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ABSTRACT
Motivation: Identification of functionally important residues in
proteins plays a significant role in biological discovery. Here, we
present INTREPID—an information–theoretic approach for functional
site identification that exploits the information in large diverse
multiple sequence alignments (MSAs). INTREPID uses a traversal of
the phylogeny in combination with a positional conservation score,
based on Jensen–Shannon divergence, to rank positions in an MSA.
While knowledge of protein 3D structure can significantly improve the
accuracy of functional site identification, since structural information
is not available for a majority of proteins, INTREPID relies solely
on sequence information. We evaluated INTREPID on two tasks:
predicting catalytic residues and predicting specificity determinants.
Results: In catalytic residue prediction, INTREPID provides
significant improvements over Evolutionary Trace, ConSurf as well
as over a baseline global conservation method on a set of 100
manually curated enzymes from the Catalytic Site Atlas. In particular,
INTREPID is able to better predict catalytic positions that are
not globally conserved and hence, attains improved sensitivity at
high values of specificity. We also investigated the performance
of INTREPID as a function of the evolutionary divergence of the
protein family. We found that INTREPID is better able to exploit the
diversity in such families and that accuracy improves when homologs
with very low sequence identity are included in an alignment.
In specificity determinant prediction, when subtype information is
known, INTREPID-SPEC, a variant of INTREPID, attains accuracies
that are competitive with other approaches for this task.
Availability: INTREPID is available for 16919 families in
the PhyloFacts resource (http://phylogenomics.berkeley.edu/
phylofacts).
Contact: sriram_s@cs.berkeley.edu
Supplementary information: Relevant online supplementary
material is available at http://phylogenomics.berkeley.edu/
INTREPID.

1 INTRODUCTION
The problem of identifying the positions in a protein critical for its
structure or function plays a significant role in biological discovery.
These residues (such as the catalytic triad of serine, aspartate
and histidine found in proteases) provide valuable clues about the
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functions of proteins. Since experimental methods to determine the
roles of individual positions are time-consuming and expensive,
computational methods are widely used for protein functional
residue prediction; these provide initial clues that can be followed
up by experiments.

Casari et al. (1995) developed one of the first computational
approaches to identify positions conferring functional specificity.
Another method for functional residue prediction is Evolutionary
Trace (ET) (Lichtarge et al., 1996). The original ET method defines
progressively more conservative cuts of a phylogeny. The level of
the cut at which a column shows a specific pattern of conservation
(either family-wide or subfamily-specific) is used to assign a score to
each position in a protein. A more recent method, ConSurf (Landau
et al., 2005), computes the rate of evolution at each position based
on phylogenetic analysis; residues with lower rates of evolution are
considered more important. Variants of both ET, one of which uses
an entropy-based score, (Aloy et al., 2001; Mihalek et al., 2004) and
ConSurf (Glaser et al., 2006; Mayrose et al., 2004; Nimrod et al.,
2005) have also been developed. In general, predictive methods have
relied on protein surface geometry (Peters et al., 1996), energy
considerations (Elcock, 2001; Laurie and Jackson, 2005), chemical
properties (Ko et al., 2005; Ondrechen et al., 2001) and sequence
conservation (Casari et al., 1995; Landau et al., 2005; Landgraf
et al., 2001; Lichtarge et al., 1996) or have attempted to combine
different features (Gutteridge et al., 2003; Petrova and Wu, 2006;
Youn et al., 2007).

A number of methods focusing exclusively on specificity-
determining residues have also been developed (Del Sol Mesa et al.,
2003; Donald and Shakhnovich, 2005; Hannenhalli and Russell,
2000; Kalinina et al., 2004; Mirny and Gelfand, 2002; Pei et al.,
2006). Capra and Singh (2008) developed a method for scoring
the positions in an alignment, termed GroupSim, which was found
to be competitive with a number of previous methods. Some of
the methods proposed for specificity determinant prediction require
the subtypes to be specified (Capra and Singh, 2008; Hannenhalli
and Russell, 2000; Kalinina et al., 2004; Mirny and Gelfand, 2002;
Pirovano et al., 2006), while others (Del Sol Mesa et al., 2003;
Donald and Shakhnovich, 2005; Pei et al., 2006) do not. In practice,
subtypes are seldom known for a protein family. Thus, methods
which can work without explicit knowledge of subtypes (i.e. from
a tabula rasa) are more suitable for general use.

In this article, we present a new method—INTREPID
(INformation-theoretic TREe traversal for Protein functional site
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IDentification). INTREPID takes as input a target protein, a multiple
sequence alignment (MSA) and a gene tree of the family containing
the target protein; a protein structure can also be included to boost
performance but is not required. In this article, we focus on methods
that exploit only sequence information, since structural information
is not available for a majority of proteins. Methods employing an
MSA as an input operate on the assumption that all residues in
a column are homologous; this assumption can be violated due
to structural and functional variability across specific lineages and
errors in alignments.Anumber of enzyme families exhibit variability
in the location of catalytic residues (Todd et al., 2002), while other
enzyme families exhibit variation at catalytic positions. The inteins
have been known to exhibit variations in their catalytic residues
that in turn affect the intein-mediated splicing mechanisms. For
instance, functional inteins with an N-terminal alanine instead of
the catalytic cysteine or serine have been observed (Johnson et al.,
2007; Southworth et al., 2000). INTREPID is designed to be robust
to these issues.

The key idea in INTREPID is the use of phylogenetic information
by examining the conservation patterns at each node of a
phylogenetic tree on a path from the root to the leaf corresponding
to the sequence of interest. For instance, catalytic residues tend
to be conserved across distant homologs and thus will appear
conserved at (or near) the root of a gene tree. In contrast, specificity
determinants will not be conserved across all members of a family,
but are likely to be conserved within one or more subtypes. Thus,
prediction of these two distinct types of positions requires a different
approach for each task. Any suitable conservation score can be
used within the tree traversal of INTREPID depending on the type
of functional residue to be predicted. A number of functions have
been developed for determining functional residues by scoring the
columns of a MSA, including information–theoretic scores based
on Shannon Entropy (Sander and Schneider, 1991; Shenkin et al.,
1991), Relative Entropy (Wang and Samudrala, 2006), and Jensen–
Shannon (JS) divergence (Capra and Singh, 2007). INTREPID uses
the JS divergence as it has been found to be the most accurate
conservation-based score for functional residue identification (Capra
and Singh, 2007).

In the catalytic residue prediction problem, we apply INTREPID
to large protein families for enzymes in the catalytic-site atlas
(CSA) (Porter et al., 2004). We compare INTREPID to other
sequence-based methods, such as ET, ConSurf and baseline methods
based on global conservation scores. We also compare INTREPID
to the machine learning methods reported in Petrova and Wu
(2006) and in Youn et al. (2007). We also analyze the effect of
alignment diversity on the accuracy of catalytic residue prediction.
Finally, we apply INTREPID-SPEC, a variant of INTREPID adapted
to specificity determinant prediction, to the dataset of putative
specificity-determining positions (SDPs) generated by Capra and
Singh (2008).

2 METHODS
The input to INTREPID comprises a target protein p whose functional
residues are to be predicted, an MSA of proteins homologous to p and an
estimated evolutionary tree of these homologs, i.e. the gene tree.

Each residue in p is analyzed independently to derive its predicted
importance, based on the conservation patterns at each node on a path
from the root to the leaf corresponding to protein p. INTREPID uses a

key observation that was first exploited in the context of functional residue
identification by Casari et al. (1995) and reinforced since then by numerous
studies: residues playing critical roles for protein structure or function are
often under strong negative selection. This negative selection enables these
residues to be detected due to their strong conservation across a family of
related proteins. Catalytic residues in enzyme-active sites are an example of
such a class. In predicting catalytic residues based on sequence conservation,
the evolutionary context is critical, i.e. the degree of sequence divergence
across homologs included in the analysis will have a significant impact on
the method performance. In a closely related set of proteins, even positions
that are not critical for function may appear well conserved. Thus, truly
critical residues may only be revealed against a backdrop of evolutionary
divergence.

Unfortunately, conservation patterns in an MSA can be affected by
inadvertently included non-homologs, alignment and phylogeny errors and
functional divergence in specific lineages e.g. where a residue conserved in
one subtree is not conserved in another subtree due to changes in function.
INTREPID is designed to detect catalytic residues exhibiting such behavior
by combining the conservation patterns observed at different nodes of the
tree.

2.1 Computing the positional importance score
INTREPID computes an importance score IMPp(x) for every position x in
protein p using a traversal of the phylogenetic tree from the root to the leaf
corresponding to p. The tree traversal enables us to exploit the information
over the entire tree, instead of requiring us to select a particular cut of a tree
into subtrees. It also helps to avoid the contribution of noise from subfamilies
or entire lineages that may disagree on the importance of particular positions.

Every node encountered in this traversal corresponds to a subtree
containing p and one or more homologs, and provides a different perspective
on the potential importance of each position in p. For instance, at the leaf
corresponding to p, no homologs are available to highlight which positions
are conserved and which are variable, and it is impossible to predict which of
the positions in p are likely to be critical for function. At the other extreme,
residues that are perfectly conserved across the entire family will be evident
when viewed from the root of the tree. As we traverse a path from the root
to the leaf, positions formerly appearing to be variable will become fixed in
specific lineages; at a leaf, all positions will be perfectly conserved. To enable
us to compensate for subtrees with highly correlated or very few sequences,
the score IMPp accounts for the evolutionary distance spanned as estimated
by the sequence divergence.

We denote by S the subtree corresponding to a node encountered in the
tree traversal, cons(S,x) is the conservation of position x within subtree S,
and cons(S) is the average conservation across all columns in subtree S. The
importance score at a position x is computed as

IMPp(x)=maxscons(S,x)−cons(S) (1)

In this article, we use the JS divergence (Lin and Wong, 1990) between the
amino acid distribution and the background [with prior weight = 1/2 as in
Capra and Singh (2007)]. The importance score thus assigns a high score to
those residues that are conserved over a large subtree of divergent sequences.
When subtrees with many highly similar sequences are considered, the
average conservation will be high. In this case, even though the positional
conservation is also high, the difference between these two numbers will be
fairly low. The maximum observed positional conservation on the path from
the root to the leaf at each position x is its importance. We finally normalize
the score across all the positions in the protein p so that the reported score
at position x is Z −IMPp(x)= (IMPp(x)−IMPp)/σ (IMPp) where IMPp and
σ (IMPp) are the average and SDs of the importance scores across all the
columns in the MSA.

We illustrate INTREPID with an example.
Figure 1 shows six protein sequences of length four each. The target

protein is marked with an arrow. The nodes traced by the tree traversal
are S1,S2,S3,S4 and S5. We first compute the average JS divergence in
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Fig. 1. An example of the INTREPID algorithm. This example shows six
protein sequences of length four each. The target protein p is marked with an
arrow. The nodes visited by the tree traversal are S1, S2, S3, S4 and S5. As
explained in the text, INTREPID ranks the positions in the order 2, 1, 4 and
3, while simple global conservation would rank position 4 above position 1.

each of the subtrees. In subtree S1, the average JS divergence is: cons(S1)=
(0.87+0.73+0.56+0.79)/4 = 0.74. Repeating this calculation for each of
the other subtrees, we get cons(S2)=0.79, cons(S3)=0.82, cons(S4)=0.87,
and cons(S5)=0.89.

Now let us look at column 1. In a tree traversal from the root (node S1)
to the leaf corresponding to p, we compute the following importance
scores: cons(S1,1) = 0.73−0.74 = −0.1,cons(S2,1) = 0.82−0.79 = 0.03,
cons(S3,1) = 0.91−0.82 = 0.09,cons(S4,1) = 0.91−0.87 = 0.04,
cons(S5,1) = 0.91−0.89 = 0.02.

The maximum importance score IMPp(1)=0.09, corresponds to the score
at node S3 where position 1 is completely conserved. Computing these scores
for other positions: IMPp(2)=0.13, IMPp(3)=−0.03, IMPp(4)=0.05. As
expected, we see that position 2 has the highest importance score followed
by position 1. If simple global conservation had been used (i.e. each position
had been ranked based on its conservation across the family), then position 4
would have a higher rank than position 1. INTREPID gives a higher score to
position 1 than to position 4 because of the higher conservation in position 1
in the subtree containing p. In other words, position 4 appears to be important
for a majority of the family but may have evolved a different role in the
lineage corresponding to subtree S4. On the other hand, position 1 appears
to be associated with a function that is preserved within the subtree S3 but
is lost or modified outside.

Different measures of positional conservation can be used within the tree
traversal protocol. We also considered using the log-odds of the frequency
of the most frequent amino acid and the relative entropy between the
amino acid distribution of position x within subtree S and a background
distribution (Wang and Samudrala, 2006). Consistent with the results
reported in Capra and Singh (2007), the score based on JS divergence was
found to be the most accurate. We use the distribution from the BLOSUM62
alignments (Henikoff and Henikoff, 1992) as the background distribution.
See Supplementary Materials for details and experimental results using the
different positional conservation scores.

2.2 INTREPID-SPEC
While the scoring functions discussed in the previous section are designed
to detect family-defining positions (and catalytic positions in particular),
this basic tree traversal protocol can be adapted to detect SDPs as
well. Specificity-determining positions tend to be conserved within—but
different across—subfamilies. For this problem, we compute the positional
conservation score as the relative entropy of the amino acid distributions
within and outside a subtree. This variant is termed INTREPID-SPEC. The
importance score at position x is computed as

SPp(x)=maxsRE(pS
x ,pSc

x ) (2)

where S is a node on the path from the root to the leaf corresponding to
p, pS

x denotes the probability distribution of amino acids at position x for
the sequences within subtree S, and pSc

x denotes the probability distribution

of amino acids at position x over the other sequences. In computing the
scores in Equation 2, S ranges over all the nodes in the tree traversal except
the root. To avoid saturated probabilities (and handle subtrees with very
few sequences), we use add-one pseudocounts (Durbin et al., 1998). Such
a relative entropy score was used by Hannenhalli and Russell (2000) for
specificity-residue prediction when the subtypes are known. Using the score
within the tree traversal allows us to predict specificity determinants even
when the subtypes are not known.

3 EXPERIMENTS
In this section, we start by describing experiments to assess
INTREPID on the prediction of catalytic residues, and examine
the effect of protein family divergence on the accuracy of catalytic
residue prediction. We then assess the accuracy of INTREPID on
specificity determinant prediction.

3.1 Catalytic residue prediction
3.1.1 Preliminaries We compared INTREPID to two methods
that use only sequence information to predict functionally important
residues, ET (Lichtarge et al., 1996) and ConSurf (Pupko et al.,
2002). We also included in our comparison a baseline method termed
Global-JS which applies the JS-divergence score to each column
of the alignment as performed by Capra and Singh (2007). We
used the results from servers implementing ET and ConSurf to
ensure that each of these methods would be run with parameters
for which it has been optimized: the ET server from Baylor College
of Medicine (http://mammoth.bcm.tmc.edu/traceview/) (BCMET),
which implements the improved evolution–entropy hybrid version
of ET (Mihalek et al., 2004), and the ConSurf web server at Tel Aviv
University (http://consurf.tau.ac.il).

While evaluating these methods, the question of how the reported
scores are typically handled by users needs to be addressed. We
consider two ways of post-processing the scores reported. In the first
case, we use the ranks of the residues instead of the scores. This
treatment is more useful under the assumption that every protein
should have some predicted residues (if, for instance, the protein
is known to be an enzyme). In the second case, we normalize the
scores of each method on each protein and then analyze all 100
proteins as a set, sorting the normalized scores for each position.
In this approach, for some score cutoff, some proteins may have
no predicted positions while others may have several. Normalizing
the scores improved the accuracies of both BCMET and ConSurf
compared to using unnormalized scores.

We computed the following metrics for comparison (note that
although sensitivity and recall are synonymous terms, we follow
convention and use each term according to the analysis):

Recall = Sensitivity= TP
TP+FN

Precision = TP
TP+FP

Specificity = TN
TN +FP

Here, a true positive (TP) is a residue identified by the CSA as
catalytic which is selected by a method, a false negative (FN)
is a catalytic residue that is missed, a false positive (FP) is a
residue erroneously selected by a method (i.e. it is not listed in
the CSA), and a true negative (TN) is a non-catalytic residue that
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Fig. 2. Results for catalytic residue prediction on CSA-100 dataset using
rank-based scores: ROC curves comparing INTREPID, Global-JS, BCMET
and ConSurf. The ROC curve shows INTREPID to have the highest
sensitivity over the range of high specificity (≥80%) followed by Global-JS.
BCMET performs better as the specificity decreases. Refer to Table 1 for full
AUC scores.

is correctly not selected. Specificity measures how well a method
rejects non-catalytic residues. Since the ratio of catalytic to non-
catalytic residues is low, even apparently high values of specificity
can correspond to a large number of false positives. Precision, which
measures the fraction of predicted catalytic residues that are correct,
is a more relevant measure of performance in this setting. We plot
the receiver operating characteristic (ROC) curve (Sensitivity versus
1−Specificity) and the Precision–Recall curve (Precision versus
Recall) for each of these methods. The ROC curve has been truncated
to the high-specificity region for clarity (Specificity ≥80%) although
the trends shown are similar over the entire range of specificities
(see Supplementary Material for Precision–Recall curves and ROC
curves over the entire range).

3.1.2 INTREPID is significantly more accurate than other
sequence-based methods Figure 2 compares the performance of
INTREPID, Global-JS, BCMET and ConSurf on the CSA-100
dataset (see Section 4 for details). We see from the figure
that INTREPID has the highest sensitivity over the entire range
of specificities and is significantly more accurate than the other
methods. Table 1 compares the different methods under various
metrics. For example, at 90% specificity, INTREPID attains a
sensitivity of 85.03% relative to sensitivities of 70.06% and
73.8% by BCMET and ConSurf, respectively. The baseline method
(Global-JS) performs quite well (a sensitivity of 78.66% at a
specificity of 90%). At a precision of 10%, INTREPID attains a
recall of 75.0% while Global-JS has a recall of 64.0%. ConSurf and
BCMET never attain a precision of 10% resulting in 0% recall at this
level. When the normalized scores are used in place of the ranks, we
see from Table 1 that INTREPID has the highest sensitivity followed
by Global-JS, BCMET and ConSurf.

Since the ConSurf server selects a smaller, more closely related
set of sequences as input to Rate4Site (the program that computes
the site-specific evolutionary rates as part of the ConSurf protocol),
we also tested the prediction power of Rate4Site on the CSA-
100 dataset that contains a greater level of sequence divergence.
Rate4Site failed to complete on 77 of the 100 alignments due to

Table 1. Statistics comparing the different algorithms on the CSA-100
dataset

INTREPID Global-JS ConSurf BCMET

Residue
ranks

Sensitivity95 70.06 64.33 49.20 40.76

Sensitivity90 85.03 78.66 73.80 70.06
Sensitivity80 93.95 90.13 89.78 92.04
Recall10 75.0 64.0 0.00 0.00
AUC 0.944 0.924 0.907 0.914
AUC95 0.024 0.022 0.011 0.010
AUC90 0.063 0.058 0.046 0.039
AUC80 0.154 0.145 0.127 0.124
P-value – 3.89×10−18 1.64×10−17 1.34×10−17

Normalized
scores

Sensitivity95 67.83 58.28 36.74 54.46

Sensitivity90 85.03 75.48 59.42 74.84
Sensitivity80 92.99 89.81 87.86 91.72
Recall10 71.0 56.0 3.83 31.21
AUC 0.935 0.910 0.884 0.919
AUC95 0.022 0.018 0.011 0.016
AUC90 0.060 0.053 0.036 0.048
AUC80 0.149 0.137 0.111 0.134
P-value – 3.89×10−18 3.89×10−18 5.27×10−18

BCMET refers to the ET server from Baylor College of Medicine. In the top panel, the
ranks of the residues were used while in the bottom panel, the normalized scores were
used. Sensitivity is measured at specificities of 95%,90%, and 85% respectively and
recall at 10% precision. AUCx (x=80,90,95) refers to the area under the ROC curve
when specificity is at least x%; AUC is the area under the entire curve. The P-value
refers to the Wilcoxon signed rank P-values between the AUC of the INTREPID and
each of the other methods. INTREPID improves significantly over the other methods
on all metrics. Based on their ranks, ConSurf and BCMET do not reach a precision of
10% and hence have zero recall. The confidence intervals on these statistics are reported
in Supplementary Table S-3.

memory allocation problems. By removing sequences with >80%
identity, we obtained Rate4Site results on 71 out of the 100 inputs.
We refer to these 71 families as the CSA-71 dataset. We also
ran INTREPID on these reduced alignments as well as the full
alignments for these 71 families. Figure 3 compares the performance
of INTREPID, run on alignments made non-redundant at 80%
identity and on the original alignments for the CSA-71 dataset,
with Rate4Site. INTREPID, when run on the reduced MSA, has
a small but statistically significant improvement over Rate4Site
(Wilcoxon paired sign-rank test P-value of 1.3×10−5). At 90%
specificity, INTREPID attains sensitivities of 83.6% on the full
MSA and 85.1% on the reduced MSA, while Rate4Site attains a
sensitivity of 84.6%. Similarly, at 10% precision, INTREPID on
the full MSA, INTREPID on the reduced MSA and Rate4Site have
75%, 80% and 75% recall. See Figure 3 for details. The figure also
shows the considerable difference in accuracies between Rate4Site
when run on these alignments and when run as part of ConSurf;
this difference is likely a result of the different alignments used.
Importantly, INTREPID has an average running time of 25.7 s on
this dataset compared to Rate4Site which requires 2 h and 52 min
on average.

We also evaluated INTREPID on two other datasets consisting of
the protein families used by Petrova and Wu (2006) and by Youn
et al. (2007), respectively. On the Petrova dataset, INTREPID, with
a sensitivity of 90.57% at a false positive rate of 13%, is as accurate
as their method which attains a sensitivity of 90% at the same
false positive rate (i.e. the results are essentially indistinguishable).
This is a very surprising result because INTREPID uses only
sequence conservation, while the method reported in Petrova and Wu
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Fig. 3. Results on the CSA-71 dataset comparing INTREPID, Rate4Site
and ConSurf using rank-based scores. Results were obtained on alignments
derived from the original dataset by removing sequences with more than
80% sequence identity to one another; the 71 alignments used here were
the alignments on which Rate4Site completed successfully. INTREPID was
run on the reduced MSA as well as on the full MSAs for these 71 families.
INTREPID, when run on both MSAs, and Rate4Site have similar accuracies
though INTREPID is slightly more accurate (AUC90 for the methods are
0.061,0.061 and 0.059, respectively; AUC for the methods are 0.941,0.938
and 0.940, respectively; the difference in accuracy between INTREPID, run
on the reduced MSA, and Rate4Site is statistically significant with a P-value
of 1.3×10−5). Rate4Site is considerably more accurate than the ConSurf
webserver (which also uses the Rate4Site program)—this difference is likely
a result of the different alignments used.

(2006) uses a learning algorithm to combine sequence and structural
features. Youn et al. (2007) present two variants of their method, one
employing only sequence information, while the second combines
sequence and structural information. They present results for both
variants on a dataset based on ASTRAL 40 v1.65 (Brenner et al.,
2000) selected to be non-redundant at the SCOP family level. On a
similarly constructed dataset, INTREPID attains a recall of 28.13%
at a precision of 15% and an area under the curve (AUC) of 0.906.
When restricted to sequence features alone, their method attains a
sensitivity of about 16% at 15% precision and an AUC of 0.866.
Thus, INTREPID improves over the method used in Youn et al.
(2007) when restricted to sequence features alone. In contrast, their
method that combines sequence and structural information attains
a much higher recall of about 65% at about the same precision.
Reassuringly, the performance of INTREPID is approximately the
same across these different datasets suggesting that these results
would generalize well to new protein families.

3.1.3 Greater evolutionary divergence improves the accuracies of
INTREPID To measure the impact of evolutionary divergence
on method performance, we controlled the sequence diversity of
the alignment used. We created restricted alignments at the x%-
level, i.e. sequences were discarded from each of these alignments
so that the minimum percent identity from any sequence to the
seed was at least x%. We varied x over 10%,15%,20% and
25%, respectively. For comparison, we also included the original
alignment which is labeled ‘Unrestricted’. The effect of evolutionary
divergence on INTREPID is shown in Figure 4. We see that
as the divergence of the family increases, INTREPID accuracy
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Fig. 4. Effect of alignment diversity on catalytic residue prediction: ROC
curve for INTREPID on alignments with varying degrees of evolutionary
divergence, indicated by the minimum percent identity to the seed. The
original alignment with no sequences removed is labeled ‘Unrestricted’.
INTREPID performs significantly better with increasing evolutionary
divergence. For instance, INTREPID achieves 42% sensitivity at 90%
specificity and 25% identity trimming but reaches 85% sensitivity when
no sequences are removed.

increases. At 90% specificity, INTREPID has 42% sensitivity at
25% identity trimming. INTREPID reaches 85% sensitivity when
no sequences are removed. The trends shown here suggest that
INTREPID is robust to divergence in protein families. All methods
tested for the impact of sequence divergence on catalytic residue
prediction—INTREPID, Global-JS and Rate4Site—benefit from
increased sequence diversity (see Supplementary Materials).

3.1.4 INTREPID is more robust to catalytic residues that are not
conserved across the MSA The advantage of INTREPID over
global conservation analysis can be inferred from the level at which
the maximum score is attained in the tree traversal. A little less
than 50% of the catalytic residues have their maximum scores at
the root. However, for 56 of the catalytic residues (≈18% of all
catalytic residues in the dataset), the maximum score is attained at
least 5 levels away from the root. In 34 of the 56 residues, INTREPID
assigns a better rank than Global-JS while Global-JS assigns a better
rank on 15 (see Figure S-8 in Supplementary Materials). Thus,
INTREPID is more effective at identifying catalytic residues that
are not conserved across the entire protein family. To illustrate this
point, we consider two such families.

The first example is the enoyl-[acyl-carrier-protein] reductase
from Escherichia coli (PDB id: 1mfp). CSA lists two catalytic
residues: K163 and Y156. All methods give high ranks to K163,
while Y156 is far more challenging. INTREPID given Y156
a rank of 18 (out of 258 positions), and BCMET, Global-JS
and ConSurf give ranks of 31, 58 and 100, respectively. The
homologs gathered for this protein family are found to include
other short chain dehydrogenases (such as 3-oxoacyl-[acyl-carrier-
protein] reductase). In these other families, this position generally
contains a glutamine. The catalytic role of this glutamine has been
observed in human 15-hydroxyprostaglandin dehydrogenase (Cho
et al., 2006). The global frequency of tyrosine at position 156 is
only about 25% though it is conserved within a subtree containing
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199 sequences in a family with 833 sequences (see Supplementary
Figs S-9 and S-10).

Another example is Flavocytochrome b2 from Saccharomyces
Cerevisiae (PDB id:1fcB). This protein is part of the flavin
mononucleotide (FMN)-dependent oxidoreductases. The poor
conservation at the active-site residues in this family has been
observed by Todd et al. (2001). This lack of conservation is
most evident at the catalytic residues Y143, H373, and R376 (see
Supplementary Figure S-11). On H373 INTREPID, ConSurf and
BCMET all give ranks of 1, while Global-JS gives a rank of 22. On
R376, INTREPID, ConSurf, BCMET and Global-JS give ranks of
7, 23, 4 and 9, respectively, while on Y143, the respective ranks are
23, 66, 56 and 20.

3.2 Specificity determinant prediction
Methods for specificity determinant prediction can be classified as
those that require the subtypes to be known a priori (Capra and
Singh, 2008; Hannenhalli and Russell, 2000; Kalinina et al., 2004;
Mirny and Gelfand, 2002; Pirovano et al., 2006) and those that do
not (Del Sol Mesa et al., 2003; Donald and Shakhnovich, 2005;
Pei et al., 2006). INTREPID does not require knowledge of the
subtypes. For specificity determinant prediction, we use INTREPID-
SPEC (described in Section 2.2). We can implicitly provide subtype
information to INTREPID-SPEC by building a separate tree for
each subtype which are then joined at the root to obtain a tree
for the family. We compared INTREPID-SPEC to the GroupSim
heuristic that was found to be competitive with other sequence-based
methods in Capra and Singh (2008). Note that all the methods that
were benchmarked in Capra and Singh (2008), including GroupSim,
use subtype information. We used the dataset generated by Capra
and Singh (2008) for the evaluation. Following the definitions used
in Capra and Singh (2008), residues that pass the SDPO filter (low
overlap of residues across subtypes and conserved in at least one
subtype) are considered positives and those that do not pass the
SDPL filter (low overlap of residues across subtype) are considered
negatives. We used the alignments from this original dataset.

We ran INTREPID-SPEC on this dataset by choosing each protein
in turn as the target p, computing an importance score and then
averaging this score across all the proteins. Since we are interested
in SDPs, we ignore the conservation score at the root during the tree
traversal.

3.2.1 INTREPID-SPEC is competitive with other sequence-based
methods for specificity determinant prediction INTREPID-SPEC,
when subtype information is used, has accuracies similar to
GroupSim as seen in Figure 5. [Capra and Singh (2008) have shown
that GroupSim is competitive with other sequence-based methods
suggesting that INTREPID-SPEC would have similar accuracies to
these other methods as well]. Although INTREPID-SPEC does a
tree traversal even when subtype information is provided implicitly,
our results show that the maximum scores for the specificity
determinants are attained at the point in the tree that separates the
known subtypes.

We also ran INTREPID-SPEC on trees constructed without
knowledge of subtypes (Fig. 5). INTREPID-SPEC with subtype
information has 10% greater precision across the range of recall
values than when no subtype information is available. This
difference in performance can be attributed to the bias induced by
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Fig. 5. Comparison of methods for specificity determinant prediction:
INTREPID-SPEC run on trees built using subtype information and
INTREPID-SPEC run with no subtype information are compared to
GroupSim. INTREPID-SPEC (with subtypes provided) attains accuracies
competitive with GroupSim. Including subtype information improves
INTREPID-SPEC recall by roughly 10% at all levels.

the rooting of the tree on the process of averaging the INTREPID-
SPEC scores across all the sequences in the family. In a family with
multiple subtypes, this procedure gives higher ranks to those SDPs
that differentiate a subtype that is joined to the rest of the family at the
root. This bias explains why trees built using subtype information
lead to improved accuracy. When the subtype information is not
used, the top ranked residues often separate subtrees which do
not correspond to the original subtypes. While such predictions
are penalized in our present evaluation, these may be biologically
interesting.

4 MATERIALS AND METHODS
For catalytic residue prediction, we identified a set of 100 enzymes
from the manually curated section of the CSA (Porter et al.,
2004) selected to ensure that no pair had detectable homology
(i.e. we required a BLAST E-value >1). We term this the CSA-
100 dataset. A PSI-BLAST (Altschul et al., 1997) search was
performed with each of these 100 enzymes as a seed against the
UniProt database (Apweiler et al., 2004). PSI-BLAST was run for
four iterations with an E-value inclusion threshold of 1×10−4,
from which a maximum of 1000 homologs were retrieved. The
resulting homologs were realigned using MUSCLE (Edgar, 2004)
with MAXITERS set to 2. Identical sequences were discarded.
Columns in which the seed had a gap were removed. A neighbor-
joining tree was built from this alignment using the PHYLIP
package (Felsenstein, 1993). The dataset has alignments with a
minimum of 32 sequences, a maximum of 1033 sequences and
a median of 843 sequences. The average percent identity of the
alignments varies from 6.4% to 31.14% with a median of 14.99%.
The dataset contains a total of 314 catalytic residues out of a total of
36 229 residues with a median of three catalytic residues per enzyme.

For the comparison with the Petrova and Wu (2006) dataset, we
generated alignments and trees by the protocol described above
using the 79 enzymes reported in their paper (Petrova and Wu, 2006).
The resulting dataset contains 244 catalytic residues out of a total
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of 23 332 residues. For the comparison with the Youn et al. (2007)
dataset, we picked a random domain from each SCOP family for
which we generated alignments and trees as described above. This
dataset contains 1172 catalytic residues out of a total of 119 433
residues.

For specificity determinant prediction, we used the alignments
from the dataset constructed by Capra and Singh (2008). Neighbor-
joining trees were built using the PHYLIP package (Felsenstein,
1993).

5 CONCLUSIONS
In this article, we have presented INTREPID, a novel method to
predict functional residues from sequence information only. The
primary innovation in INTREPID is its use of the phylogeny
of the family to infer the evolutionary pressures on positions
within different subgroups. INTREPID infers functionally important
positions through a traversal of the phylogeny from the root to
the target protein located at a leaf; at each point on this path and
for each position independently, INTREPID computes a positional
conservation score based on JS divergence between the distribution
of amino acids at that position and a background distribution.
Positional scores are adjusted to take into consideration the scores
of other positions within the same subtree; thus positional scores for
a subtree containing highly similar sequences will be small, even
though individual positions may be highly conserved. In contrast, a
position that is highly conserved within a subtree that is otherwise
highly variable will have a high JS divergence. Each position is then
assigned the maximal JS score achieved over all nodes on the path.
Positions that are conserved across the entire family achieve their
maximum score at the root, whereas other positions will achieve
their maximum at some distance from the root. Since even catalytic
residues are not always perfectly conserved across a family (if,
for instance, sequences with divergent functions are included in
the analysis, or due to alignment errors), this tree traversal enables
INTREPID to exploit the information in highly divergent datasets.
In fact, our analysis of CSA-defined catalytic residues shows that
18% of catalytic residues in the dataset have their maximum score
at least 5 levels from the root of the tree.

We have presented results comparing INTREPID with two of
the leading methods in functional residue prediction that make
use of sequence information only—ET and ConSurf and with a
simple baseline method that computes the JS divergence between the
amino acid distribution at a position and a background distribution
(Global-JS). We compared each method on a benchmark dataset
of 100 manually curated sequence-divergent enzymes from the
CSA. Our results show that INTREPID has significantly superior
accuracy than each of these methods, attaining a sensitivity of 85%
at 90% specificity (in contrast. ET and ConSurf attain sensitivities
of 70% and 74%, respectively at the same specificity) and attaining
a recall of about 64% at 10% precision (in contrast neither ET nor
ConSurf attain a precision >10%). Since the ConSurf server selects
a more conservative set of sequences than those we selected, we
also did a separate experiment in which we submitted our larger
alignments to the Rate4Site algorithm (the core algorithm within
ConSurf). As Rate4Site failed to complete on the full alignments,
we filtered the alignments to reduce highly similar sequences. The
method performances are very close on the 71 alignments on which
Rate4Site completed successfully (ROC analysis shows INTREPID

has a small but statistically significant edge over Rate4Site on this
dataset).

In addition to these comparisons with methods using sequence
information only, we compared INTREPID to the machine learning
algorithms reported by Petrova and Wu (2006) and by Youn et al.
(2007) which make use of structural information. Surprisingly, on
the Petrova dataset, INTREPID is as accurate as their support
vector machine (SVM)-based method, even though the latter uses
both sequence and structure-based features. On the Youn et al.
(2007) dataset, INTREPID is more accurate than the variant of their
method that makes use of only sequence features. Reassuringly, the
performance of INTREPID is approximately the same across these
different datasets suggesting that it would generalize well to new
protein families.

To analyze the effect of the evolutionary divergence on prediction
accuracy, we created alignments in which the minimum pairwise
identity to the seed was restricted. The sensitivity of INTREPID was
found to increase as the alignments became more divergent. These
results, while in agreement with several previous studies (Aloy et al.,
2001; Landgraf et al., 2001; Panchenko et al., 2004), suggest that
highly divergent families (with minimum pairwise identity as low
as 10%) can significantly improve catalytic residue prediction.

Prediction of active-site residues based on sequence information
alone is clearly affected by the quality of the sequence data, in
particular, on the effective coverage and extent of the sequence space
around the protein of interest. To test the impact on this kind of
sequence space coverage, we analyzed the accuracy of INTREPID
in predicting catalytic residues for sequences not used as seeds in
clustering homologs (i.e. which may be towards the periphery of the
sequence space). As expected, accuracy decreases as evolutionary
distance to the seed increases. Our limited results suggest that the
sequence of interest should have sequence identity >50% to the
seed (see Supplementary Materials).

In summary, the utility of INTREPID in catalytic-site prediction
can be traced to the following features. First, INTREPID relies
solely on sequence information, making it useful when no structural
data are available. Second, INTREPID is computationally efficient,
making it useful in large-scale application, and allowing it to be
used on large datasets. For instance, INTREPID is considerably
faster than Rate4Site, with 400-fold lower average runtime. Third,
INTREPID can be used on datasets including highly divergent
sequences; in fact, its accuracy improves as more divergent
sequences are included. While INTREPID is designed to make use
of sequence information alone, it can be used as a component in a
prediction protocol that attempts to combine sequence information
with other types of information.

On the task of specificity determinant prediction, a variant of
INTREPID, INTREPID-SPEC, was as accurate as the GroupSim
method proposed by Capra and Singh (2008) when both methods
were given subtype information. Unlike GroupSim however,
INTREPID-SPEC does not require subtype information since the
tree traversal provides an implicit grouping of sequences. We found
that subtype information results in an improvement in precision of
about 10% across the range of recall values.

In this work, we have focused on functional residue prediction in
enzymes. In future work, we plan to assess the performance of these
methods on non-enzymes as well as on other types of functional
residues. Scoring functions that may be better suited to detect other
types of conservation signals can be plugged into the INTREPID
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framework to obtain improved predictions. Finally, all the estimated
accuracies of catalytic residue prediction methods depend critically
on the characteristics of the dataset used to benchmark method
performance. The poor performance of a method on a protein family
may simply be the result of insufficient experimental data available
for that family.
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