
Just Say No: Benefits of Early Cache Miss Determination
Gokhan Memik†, Glenn Reinman‡, William H. Mangione-Smith†

†Department of Electrical Engineering,

University of California, Los Angeles

{memik, billms}@ee.ucla.edu

‡Computer Science Department,

University of California, Los Angeles

reinman@cs.ucla.edu

ABSTRACT
As the performance gap between the processor cores and the memory
subsystem increases, designers are forced to develop new latency
hiding techniques. Arguably, the most common technique is to utilize
multi-level caches. Each new generation of processors is equipped with
higher levels of memory hierarchy with increasing sizes at each level.
In this paper, we propose 5 different techniques that will reduce the
data access times and power consumption in processors with multi-
level caches. Using the information about the blocks placed into and
replaced from the caches, the techniques quickly determine whether an
access at any cache level will be a miss. The accesses that are identified
to miss are aborted. The structures used to recognize misses are much
smaller than the cache structures. Consequently the data access times
and power consumption is reduced. Using SimpleScalar simulator, we
study the performance of these techniques for a processor with 5 cache
levels. The best technique is able to abort 53.1% of the misses on
average in SPEC2000 applications. Using these techniques, the
execution time of the applications are reduced by up to 12.4% (5.4% on
average), and the power consumption of the caches is reduced by as
much as 11.6% (3.8% on average).

1. INTRODUCTION
It is known that the performance of processor cores increase

at a faster pace than the access times to memory resulting in an
increasing performance problem. As this gap grows, designers
are forced to develop techniques to close this gap. The most
common technique is to use multiple-levels of memory
hierarchy. Two level on-chip caches have been one of the
common properties of high-end microprocessors in the recent
years, and high-end processors have started employing three
levels of on-chip caches (e.g. three levels of on-chip caches on
McKinley [6]). If the trends continue, the next generation
processors will use 4, 5, or even more levels of on-chip caches.
In this paper, we propose techniques that will improve the
cache access times and reduce the power consumption of
processors with multi-level (more than 2) caches.

Two important factors limit the size of the level 1 caches and
hence force designers use multiple level caches. First, the
access times of caches increase with their size. Second,
aggressive processors perform multiple accesses to the caches
in a single cycle. Therefore, designers cannot build arbitrary
sizes of caches. On the other hand, in general the cache
footprints of the applications are increasing, therefore there is
an increasing need for accessing large amounts of data at faster
speeds. Hence, cache miss ratios are likely to increase or at least
stay the same in next generation processors.

Figure 1. Different Mostly No Machine (MNM) positions in a
processor with 3 cache levels. In (a) the MNM and L1 cache are

accessed in parallel, in (b) MNM is accessed only after the L1 miss.

We propose techniques to quickly identify a set of misses.
Consider a 5 level memory hierarchy. If we can determine that the
first three levels of cache accesses are going to miss and the
request will be supplied from the fourth level of hierarchy, we can
bypass the accesses to the first three levels. Thereby, the delay
of the data access will be reduced and the power consumed by
the misses can be prevented. The techniques identify misses for
both instruction and data cache accesses. The first proposed
technique uses the information about the replaced blocks from
the caches and determines the exact location of the accessed
block. Other techniques store partial information about which
addresses are kept in a certain cache level. Using this information
a decision is made whether the access may hit or will definitely
miss. These techniques are built into a Mostly No Machine
(MNM) which is accessed either in parallel with the level 1
cache(s) or is accessed only after a level 1 cache miss. Figure 1
depicts the two positions. In Figure 1 (a), the MNM is accessed
in parallel with the level 1 instruction and data caches (the
instruction and data caches are not drawn separately in Figure 1
for brevity). At this position, the MNM identifies some (but not
all) cases where the L2 cache will miss. In these cases, the access
to L2 cache can be bypassed, directly accessing level 3 cache.
Similarly, level 3 cache accesses can be bypassed directly
sending requests to the main memory. Once a miss is determined,
the decision is tagged along with the data request and
propagates with the access through the cache levels. This tag
forces caches to bypass if they are identified to miss by the
MNM. Since the MNM structures are much smaller than the
corresponding cache structures, the MNM reduces the delay
and power consumption of the cache system.

Power consumption is one of the important issues in the
modern processors. As the semiconductor feature size is

L1

CPU

L1 MNM

L2

L3

Main Memory

CPU

MNM

L2

L3

Main Memory

(a) (b)

reduced, more logic units can be packed into a given area. This
reduces the delay of logic units, but increases the overall power
consumption of the processor. Therefore, with each new
generation of processors, the total power consumption as well
as the power per area tends to increase, putting the overall
execution of the processor in danger. Caches consume a
significant portion of the overall power in the processors. By
quickly identifying the misses, we show that power reduction
can be achieved. Specifically, in this paper we
§ present experimental results showing the fraction of the

power consumed by the cache misses in a processor with
multi-level caches,

§ present novel techniques that use partial information about
the blocks in a cache to identify whether the cache access
will be a hit or a miss,

§ use miss bypassing to improve cache access times, and
§ show through simulation that by using the techniques

power reductions and performance improvements are
achieved.

We next present motivational data. In Section 2, we give an
overview of the MNM and discuss the complexity of employing
an MNM. Section 3 presents the different MNM techniques we
have considered. In Section 4, we present the experimental
results. Section 5 discusses the related work. In Section 6 we
conclude the paper with a summary.

1.1 Effects of Cache Misses
The MNM is useful when there is considerable number of

cache misses and these misses can be identified using small
structures utilized by the MNM. Hence, we have first performed
simulations to see the fraction of delay and power consumption
caused by cache misses. We simulate SPEC2000 applications
using processors with different levels of caches. The processors

used in the simulations for 2 and 3 level caches are 4-way
processors. The results for 5 and 7 level caches are obtained
using an 8-way processor with resources (RUU size, LSQ size,
etc.) twice of the processor for 2 and 3 level cache simulations.
The time effects of misses are measured in data access time. We
define the data access time to be the average time spent
between when the CPU makes a request to the L1 cache and the
time the data is supplied to the CPU. If all requests are satisfied
by the level 1 cache, the data access time is equal to the level 1
cache latency. In other cases, it is the sum of number of
requests satisfied by each memory level including the main
memory weighted with the latency of accessing the data in that
memory level. Section 2 presents a formula to calculate the data
access time using the hit rates at each cache level. The misses
increase the data access times, because if the data will be
supplied by the nth level cache, all the cache levels before n will
be accessed causing unnecessary delay. If these misses are
known in advance and not performed, the data access time will
be reduced.

Figure 2 presents the time fraction of the data access times
caused by cache misses. Each bar in the figure represents the
fraction of time spent for cache misses in the respective
configuration. For example, a 30% fraction for a processor with 5
levels of cache means that on an average access, 30% of the
time is spent accessing caches that miss and 70% of the time is
actually spent in the correct cache level to access the data. We
see that as the number of levels is increased, the fraction of
misses increases. In the simulated processor with 5 levels, the
misses cause 25.5% of the data access times. In Section 4, we
will show that such a fraction can have significant effect on the
performance.

Fraction of Misses in Data Access Time

0
10
20
30
40
50
60
70
80
90

100

168
.wu

pw
ise

17
1.s

wim

17
2.m

grid

17
3.a

pp
lu

17
7.m

esa
17

9.a
rt

18
3.e

qu
ake

18
8.a

mmp

18
9.lu

cas

30
1.a

psi

FP
 av

g.

16
4.g

zip
175

.vp
r

176
.gc

c

18
1.m

cf

18
6.c

raft
y

197
.pa

rse
r

253
.pe

rlbm
k

25
4.g

ap

255
.vo

rtex

30
0.tw

olf

INT a
vg.

P
er

ce
n

ta
g

e
[%

]

2-level 3-level 5-level 7-level

Figure 2. Fraction of time spent for cache misses in the overall data access times.

Fraction of Misses in Power Consumption

0
10
20
30
40
50
60
70

168
.wu

pw
ise

17
1.s

wim

17
2.m

grid

17
3.a

pp
lu

17
7.m

esa
17

9.a
rt

18
3.e

qu
ake

18
8.a

mmp

18
9.lu

cas

30
1.a

psi

FP
 av

g.

16
4.g

zip
175

.vp
r

176
.gc

c

18
1.m

cf

18
6.c

raft
y

197
.pa

rse
r

253
.pe

rlbm
k

254
.ga

p

255
.vo

rtex

30
0.tw

olf

INT a
vg.

P
er

ce
n

ta
g

e
[%

]

2-level 3-level 5-level 7-level

Figure 3. Fraction of cache power consumption for cache misses in the overall cache power consumption.

Figure 3 presents the fraction of power consumption of the
caches caused by cache misses. Similar to data access times, as
the number of levels is increased, the fraction generally
increases. The fraction reduces for 181.mcf and 179.art for higher
levels of caches, because these applications have relatively high
miss ratios for the lower level caches. The miss ratios are larger
for low-level caches. Therefore, the fraction of misses in data
access times increase with higher levels of caches, but the
fraction in power consumption decreases, because power
consuming larger caches have small miss rates. Nevertheless, we
see that on average approximately 18% of the overall cache
power is consumed for the misses in the processor with 5 level
caches. These results show that the effects of cache misses will
become an important factor in both data access times and power
consumption, motivating the exploration of techniques to
minimize the negative effects of cache misses.

2. MOSTLY NO MACHINE OVERVIEW
In this section, we discuss how a processor should be

modified to utilize the MNM techniques and also give an
overview of how the MNM works. The MNM propagates the
decision with the help of additional tags. When the MNM
identifies a miss, miss signals for each cache level is generated
and is tagged to the control signals sent to the higher levels of
caches. There is a miss bit for each level of cache (except the
level 1). The ith miss bit dictates whether the access should be
performed at level i, or whether the address should be bypassed
to the next cache level without performing any access to the
cache structure. Another possible approach might be to
implement control buses from the MNM to each cache level.
This will reduce the data access times even further, but might
increase the processor complexity.

There are several locations where the MNM can be realized.
Figure 1 depicts two possible locations of an MNM in a
processor. In Figure 1 (a) (parallel MNM), the L1 cache(s) and
the MNM are accessed in parallel. In this configuration, the
number of ports in the MNM is equal to the sum of ports in the
level 1 data and instruction caches. When the address is given
to the MNM, it identifies which cache has a block that contains
the specific address. When the L1 cache miss is detected, we
know which caches to access, because in all techniques, the
MNM delay is smaller than the L1 delay. Hence, the miss signals
are generated prior to the detection of L1 cache miss, and it is
tagged to the control signals after the L1 miss detection. In
Figure 1 (b) (serial MNM), the MNM is accessed only after level
1 cache misses. The advantage of this configuration is the
reduced power consumption by the MNM and the reduced
complexity of the MNM block due to fewer ports required. If the
level 1 hit ratios are high, the parallel MNM will not generate any
useful information for most of the accesses. The serial MNM, on
the other hand, has the disadvantage of higher cache access
times. For the serial MNM, the access times to any cache level
except the level 1 caches are increased by the delay of the
MNM.

Another possible configuration is to employ a distributed
MNM that identifies the misses before each cache level. The
misses are recognized using information about the blocks in

each cache level. This information can be distributed to each
cache. Such a configuration will have better power consumption,
but will increase the access times.

To incorporate an MNM into a processor, the cache structures
should be modified. Each cache structure should be extended
with logic to detect the miss signal and bypass the access if
necessary. In the parallel MNM, the bus to the L1 core should
also be accessed by the MNM (this can be achieved by
snooping). In the serial MNM, the request generated by the L1
is sent to the MNM, which forwards the request to the L2. This
modification is necessary to guarantee the synchronization
between the access and the miss signal. The data supplied from
the L2 cache, on the other hand, will be directly sent back to the
L1. So, there is need for separate address/data busses between
the L1 and L2 cache. If the number of cache levels is increased,
there might be separate instruction and data caches behind the
first level (e.g. separate level 2 instruction and data cache). In
such a cache system, the MNM is still placed between the level
1 and level 2 caches. For such a system, the MNM will have two
inputs (from level 1 data and instruction caches) and two
outputs (to level 2 instruction and data caches). The final
modification needed by the MNM is that each cache has to send
the information about the blocks that are replaced from the
cache. This information is needed for the bookkeeping required
at the MNM. Since the request for a block goes through the
MNM, the block address that will be placed into any cache can
be easily calculated. But, as we will show in the next section, the
MNM also needs information when a block is replaced from the
cache. This can be achieved through separate bus signals sent
from each cache to the MNM indicating the block address
replaced or these addresses can be attached to the blocks sent
to the level 1 caches.

As explained in the previous sections, the MNM improves the
data access times. In the following, we develop an analytical
model to approximate the benefits of any MNM technique.
Equation 1 presents the formula to calculate the average data
access time in a processor with multiple cache levels.

Σi=1 to memory_levels (Πn=1 to i-1 miss_raten) *
(cache_hit_time i * (1 - miss_ratei) +
cache_miss_time i * miss_ratei)

Equation 1. Data access times without MNM
The cache_hit_time corresponds to time to access data at a

cache and cache_miss_time is the time to detect a miss in a
cache. The data access times in case when an MNM is utilized
can be found using Equation 2.

Σi=1 to memory_levels (Πn=0 to i-1 miss_raten) *
(cache_hit_time i * (1 - miss_ratei) +
cache_miss_time i * MNM_abortedi *

miss_ratei)

Equation 2. Data access times with MNM

3. MNM TECHNIQUES
This section presents the proposed techniques for identifying

cache misses. The first technique gathers information about the
blocks that are replaced from the caches. The remaining

techniques store information about the blocks stored in the
cache. All the techniques except the first technique, has
separate structures storing information about the different
caches. When a decision has to be made, the collective
information is processed by accessing all the structures in
parallel and interpreting the data stored in these structures.

When a block is placed into a cache, all the bytes in that block
are placed into the cache. Therefore, to recognize misses, there
is no need to store information about the exact bytes that are
stored in a cache. Instead in all the techniques, the block
addresses are stored. The block address is composed of the tag
and the index sections of an address. Figure 4 shows the block
address portion of an address. For example, if the cache has
128-byte block size, each address is shifted 7 bits right before it
is entered to the MNM. Therefore, in the remainder of this
paper, an address entered to the MNM corresponds to a block
address placed into or replaced from the cache.

The techniques do not assume the inclusion property of
caches. In other words, we assume that if cache level i contains
a block b, block b is not necessarily contained in cache level
i+1. In addition, the MNM checks for the misses on cache level
i+1, even if it cannot identify a miss in cache level i. Since the
miss signals are propagated with the access, level i+1 can still
bypass the access even if the access is performed in cache level
i. For example, if the MNM identifies the miss in L3 cache but
could not identify at L2 cache, first the L2 cache will be
accessed. If it misses, the L3 cache will be bypassed because a
miss was identified for the cache. In all the techniques, a miss
for a cache level is indicated by a high output of the MNM
structures.

Figure 4. Portion of the address used by the MNM.

3.1 Replacements MNM (RMNM)
The Replacements MNM stores the addresses that are

replaced from the caches. If a block is replaced from a cache, it
means that the address is not present in the specific cache
anymore. Therefore, access to the address will miss. Note that
cold misses cannot be captured with this technique.

The information about the replaced blocks is stored in an
RMNM cache. The RMNM cache is addressed by the
addresses of the current reference or the address of the block
being replaced. They are shifted according to the block size of
the level 2 cache(s). Therefore, if a block is replaced from a
cache with a larger block size, multiple accesses to the RMNM
cache are necessary. Specifically, there will be (block sizeLARGE /
block sizeL2) accesses performed to the RMNM cache indicating
that accesses to any of the addresses will miss. Instead of
storing the replaced blocks from each cache in a separate
RMNM cache, we have chosen to have a single RMNM cache
that stores information about each cache level. The RMNM

cache has a block size of (n-i) bits, where n corresponds to
number of separate caches and i correspond to the number of
level 1 caches. Each bit in the block corresponds to a cache and
there is no information stored about the first level caches.
When ith bit for an address is set, that means the block is
replaced from the cache and hence a miss will occur for the
access. Table 1 shows a scenario for a 2-level cache structure,
where a sequence of addresses is accessed by the core. Since
there are only two levels of caches, each RMNM block contains
a single bit indicating the hit/miss for the second level cache.
Table 1 shows the block addresses placed into and replaced
from the caches and the RMNM cache. When the block with
address 0x2FC0 is replaced from the L2 cache, it is placed into
the RMNM cache and the subsequent access, which will miss,
is captured by the RMNM.
Table 1. An example scenario showing how the RMNM works.
The abbreviations are: pl. stands for placed into the cache, repl.
stands for replaced from the cache.

 Event

Access L1 L2 RMNM cache

0x2FF4 pl. 0x2FF0 pl. 0x2FC0

0x20F4 repl.0x2FF0
pl. 0x20F0

repl.0x2FC0
pl. 0x20C0

place 0x2FC0 with
data 1

0x2FF4 repl.0x20F0
pl. 0x2FF0

repl.0x20C0
pl. 0x2FC0

The miss at level 2
cache is identified.

3.2 Sum MNM (SMNM)
The sum technique stores information regarding the relative

locations of the bit values on the addresses that are high.
Specifically, for each access a hash value is generated. If the
hash value of the access does not match any of the hash values
of the existing cache blocks, a miss is captured. The specific
hash function is given in Figure 5. The result of the function is
sum value that is modified in the for loop. Figure 6 shows the
design of the circuit implementing the sum mechanism. The
figure is drawn with the SUM_WIDTH value equal to 3. The D
flip-flops at the bottom of the Figure 6 store the hash values for
the addresses in the cache. At the start of the execution, the
bits are reset. Then, when a block is placed into the cache, the
address is placed into the circuit as input and the resulting hash
value is stored in the flip-flops. On an access, if the hash value
of the requested address is equal to one of the hash values in
the flip-flops, then the access is performed (output of the
design will be zero). If it does not match any of the hash values,
then, the corresponding cache access is bypassed. Note that
the complexity of the logic units is O(SUM_WIDTH4), whereas
the number of flip-flops at the bottom is O(SUM_WIDTH3).
Specifically, we need

1 + sum_width * (sum_width + 1) * (2sum_width + 1) / 6

Equation 3. Number of D Flip-flops for the sum circuit.

D flip-flops at the bottom of Figure 6, which is
O(SUM_WIDTH3). The amount of logic for each level can be

tag index offset

Block address

estimated by Equation 3. Since there are sum_width levels, the
total logic units will be bounded by O(SUM_WIDTH4).

sum = 0;
for (i = 1; i < (SUM_WIDTH + 1); i++) {
 if (tag & 0x1)
 sum += i * i;
 tag = tag >> 1;
}

Figure 5. Sum hash function

S u m V a l u e

E
xa

m
in

ed
 B

lo
ck

 A
dd

re
ss

I n v e r t e r

Inver te r

I n v e r t e r

Q Q
SET

CLR

D

S
et

M i s s S i g n a l

I n v e r t e r

Q Q
SET

CLR

D

Q Q
SET

CLR

D

Q Q
SET

CLR

D

Q Q
SET

CLR

D

Q Q
SET

CLR

D

Q Q
SET

CLR

D

Q Q
SET

CLR

D

Pu l l -Up T rans is to rs

Figure 6. Circuit implementing the sum mechanism (checker)

We name the design in Figure 6, which examines a portion of
the tag, a checker circuit. Some SMNM configurations use
multiple checkers that examine different portions of the block
address. The SMNM configuration for each cache level is
denoted by sumwidthxreplication, where sumwidth equals to
the sum_width at each checker and the replication is the number
of parallel checkers implemented. For example, SMNM_12x3
means that there are 3 parallel checkers each with sum_width
equal to 12. Regardless of the sum_width, if there are multiple
checkers, the first one examines the least significant bits, the
second examines the bits starting from the 7th leftmost bit and
the third one examines the bits starting from the 13th. Figure 7
shows how multiple checkers work in parallel. The configuration
drawn is SMNM_10x2. Each checker applies the algorithm
presented above. Then, if any of the checkers capture a miss
(return 0), the access is bypassed.

Figure 7. SMNM example.

3.3 Table MNM (TMNM)
The third technique proposed is called the Table MNM.

TMNM stores the least significant N bits of the block
addresses in the caches. If the least significant N bits of the
access do not match any one of the stored values, then the
access can be bypassed.

The values are stored in the TMNM table, an array of size 2N
bits. The least significant N bits of the address are used to
address the TMNM table. The locations corresponding to the
addresses stored in the caches are set to 0 and the remaining

locations are set to 1. During an access, the least significant N
bits of the block access address are used to address this table.
The value stored at the corresponding location is used as the
miss signal. An example TMNM for N equals to 6 is drawn in
Figure 8. The cache in the example only has two blocks with the
block addresses as shown in the figure. When the request
comes to the MNM, the corresponding position is calculated
and the bit position is read from the TMNM table. In Figure 8,
this location is high, which means that the access is going to be
miss and can be bypassed. There can be several block
addresses that are mapped to the same bit position in the
TMNM table. Therefore the values at the TMNM tables are
counters instead of single bits. We use a counter of 3 bits in our
simulations. When a new block is placed into the cache, the
counter value at the corresponding position is incremented
unless it is saturated. If a block is replaced from a cache, the
corresponding counter value is decremented unless the counter
is saturated. A saturated value occurs when there are 8 different
blocks that are mapped to the same location. In this case, we
cannot conclude whether there are 8 or more blocks mapped to
the same location, therefore the counter becomes an indicator
that any access mapped to this position “may be a hit”. The
counter values are reset when the caches are flushed.

Similar to the SMNM, we have performed simulations with
multiple tables examining different portions of the address.
Therefore each TMNM is defined as TMNM_nxreplication,
where n corresponds to the number of bits checked by each
table and replication is the number of tables examining different
positions of the address.
Access: …100001

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1

Cache blocks: …001111
…110010

Figure 8. TMNM example.

3.4 Common-Address MNM (CMNM)
Common-Address MNM tries to capture the common values

at the block addresses. When an application accesses a memory
position x, it is likely that the memory positions close to x will be
accessed in the following cycles. Common-Address value tries
to capture this locality by examining the most significant bits of
the address. This is achieved with the help of a virtual-tag
finder and a table similar to the TMNM table. Virtual-tag finder
stores the most significant n-bits stored in the cache. Then, for
each address it generates a virtual-tag that is attached to the
remaining m bits of the address and used to access the table.
Figure 9 depicts the events for finding the address used to
access the CMNM table. Assuming a 32-bit address, the

1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 1

checker 1
checker 2

Address:

m+k

CMNM enters the most significant (32 – m) bits to the virtual-
tag finder. Virtual-tag finder has k registers storing the
encountered most significant portions of the cache blocks. The
masked bits of the address are compared to the values. If the
new address matches any of the existing values, the virtual-tag
finder outputs the index of the matching register. This index is
attached to the least-significant m bits of the examined address
and used to access the CMNM table. Similar to the TMNM, this
table indicates whether the address should return a miss or a
“maybe”. If the address of the block to be placed into the cache
does not match any register values in the virtual-tag finder,
mask value for the registers are shifted left until a match is
found. Then the mask values are reset to their original position
except the register that matched the value.

When an address is checked, there are two ways to identify a
miss. First, the (32 – m) most significant bits of the address are
entered to the virtual-tag finder. If the value does not match any
of the register values in the virtual-tag finder, the access is
marked as a miss. If a register matches the address, the index is
attached to the least significant m bits of the address and the
CMNM table is checked. If the corresponding table position
has a 1, again a miss is indicated.

0 1 1 1 0 1 1 1

1 0 1 1 1 1 1 0

0 1 1 1 1 0 1 1

1 0 1 0 1 1 0 1

1 1 1 1 0 0 1 1

0 0 1 1 1 0 1 1

1 1 1 1 1 1 0 1

1 1 0 1 0 1 1 1

Figure 9. CMNM example.

The CMNM techniques are defined by the number of
registers in the virtual-tag finder and the m value. For example
CMNM_4_10 corresponds to a CMNM checker with the first 22
most significant bits used to access the virtual-tag finder (which
has 4 registers) and the least significant 10 bits used to access
the CMNM table. Similar to the TMNM table, each address of
the CMNM table is a 3-bit counter.

3.5 Hybrid MNM (HMNM)
The previous MNM techniques explained in this section

perform different transformations on the address and use small
structures to identify some of the misses. A natural alternative
is to combine these techniques to increase the overall accuracy
of recognition of the misses. Such a combined MNM is defined
as Hybrid MNM. We have performed simulations with a variety
of combinations of the proposed techniques and measured the
effect on the accuracy in Section 4.

3.6 Discussion
The MNM techniques discussed in this section never

incorrectly indicate that bypassing should be used, but do not
detect all opportunity for bypassing. In other words, if the
MNM indicates a miss, then the block certainly does not exist in
the cache, however if the output is a “maybe” then the access
might still miss in the cache. The techniques are developed
intentionally with this property. The miss signals should be
reliable because the cost of indicating an access will miss when
the data is actually in the cache is high (redundant access to a
higher level of memory hierarchy should be performed), whereas
the cost of a hit misindication is relatively less (a redundant tag
comparison at the cache).

4. EXPERIMENTS
In this section, we measure the effectiveness of various MNM

techniques. Section 4.1 discusses the simulation environment.
In Section 4.2, we present simulation results measuring the
success of the MNM techniques. Section 4.3 presents the
improvement in the execution time of the simulated applications
using the parallel MNM. Finally, Section 4.4 explains the power
reduction effects of the serial MNM.
4.1 Methodology

We have performed several simulations to measure the
effectiveness of the proposed techniques. The SimpleScalar 3.0
[12] simulator is used in all the experiments. The necessary
modifications to the simulator have been implemented to
measure the effects of the multiple level caches and the MNM
techniques. We simulate 10 floating-point and 10 integer
benchmarks from the SPEC2000 benchmarking suite [14]. The
applications are compiled using DEC C V5.9-008 and Compaq
C++ V6.2-024 on Digital UNIX V4.0. Sherwood et al. [11] show
how to speed up the simulation of SPEC applications without
affecting the simulation results. We have simulated 300 Million
instructions from each application after fast-forwarding
application-specific number of instruction determined by
Sherwood et al. [11]. Important characteristics of the
applications are explained in Table 2.

In all the experiments, we simulate an 8-way processor with 5
cache levels. The processor has separate level 1 and level 2
instruction and data caches. Therefore, there are a total of 7
different cache structures in the processor. The level 1 caches
are 4 KB, direct-mapped caches with 32-byte block size and 2
cycle latency. The level 2 caches are 16 KB, 2-way associative
caches with 32-byte linesize and 8 cycle latency. Unified level 3
cache is a 128 KB, 4-way associative cache with 64-byte blocks
and 18 cycle latency. Unified level 4 cache is a 512 KB, 4-way
associative cache with 128-byte block size and 34 cycle latency.
Finally, unified level 5 cache is a 2 MB, 8-way associative cache
with 128 byte blocks and 70 cycle latency. For all
configurations, the MNM has a 2-cycle delay. The memory
access delay is 320 cycles.
4.2 MNM Miss Coverage

The success of the MNM techniques is measured in
coverage. Coverage is the fraction of the misses identified by
the technique over all cache misses. For example, if the access

0

0 m
…0 0 1 1 0 0 1 0 1 0 1 0 0

virtual-tag finder

value
mask

value

mask

 … 0 1 0 0

will hit in level 4 cache and miss in all the previous cache levels,
potentially 2 caches can be bypassed because we do not
predict misses in the first level cache. If the MNM recognizes
the miss in level 2, but not for level 3, then the coverage is 50%,
because only half of the misses are identified. Note that
coverage is not affected by the location of the MNM. The
location affects the delay and power consumption.

Figure 10 presents the coverage for different RMNM
configurations. Different configurations are labeled according
to the RMNM cache used in the simulations. RMNM_n_m
corresponds to an RMNM cache of associativity m and the
number of blocks equal to n. The configuration is used for all
the cache levels. We see that although the average coverage of
RMNM is low, for some applications it can recognize majority of
the misses. The reason lies in the nature of the applications. If
the conflict and capacity misses constitute a large portion of the
misses, RMNM may capture them. However, if there are too
many replications that pollute the RMNM cache or the cold
misses dominate the misses in a cache, RMNM has a low
coverage. The largest configuration simulated is a 2 KB, 8-way
associative cache, which identifies 24% of the misses on
average.

The coverage results for SMNM configurations are presented
in Figure 11. The labeling is explained in Section 3.2. For an
SMNM configuration, all the structures are replicated for 4
cache levels. The SMNM coverage is small except for the
application 301.apsi. A closer investigation of the results reveal
that SMNM structures can identify the misses in the smaller
caches better. The 301.apsi application has a high miss ratio for
level 2 instruction cache and high hit ratios for the remaining
caches. This increases the overall weight of the misses for the
small caches. Figure 12 presents the coverage for different
TMNM configurations. The labeling of different configurations
are explained in Section 3.3. The 12x3 configuration has the best
coverage, recognizing 25.6% of the misses on average. We see
that the TMNM_10x3 configuration has a better coverage in all
applications than the 11x2 coverage, which uses larger
structures. This shows that using multiple tables in parallel can
boost the performance significantly. Figure 13 plots the
coverage for the CMNM configurations. Among the proposed
techniques the CMNM has the best coverage. The
CMNM_8_12 technique identifies 46.4% of the misses on
average. Although this is a large structure, compared to the
caches the delay and power consumption is very small.

Table 2. Important characteristics of the simulated SPEC2000 applications.

Application # cycle
[M]

dl1 acc
[M]

il1 acc
[M]

dl1 hit rate
[%]

dl2 hit rate
[%]

il1 hit rate
[%]

il2 hit rate
[%]

ul3 hit rate
[%]

ul4 hit rate
[%]

ul5 hit rate
[%]

168.wupwise 290.4 94.4 350.0 94.2 60.9 98.0 100.0 57.3 56.9 12.7

171.swim 839.7 100.4 300.4 80.4 36.9 99.9 55.5 63.7 70.1 32.1

172.mgrid 480.6 109.8 305.9 68.3 72.2 97.4 99.8 69.6 61.8 48.1

173.applu 710.5 114.7 308.9 83.4 52.9 99.9 0.6 68.1 66.9 34.2

177.mesa 289.8 113.5 339.2 91.4 92.3 93.4 95.4 90.0 76.9 49.2

179.art 1249.4 112.1 327.8 57.6 21.3 99.9 95.4 27.5 43.8 88.5

183.equake 318.3 112.8 468.2 96.2 98.8 92.9 76.9 99.3 53.7 19.8

188.ammp 309.6 118.4 318.3 90.4 44.6 99.9 100.0 59.8 54.2 75.2

189.lucas 680.1 84.2 300.0 74.0 39.8 99.9 0.0 61.9 36.9 47.5

301.apsi 296.0 115.4 343.0 87.1 76.1 97.8 47.2 75.9 90.3 67.5

FP avg. 546.4 107.6 336.2 82.3 59.6 97.9 67.1 67.3 61.1 47.5

164.gzip 175.3 77.1 362.6 94.4 65.2 99.9 91.4 86.2 86.2 32.7

175.vpr 394.8 118.6 381.6 87.8 69.1 95.2 91.6 63.1 63.1 99.6

176.gcc 313.6 111.2 323.4 88.8 67.0 94.9 61.8 91.3 91.3 61.9

181.mcf 1767.4 185.6 625.0 65.4 35.7 99.9 97.4 46.3 46.3 45.1

186.crafty 529.5 111.5 371.4 84.5 82.6 90.8 60.7 96.8 96.8 43.6

197.parser 331.4 110.0 389.1 89.9 65.9 98.7 97.7 76.1 76.1 67.7

253.perlbmk 443.1 127.5 424.7 96.8 48.2 99.4 84.4 69.0 69.0 32.0

254.gap 183.4 67.6 331.7 91.9 53.1 98.8 78.8 70.8 70.8 37.5

255.vortex 407.7 127.0 342.9 92.7 84.0 91.2 60.8 96.0 96.0 50.1

300.twolf 388.3 98.1 397.0 87.2 58.5 96.8 62.2 72.5 72.5 99.5

INT avg. 493.4 113.4 394.9 87.9 62.9 96.6 78.7 76.8 76.8 57.0

Arith. Mean 519.9 110.5 365.5 85.1 61.2 97.3 72.9 72.1 69.0 52.2

RNM Coverage

0
10
20
30
40
50
60
70
80
90

168
.wu

pw
ise

17
1.s

wim

17
2.m

grid

17
3.a

pp
lu

17
7.m

esa
179

.art

18
3.e

qu
ake

18
8.a

mmp

189
.luc

as

301
.ap

si

FP
 av

g.

16
4.g

zip

175
.vp

r

176
.gc

c
18

1.m
cf

186
.cra

fty

19
7.p

ars
er

25
3.p

erlb
mk

254
.ga

p

25
5.v

orte
x

30
0.tw

olf

INT a
vg.

C
o

ve
ra

g
e

[%
]

RNM_128_1 RNM_512_2 RNM_2048_4 RNM_4096_8

Figure 10. RMNM coverage.

SNM Coverage

0
5

10
15
20
25
30
35

16
8.w

up
wise

17
1.s

wim

17
2.m

grid

173
.ap

plu

17
7.m

esa
17

9.a
rt

18
3.e

qu
ake

188
.am

mp

189
.luc

as

301
.ap

si

FP
 av

g.

16
4.g

zip

17
5.v

pr

176
.gcc

18
1.m

cf

18
6.c

raft
y

19
7.p

ars
er

253
.pe

rlbm
k

254
.ga

p

25
5.v

orte
x

30
0.tw

olf

INT a
vg.

C
o

ve
ra

g
e

[%
]

SNM_10x2 SNM_13x2 SNM_15x2 SNM_20x3

Figure 11. SMNM coverage.

TNM Coverage

0
20
40
60
80

100

16
8.w

up
wise

17
1.s

wim

172
.mgrid

173
.ap

plu

177
.mesa 17

9.a
rt

18
3.e

qu
ake

18
8.a

mmp

189
.luc

as

30
1.a

psi

FP
 av

g.

16
4.g

zip
17

5.v
pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
3.p

erlb
mk

254
.ga

p

25
5.v

orte
x

30
0.tw

olf

INT
 av

g.

C
o

ve
ra

g
e

[%
]

TNM_10x1 TNM_11x2 TNM_10x3 TNM_12x3

Figure 12. TMNM coverage.

CNM Coverage

0
10
20
30
40
50
60
70
80
90

100

168
.wu

pw
ise

17
1.s

wim

17
2.m

grid

17
3.a

pp
lu

17
7.m

esa
17

9.a
rt

18
3.e

qu
ake

18
8.a

mmp

18
9.lu

cas

30
1.a

psi

FP
 av

g.

16
4.g

zip
175

.vp
r

176
.gc

c

18
1.m

cf

18
6.c

raft
y

197
.pa

rse
r

25
3.p

erlb
mk

254
.ga

p

255
.vo

rtex

30
0.t

wolf

INT a
vg.

C
o

ve
ra

g
e

[%
]

CNM_2_9 CNM_4_10 CNM_8_10 CNM_8_12

Figure 13. CMNM coverage.

HNM Coverage

0
10
20
30
40
50
60
70
80
90

100

168
.wu

pw
ise

17
1.s

wim

17
2.m

grid

17
3.a

pp
lu

17
7.m

esa
17

9.a
rt

18
3.e

qu
ake

18
8.a

mmp

18
9.lu

cas

30
1.a

psi

FP
 av

g.

16
4.g

zip
175

.vp
r

176
.gc

c

18
1.m

cf

18
6.c

raft
y

197
.pa

rse
r

253
.pe

rlbm
k

254
.ga

p

255
.vo

rtex

30
0.tw

olf

INT a
vg.

C
o

ve
ra

g
e

[%
]

HNM1 HNM2 HNM3 HNM4

Figure 14. HMNM coverage.

Reduction in Execution Cycles

0
5

10
15
20
25
30

168
.wu

pw
ise

17
1.s

wim

17
2.m

grid

17
3.a

pp
lu

177
.mesa

17
9.a

rt

18
3.e

qu
ake

188
.am

mp

189
.luc

as

301
.ap

si
FP

 av
g.

16
4.g

zip
17

5.v
pr

17
6.g

cc

18
1.m

cf

18
6.c

raft
y

19
7.p

ars
er

253
.pe

rlbm
k

254
.ga

p

25
5.v

orte
x

30
0.t

wolf

INT a
vg.

R
ed

u
ct

io
n

 [
%

]

TNM_12x3 CNM_8_10 HNM2 HNM4 Perfect

Figure 15. Reduction in execution cycles.

Reduction in Power Consumption

0
5

10
15
20
25
30
35
40

16
8.w

up
wise

17
1.s

wim

17
2.m

grid

17
3.a

pp
lu

17
7.m

es
a

17
9.a

rt

18
3.e

qu
ake

188
.am

mp

189
.luc

as

30
1.a

psi

FP
 av

g.

16
4.g

zip
17

5.v
pr

176
.gc

c

181
.mcf

18
6.c

raf
ty

19
7.p

ars
er

25
3.p

erlb
mk

25
4.g

ap

25
5.v

orte
x

30
0.tw

olf

INT a
vg.

R
ed

u
ct

io
n

 [
%

]

TNM_12x3 CNM_8_10 HNM2 HNM4 Perfect

Figure 16. Reduction in the power consumption of the caches.

The results for the HMNM are presented in Figure 14. The
techniques used in each HMNM for different configurations are
listed in Table 3. The simulated configurations have an
increasing level of complexity in terms of delay and area.
Nevertheless, the delay for the most complex configuration
HMNM4 is smaller than the delay of the 4 KB level 1 caches.
The HMNM4 configuration has an average 53.1% coverage.

Table 3. HMNM configurations. In addition to the techniques
listed, HMNM1 employs an RMNM_128_1, HMNM2 employs an
RMNM_512_2, HMNM3 employs an RMNM_2048_4, and
HMNM4 employs an RMNM_4096_8.

Cache HMNM1 HMNM2 HMNM3 HMNM4

Levels 2
and 3

SMNM10x2
+

TMNM_10x1

SMNM13x2
+

TMNM_10x1

SMNM15x2
+

TMNM_10x1

SMNM20x3
+

TMNM_10x3

Levels 4
and 5

CMNM2_9
+

TMNM_10x1

CMNM4_10
+

TMNM_11x2

CMNM8_10
+

TMNM_10x3

CMNM8_12
+

TMNM_12x3

4.3 Execution Time Measurements
We have performed several simulations with the parallel

MNM to see measure its effects on the execution time of the
SPEC 2000 applications. The results are summarized in Figure
15. Figure 15 presents results for 4 different techniques
(TMNM_12x3, CMNM_8_10, HMNM2, and HMNM4). To see
the limits on the performance improvements of the MNM
techniques, we also report simulation results of a perfect MNM.
The perfect MNM always knows where the data is and hence
bypasses all the caches that misses. The HMNM4 technique
reduces the exe cution cycles by as much as 12.4%, and by 5.4%
on average. The perfect MNM reduces the execution time by as
much as 25.0% and 10.0% on average.

4.4 Power Reduction Measurements
This section presents the measurements for power

consumption of the caches using the MNM techniques. For the
experiments, the MNM structures are accessed after level 1
cache misses. We have found the power consumption of the
simulated caches, as well as the MNM structures using the
CACTI 3.1 [16]. For the SMNM structures, we have
implemented the RTL descriptions of the checkers in VHDL and
used Synopsys Design Compiler [15] to find the power and
delay properties.

Figure 16 presents the power reduction in the cache system
using the MNM techniques. The HMNM4 configuration is able
to reduce the power consumption of the caches by as much as
11.6% (3.8% on average). The perfect MNM that identifies all
the misses perfectly without consuming any power, reduces the
power consumption by as much as 37.6%, and 10.2% on
average.
4.5 Discussion

We have seen that the misses even for large caches can be
accurately identified using small structures utilized in the MNM.
We also showed that the information about misses might be
used to increase the performance or reduce the power
consumption of the caches in modern processor. However, the
utilization of the information about cache misses is not limited
to these two usages. For example, miss information can be used
in instruction scheduling step. The scheduler can use the miss
information to prevent scheduling of the memory instructions
that will miss in the level 1 cache and other instructions
dependent on these memory instructions. Another usage might
be to reduce the power consumption of other caching
structures such as the TLBs.

5. RELATED WORK
Related work falls into a group of studies conducted for

reducing the negative effects of cache misses. Arguably the
most important technique to reduce cache miss penalty is the
non-blocking caches, also called the lock-up free caches [7].
Non-blocking caches do not block after a cache miss, being able
to provide data to other requests. Sohi and Franklin [13] discuss
a multi-port non-blocking L1 cache. Farkas and Jouppi [3]
explore alternative implementations of the non-blocking caches.
Farkas et al. [4] studies the usefulness of the non-blocking
caches. Other important techniques for reducing cache miss
penalty is giving priority to read misses over write misses,
subblock placement, early restart, and critical word first on a
miss, which gives priority to the accessed word over the other
sections of the cache block [5]. Seznec et al. [10] studies caches
in an out-of-order processor to find optimal linesize to reduce
the cache miss penalty. Although these techniques share the
same goal of reducing the cache miss penalty similar to the
proposed techniques, the techniques employed have no
resemblance to our proposed mechanisms. In all the above-
mentioned techniques the miss is detected after the cache
structures are accessed.

Way prediction [2] and selective direct-mapping [1] were
proposed to improve set-associative cache access times. Powell
et al. [9] use these techniques to reduce the energy
consumption of set-associative caches. Our techniques identify
whether the access will be a miss in the cache rather than
predicting what associative way of the cache will be accessed.

In the context of multiple processor systems, Moshovos et al.
[8] propose filtering techniques for snoop accesses in the SMP
servers. Similar to our work, they identify the hits or misses in
the level 2 cache. However, the predictions are made for snoop
accesses originating from other processors. We identify misses
in a single-core processor with multiple caches and the requests
originate from the core instead of arriving to the processor from
other cores.

6. CONCLUSION
In this paper, we have presented techniques to reduce the

penalty of cache misses. Particularly, we have shown
techniques identifying the misses in different cache levels.
These techniques are implemented in a Mostly No Machine
(MNM). When an access is identified to miss, the access is
directly bypassed to the next cache level. Thereby the cache
structures are not accessed, reducing the delay and the power
consumption associated with the misses. We have first shown
that as the number of cache levels employed in processors
increase, the fraction of the time and power spent for cache
misses also increase. Then, we have presented 5 different
techniques of varying complexity to recognize some of the
cache misses. We show that using the small structures MNM is
able to identify and hence prevent 53.4% of the misses in a
processor with 5 cache levels. The MNM can be aggressively
accessed in parallel with the level 1 caches reducing the
execution time of the applications. It can also be accessed after
a level 1 cache miss, primarily to reduce the power consumption

of the caches. Specifically, we have shown that the execution
time of SPEC 2000 applications are reduced by 5.4% on average
(ranging from 0.6% to 12.4%), whereas the power consumption
is reduced by 3.8% on average (ranging from 0.4% to 11.6%)
using an Hybrid MNM technique.

REFERENCES
1. Batson, B. and T.N. Vijaykumar. Reactive associative caches . In
Proceedings of 2001 International Conference on Parallel Architectures
and Compilation Techniques, Sep. 2001.
2. Calder, B. and D. Grunwald. Predictive Sequential Associative
Caches. In Proceedings of Second IEEE Symposium on High-
Performance Computer Architecture, Feb. 1995.
3. Farkas, K. and N. D. Jouppi. Complexity/Performance Tradeoffs
for Non-blocking Loads. In Proc. of 21st International Symposium on
Computer Architecture, April 1994.
4. Farkas, K., N. D. Jouppi, and P. Chow. How Useful are Non-
Blocking Loads, Stream Buffers, and Speculative Execution in Multiple
Issue Processors? In. Proc. of 1st International Symposium on High
Performance Computer Architecture, Jan. 1995.
5. Hennessy, J. L. and D. A. Patterson, Computer Architecture: A
Quantitative Approach. 1990, San Mateo, CA: Morgan Kaufmann.
6. Intel, Inc. Intel Itanium 2 Processor at 1.0 GHz and 900 MHz
Datasheet. Intel Document Number 250945-001, July 2002.
7. D. Kroft. Lock-up Free Instruction Fetch/Prefetch Cache
Organization. In Proc. of 8th International Symposium on Computer
Architecture, May 1981.
8. Moshovos, A., G. Memik, B. Falsafi, and A. Choudhary.
JETTY: Snoop filtering for reduced power in SMP servers. In
Proceedings of International Symposium on High Performance
Computer Architecture (HPCA-7), Jan 2001, Toulouse / France.
9. Powell, M.D., A. Agarwal, T.N. Vijaykumar, B. Falsafi, and K.
Roy. Reducing set-associative cache energy via way-prediction and
selective direct-mapping. In Proceedings of 34th International
Symposium on Microarchitecture, Dec. 2001, Austin / TX.
10. Seznec, A. and F. Lloansi. About Effective Cache Miss Penalty
on Out-Of-Order Superscalar Processors. Technical report IRISA-970,
November 1995.
11. Sherwood, T., E. Perelman and B. Calder. Basic Block
Distribution Analysis to Find Periodic Behavior and Simulation Points
in Applications, In Proc. of Intl. Conference on Parallel Architectures
and Compilation Techniques (PACT 2001), Sept 2001. Barcelona,
Spain.
12. SimpleScalar LLC. SimpleScalar Home Page.
http://www.simplescalar.com
13. Sohi, G. and M. Franklin. High Bandwidth Data Memory
Systems for Superscalar Processors. In. Proc. of 4th International
Conference on Architectural Support for Programming Languages and
Operating Systems, April 1991.
14. Standard Performance Evaluation Corporation. SPEC CPU2000
V1.2. http://www.spec.org/osg/cpu2000
15. Synopsys Inc. Synopsys Design Compiler - Overview.
http://www.synopsys.com/products/logic
16. Wilton, S. and N. Jouppi. An enhanced access and cycle time
model for on-chip caches. July 1995.

