

Cache blocks:   …001111 
…110010  

Figure 8. TMNM example.  

3.4 Common-Address MNM (CMNM) 
Common-Address MNM tries to capture the common values 

at the block addresses. When an application accesses a memory 
position x, it is likely that the memory positions close to x will be 
accessed in the following cycles. Common-Address value tries 
to capture this locality by examining the most significant bits of 
the address. This is achieved with the help of a virtual-tag 
finder and a table similar to the TMNM table. Virtual-tag finder 
stores the most significant n-bits stored in the cache. Then, for 
each address it generates a virtual-tag that is attached to the 
remaining m bits of the address and used to access the table. 
Figure 9 depicts the events for finding the address used to 
access the CMNM table. Assuming a 32-bit address, the 

1  0  0   0  0  1  1  0  1  1  0  0  0    1  1  0  1  1  1 

checker 1 
checker 2 

Address: 



m+k 

CMNM enters the most significant (32 – m) bits to the virtual-
tag finder. Virtual-tag finder has k registers storing the 
encountered most significant portions of the cache blocks. The 
masked bits of the address are compared to the values. If the 
new address matches any of the existing values, the virtual-tag 
finder outputs the index of the matching register. This index is 
attached to the least-significant m bits of the examined address 
and used to access the CMNM table. Similar to the TMNM, this 
table indicates whether the address should return a miss or a 
“maybe”. If the address of the block to be placed into the cache 
does not match any register values in the virtual-tag finder, 
mask value for the registers are shifted left until a match is 
found. Then the mask values are reset to their original position 
except the register that matched the value.   

When an address is checked, there are two ways to identify a 
miss. First, the (32 – m) most significant bits of the address are 
entered to the virtual-tag finder. If the value does not match any 
of the register values in the virtual-tag finder, the access is 
marked as a miss. If a register matches the address, the index is  
attached to the least significant m bits of the address and the 
CMNM table is checked. If the corresponding table position 
has a 1, again a miss is indicated.  
 
 
 
 
 
 

 
0 1 1 1 0 1 1 1 

1 0 1 1 1 1 1 0 

0 1 1 1 1 0 1 1 

1 0 1 0 1 1 0 1 

1 1 1 1 0 0 1 1 

0 0 1 1 1 0 1 1 

1 1 1 1 1 1 0 1 

1 1 0 1 0 1 1 1 

Figure 9. CMNM example.  

The CMNM techniques are defined by the number of 
registers in the virtual-tag finder and the m value. For example 
CMNM_4_10 corresponds to a CMNM checker with the first 22 
most significant bits used to access the virtual-tag finder (which 
has 4 registers) and the least significant 10 bits used to access 
the CMNM table. Similar to the TMNM table, each address of 
the CMNM table is a 3-bit counter.  

3.5 Hybrid MNM (HMNM) 
The previous MNM techniques explained in this section 

perform different transformations on the address and use small 
structures to identify some of the misses. A natural alternative 
is to combine these techniques to increase the overall accuracy 
of recognition of the misses. Such a combined MNM is defined 
as Hybrid MNM. We have performed simulations with a variety 
of combinations of the proposed techniques and measured the 
effect on the accuracy in Section 4.  

3.6 Discussion  
The MNM techniques discussed in this section never 

incorrectly indicate that bypassing should be used, but do not 
detect all opportunity for bypassing. In other words, if the 
MNM indicates a miss, then the block certainly does not exist in 
the cache, however if the output is  a “maybe” then the access 
might still miss in the cache. The techniques are developed 
intentionally with this property. The miss signals should be 
reliable because the cost of indicating an access will miss when 
the data is actually in the cache is high (redundant access to a 
higher level of memory hierarchy should be performed), whereas 
the cost of a hit misindication is relatively less (a redundant tag 
comparison at the cache). 

4. EXPERIMENTS  
In this section, we measure the effectiveness of various MNM 

techniques. Section 4.1 discusses the simulation environment. 
In Section 4.2, we present simulation results measuring the 
success of the MNM techniques. Section 4.3 presents the 
improvement in the execution time of the simulated applications 
using the parallel MNM. Finally, Section 4.4 explains the power 
reduction effects of the serial MNM.  
4.1 Methodology  

We have performed several simulations to measure the 
effectiveness of the proposed techniques. The SimpleScalar 3.0 
[12] simulator is used in all the experiments. The necessary 
modifications to the simulator have been implemented to 
measure the effects of the multiple level caches and the MNM 
techniques. We simulate 10 floating-point and 10 integer 
benchmarks from the SPEC2000 benchmarking suite [14]. The 
applications are compiled using DEC C V5.9-008 and Compaq 
C++ V6.2-024 on Digital UNIX V4.0. Sherwood et al. [11] show 
how to speed up the simulation of SPEC applications without 
affecting the simulation results. We have simulated 300 Million 
instructions from each application after fast-forwarding 
application-specific number of instruction determined by 
Sherwood et al. [11]. Important characteristics of the 
applications are explained in Table 2.  

In all the experiments, we simulate an 8-way processor with 5 
cache levels. The processor has separate level 1 and level 2 
instruction and data caches. Therefore, there are a total of 7 
different cache structures in the processor. The level 1 caches 
are 4 KB, direct-mapped caches with 32-byte block size and 2 
cycle latency. The level 2 caches are 16 KB, 2-way associative 
caches with 32-byte linesize and 8 cycle latency. Unified level 3 
cache is a 128 KB, 4-way associative cache with 64-byte blocks 
and 18 cycle latency. Unified level 4 cache is a 512 KB, 4-way 
associative cache with 128-byte block size and 34 cycle latency. 
Finally, unified level 5 cache is a 2 MB, 8-way associative cache 
with 128 byte blocks and 70 cycle latency. For all 
configurations, the MNM has a 2-cycle delay. The memory 
access delay is 320 cycles.   
4.2 MNM Miss Coverage  

The success of the MNM techniques is measured in 
coverage. Coverage is the fraction of the misses identified by 
the technique over all cache misses. For example, if the access 
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will hit in level 4 cache and miss in all the previous cache levels, 
potentially 2 caches can be bypassed because we do not 
predict misses in the first level cache. If the MNM recognizes 
the miss in level 2, but not for level 3, then the coverage is 50%, 
because only half of the misses are identified. Note that 
coverage is not affected by the location of the MNM. The 
location affects the delay and power consumption. 

Figure 10 presents the coverage for different RMNM 
configurations. Different configurations are labeled according 
to the RMNM cache used in the simulations. RMNM_n_m 
corresponds to an RMNM cache of associativity m and the 
number of blocks equal to n. The configuration is used for all 
the cache levels. We see that although the average coverage of 
RMNM is low, for some applications it can recognize majority of 
the misses. The reason lies in the nature of the applications. If 
the conflict and capacity misses constitute a large portion of the 
misses, RMNM may capture them. However, if there are too 
many replications that pollute the RMNM cache or the cold 
misses dominate the misses in a cache, RMNM has a low 
coverage. The largest configuration simulated is a 2 KB, 8-way 
associative cache, which identifies 24% of the misses on 
average. 

The coverage results for SMNM configurations are presented 
in Figure 11. The labeling is explained in Section 3.2. For an 
SMNM configuration, all the structures are replicated for 4 
cache levels. The SMNM coverage is small except for the 
application 301.apsi. A closer investigation of the results reveal 
that SMNM structures can identify the misses in the smaller 
caches better. The 301.apsi application has a high miss ratio for 
level 2 instruction cache and high hit ratios for the remaining 
caches. This increases the overall weight of the misses for the 
small caches. Figure 12 presents the coverage for different 
TMNM configurations. The labeling of different configurations 
are explained in Section 3.3. The 12x3 configuration has the best 
coverage, recognizing 25.6% of the misses on average. We see 
that the TMNM_10x3 configuration has a better coverage in all 
applications than the 11x2 coverage, which uses larger 
structures. This shows that using multiple tables in parallel can 
boost the performance significantly. Figure 13 plots the 
coverage for the CMNM configurations. Among the proposed 
techniques the CMNM has the best coverage. The 
CMNM_8_12 technique identifies 46.4% of the misses on 
average. Although this is a large structure, compared to the 
caches the delay and power consumption is very small.   

Table 2. Important characteristics of the simulated SPEC2000 applications.  

Application # cycle 
[M] 

# dl1 acc 
[M] 

# il1 acc 
[M] 

dl1 hit rate 
[%] 

dl2 hit rate 
[%] 

il1 hit rate 
[%] 

il2 hit rate 
[%] 

ul3 hit rate 
[%] 

ul4 hit rate 
[%] 

ul5 hit rate 
[%] 

168.wupwise 290.4 94.4 350.0 94.2 60.9 98.0 100.0 57.3 56.9 12.7 

171.swim 839.7 100.4 300.4 80.4 36.9 99.9 55.5 63.7 70.1 32.1 

172.mgrid 480.6 109.8 305.9 68.3 72.2 97.4 99.8 69.6 61.8 48.1 

173.applu 710.5 114.7 308.9 83.4 52.9 99.9 0.6 68.1 66.9 34.2 

177.mesa 289.8 113.5 339.2 91.4 92.3 93.4 95.4 90.0 76.9 49.2 

179.art  1249.4 112.1 327.8 57.6 21.3 99.9 95.4 27.5 43.8 88.5 

183.equake 318.3 112.8 468.2 96.2 98.8 92.9 76.9 99.3 53.7 19.8 

188.ammp 309.6 118.4 318.3 90.4 44.6 99.9 100.0 59.8 54.2 75.2 

189.lucas 680.1 84.2 300.0 74.0 39.8 99.9 0.0 61.9 36.9 47.5 

301.apsi 296.0 115.4 343.0 87.1 76.1 97.8 47.2 75.9 90.3 67.5 

FP avg.  546.4 107.6 336.2 82.3 59.6 97.9 67.1 67.3 61.1 47.5 

164.gzip 175.3 77.1 362.6 94.4 65.2 99.9 91.4 86.2 86.2 32.7 

175.vpr 394.8 118.6 381.6 87.8 69.1 95.2 91.6 63.1 63.1 99.6 

176.gcc 313.6 111.2 323.4 88.8 67.0 94.9 61.8 91.3 91.3 61.9 

181.mcf 1767.4 185.6 625.0 65.4 35.7 99.9 97.4 46.3 46.3 45.1 

186.crafty 529.5 111.5 371.4 84.5 82.6 90.8 60.7 96.8 96.8 43.6 

197.parser 331.4 110.0 389.1 89.9 65.9 98.7 97.7 76.1 76.1 67.7 

253.perlbmk 443.1 127.5 424.7 96.8 48.2 99.4 84.4 69.0 69.0 32.0 

254.gap 183.4 67.6 331.7 91.9 53.1 98.8 78.8 70.8 70.8 37.5 

255.vortex 407.7 127.0 342.9 92.7 84.0 91.2 60.8 96.0 96.0 50.1 

300.twolf 388.3 98.1 397.0 87.2 58.5 96.8 62.2 72.5 72.5 99.5 

INT avg.  493.4 113.4 394.9 87.9 62.9 96.6 78.7 76.8 76.8 57.0 

Arith. Mean 519.9 110.5 365.5 85.1 61.2 97.3 72.9 72.1 69.0 52.2 
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Figure 10.  RMNM coverage.  
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Figure 11.  SMNM coverage.  
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Figure 12.  TMNM coverage.  
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Figure 13.  CMNM coverage.  
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Figure 14.  HMNM coverage.  
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Figure 15.  Reduction in execution cycles.  

Reduction in Power Consumption

0
5

10
15
20
25
30
35
40

16
8.w

up
wise

17
1.s

wim

17
2.m

grid

17
3.a

pp
lu

17
7.m

es
a

17
9.a

rt

18
3.e

qu
ake

188
.am

mp

189
.luc

as

30
1.a

psi

FP
 av

g.

16
4.g

zip
17

5.v
pr

176
.gc

c

181
.mcf

18
6.c

raf
ty

19
7.p

ars
er

25
3.p

erlb
mk

25
4.g

ap

25
5.v

orte
x

30
0.tw

olf

INT a
vg.

R
ed

u
ct

io
n

 [
%

]

TNM_12x3 CNM_8_10 HNM2 HNM4 Perfect
 

Figure 16.  Reduction in the power consumption of the caches.  

The results for the HMNM are presented in Figure 14. The 
techniques used in each HMNM for different configurations are 
listed in Table 3. The simulated configurations have an 
increasing level of complexity in terms of delay and area. 
Nevertheless, the delay for the most complex configuration 
HMNM4 is smaller than the delay of the 4 KB level 1 caches. 
The HMNM4 configuration has an average 53.1% coverage. 

Table 3. HMNM configurations. In addition to the techniques 
listed, HMNM1 employs an RMNM_128_1, HMNM2 employs an 
RMNM_512_2, HMNM3 employs an RMNM_2048_4, and 
HMNM4 employs an RMNM_4096_8. 

Cache HMNM1 HMNM2 HMNM3 HMNM4 

Levels 2 
and 3 

SMNM10x2  
+ 

TMNM_10x1 

SMNM13x2  
+ 

TMNM_10x1 

SMNM15x2  
+ 

TMNM_10x1 

SMNM20x3  
+ 

TMNM_10x3 

Levels 4 
and 5 

CMNM2_9   
+ 

TMNM_10x1 

CMNM4_10 
+ 

TMNM_11x2 

CMNM8_10 
+ 

TMNM_10x3 

CMNM8_12 
+ 

TMNM_12x3 

4.3 Execution Time Measurements  
We have performed several simulations with the parallel 

MNM to see measure its effects on the execution time of the 
SPEC 2000 applications. The results are summarized in Figure 
15. Figure 15 presents results for 4 different techniques 
(TMNM_12x3, CMNM_8_10, HMNM2, and HMNM4). To see 
the limits on the performance improvements of the MNM 
techniques, we also report simulation results of a perfect MNM. 
The perfect MNM always knows where the data is and hence 
bypasses all the caches that misses. The HMNM4 technique 
reduces the exe cution cycles by as much as 12.4%, and by 5.4% 
on average. The perfect MNM reduces the execution time by as 
much as 25.0% and 10.0% on average.  

4.4 Power Reduction Measurements  
This section presents the measurements for power 

consumption of the caches using the MNM techniques. For the 
experiments, the MNM structures are accessed after level 1 
cache misses. We have found the power consumption of the 
simulated caches, as well as the MNM structures using the 
CACTI 3.1 [16]. For the SMNM structures, we have 
implemented the RTL descriptions of the checkers in VHDL and 
used Synopsys Design Compiler [15] to find the power and 
delay properties.  

Figure 16 presents the power reduction in the cache system 
using the MNM techniques. The HMNM4 configuration is able 
to reduce the power consumption of the caches by as much as 
11.6% (3.8% on average). The perfect MNM that identifies all 
the misses perfectly without consuming any power, reduces the 
power consumption by as much as 37.6%, and 10.2% on 
average.  
4.5 Discussion  

We have seen that the misses even for large caches can be 
accurately identified using small structures utilized in the MNM. 
We also showed that the information about misses might be 
used to increase the performance or reduce the power 
consumption of the caches in modern processor. However, the 
utilization of the information about cache misses is not limited 
to these two usages. For example, miss information can be used 
in instruction scheduling step. The scheduler can use the miss 
information to prevent scheduling of the memory instructions 
that will miss in the level 1 cache and other instructions 
dependent on these memory instructions. Another usage might 
be to reduce the power consumption of other caching 
structures such as the TLBs.  



5. RELATED WORK  
Related work falls into a group of studies conducted for 

reducing the negative effects of cache misses. Arguably the 
most important technique to reduce cache miss penalty is the 
non-blocking caches, also called the lock-up free caches [7]. 
Non-blocking caches do not block after a cache miss, being able 
to provide data to other requests. Sohi and Franklin [13] discuss 
a multi-port non-blocking L1 cache. Farkas and Jouppi [3] 
explore alternative implementations of the non-blocking caches. 
Farkas et al. [4] studies the usefulness of the non-blocking 
caches. Other important techniques for reducing cache miss 
penalty is giving priority to read misses over write misses, 
subblock placement, early restart, and critical word first on a 
miss, which gives priority to the accessed word over the other 
sections of the cache block [5]. Seznec et al. [10] studies caches 
in an out-of-order processor to find optimal linesize to reduce 
the cache miss penalty. Although these techniques share the 
same goal of reducing the cache miss penalty similar to the 
proposed techniques, the techniques employed have no 
resemblance to our proposed mechanisms. In all the above-
mentioned techniques the miss is detected after the cache 
structures are accessed.   

Way prediction [2] and selective direct-mapping [1] were 
proposed to improve set-associative cache access times. Powell 
et al. [9] use these techniques to reduce the energy 
consumption of set-associative caches. Our techniques identify 
whether the access will be a miss in the cache rather than 
predicting what associative way of the cache will be accessed.  

In the context of multiple processor systems, Moshovos et al. 
[8] propose filtering techniques for snoop accesses in the SMP 
servers. Similar to our work, they identify the hits or misses in 
the level 2 cache. However, the predictions are made for snoop 
accesses originating from other processors. We identify misses 
in a single-core processor with multiple caches and the requests 
originate from the core instead of arriving to the processor from 
other cores.  

6. CONCLUSION 
In this paper, we have presented techniques to reduce the 

penalty of cache misses. Particularly, we have shown 
techniques identifying the misses in different cache levels. 
These techniques are implemented in a Mostly No Machine 
(MNM). When an access is identified to miss, the access is 
directly bypassed to the next cache level. Thereby the cache 
structures are not accessed, reducing the delay and the power 
consumption associated with the misses. We have first shown 
that as the number of cache levels employed in processors 
increase, the fraction of the time and power spent for cache 
misses also increase. Then, we have presented 5 different 
techniques of varying complexity to recognize some of the 
cache misses. We show that using the small structures MNM is 
able to identify and hence prevent 53.4% of the misses in a 
processor with 5 cache levels. The MNM can be aggressively 
accessed in parallel with the level 1 caches reducing the 
execution time of the applications. It can also be accessed after 
a level 1 cache miss, primarily to reduce the power consumption 

of the caches. Specifically, we have shown that the execution 
time of SPEC 2000 applications are reduced by 5.4% on average 
(ranging from 0.6% to 12.4%), whereas the power consumption 
is reduced by 3.8% on average (ranging from 0.4% to 11.6%) 
using an Hybrid MNM technique.  
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