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ABSTRACT

Methods to impute missing data are routinely used to increase power in genome-wide asso-
ciation studies. There are two broad classes of imputation methods. The first class imputes
genotypes at the untyped variants, given those at the typed variants, and then performs a
statistical test of association at the imputed variants. The second class, summary statistic
imputation (SSI), directly imputes association statistics at the untyped variants, given the
association statistics observed at the typed variants. The second class is appealing as it tends to
be computationally efficient while only requiring the summary statistics from a study, while
the former class requires access to individual-level data that can be difficult to obtain. The
statistical properties of these two classes of imputation methods have not been fully under-
stood. In this study, we show that the two classes of imputation methods yield association
statistics with similar distributions for sufficiently large sample sizes. Using this relationship,
we can understand the effect of the imputation method on power. We show that a commonly
used approach to SSI that we term SSI with variance reweighting generally leads to a loss
in power. On the contrary, our proposed method for SSI that does not perform variance
reweighting fully accounts for imputation uncertainty, while achieving better power.

Keywords: genome-wide association studies, imputation, summary statistics.

1. INTRODUCTION

Genome-wide association studies (GWAS) have been successfully used to discover genetic variants,

typically single-nucleotide polymorphisms (SNPs), that affect the trait of interest (Hakonarson et al.,

2007; Sladek et al., 2007; Zeggini et al., 2007; Yang et al., 2011; Köttgen et al., 2012; Lu et al., 2013; Ripke

et al., 2013). GWAS measure or type the genotypes of individuals at a chosen set of SNPs, and then perform a

statistical test of association between a given SNP and the trait of interest. SNPs, at which the null hypothesis

of no association between the genotype and the trait can be rejected, are said to be associated with the trait.

The threshold that the absolute value of association statistics passes to reject null hypothesis is also referred as

significance level.

In a typical GWAS, due to the cost considerations, only a subset of SNPs is genotyped (typed SNPs).

Thus, a direct analysis of typed SNPs is likely to have reduced power to detect associations between
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untyped SNPs and the trait. Imputation methods, which aim to fill in ‘‘data’’ at untyped SNPs, are

commonly used to increase the power of GWAS. These methods all rely on the correlation or linkage

disequilibrium (LD; Pritchard and Przeworski, 2001; Reich et al., 2001) between genotypes at untyped

SNPs and those at typed SNPs (Browning and Browning, 2007; Marchini et al., 2007; Howie et al., 2009,

2012; Li et al., 2009, 2010; Marchini and Howie, 2010). Initial work on imputation focused on the problem

of genotype imputation, that is, inferring the genotypes at untyped SNPs given the genotypes at typed

SNPs. Genotype imputation methods rely on a reference panel, in which individuals are typed at all SNPs

of interest, to learn the LD patterns across SNPs. Given a target data set in which genotypes are typed at a

subset of the SNPs, these methods rely on the LD patterns learned from the reference panel to infer the

genotypes at the remaining untyped SNPs.

In the context of GWAS, there are two broad classes of imputation methods to estimate the association

statistics at untyped SNPs. The first class relies on genotype imputation to infer the genotypes at the

untyped SNPs followed by computing association statistics at the imputed genotypes (Browning and

Browning, 2007; Marchini et al., 2007; Howie et al., 2009, 2012; Li et al., 2009, 2010). We refer to this

class of imputation methods as the two-step imputation methods. In practice, the most successful

methods for the first step of genotype imputation are based on discrete hidden Markov models (HMMs;

Browning and Browning, 2007; Marchini et al., 2007). The second class of methods directly imputes the

association statistics at the untyped SNPs, given the association statistics at the typed SNPs. As shown in

previous work (Han et al., 2009; Kostem et al., 2011), the joint distribution of marginal statistics at the

typed SNPs and untyped SNPs follows a multivariate normal distribution (MVN; Han et al., 2009;

Kostem et al., 2011; Hormozdiari et al., 2014, 2015, 2016). This class of methods utilizes the correlation

between the association statistics induced by their dependence on the underlying genotypes (Lee et al.,

2013; Pasaniuc et al., 2014). This class of methods is termed summary statistic imputation (SSI). SSI is

appealing as it tends to be computationally efficient while only requiring the summary statistics from a

study, while the first class requires access to individual-level data, which can be difficult to obtain in

practice.

Current summary statistic-based imputation methods calibrate the imputed statistics using a technique

we call variance reweighting (SSI-VR). Despite recent progress, the statistical properties of SSI methods

(including the impact of variance reweighting) and the connection between the two classes of SSI methods

have not been adequately understood.

In this study, we characterize the asymptotic distribution of the association statistics under each of the

two classes of imputation methods, the two-step imputation and SSI. The resulting statistics are asymp-

totically multivariate normal with differences in the underlying covariance matrix that depend on the details

of the HMM used for genotype imputation. Using this characterization, we can understand the effect of the

imputation method on power. Our new method, SSI, performs SSI without variance reweighting. The

resulting statistics do not then have unit variance as in traditional SSI, but instead correctly take into

account the ambiguity of the imputation process. We compared the performance of the imputation methods

on the Northern Finland Birth Cohort (NFBC) data set (Sabatti et al., 2009) to show that SSI increases

power over no imputation, while SSI-VR can sometimes lead to lower power. Finally, we ran SSI, SSI-VR,

and two-step imputation on the NFBC data set and show that the resulting statistics are close, thereby

justifying the theory.

2. METHODS

2.1. Summary statistics

Under the null hypothesis, the joint distribution of the association statistics of the U untagged SNP sU and

the O tag SNPs sO follows an MVN:

sU

sO

� �
*N kU

kO

� �
‚

RU RUO

RT
UO RO

� �� �
=N 0

0

� �
‚

RU RUO

RT
UO RO

� �� �
(1)

Since none of the M = (U + O) SNPs is associated, the noncentrality parameters (NCPs) of both kU and

kO are 0. Furthermore, the statistics are standardized so that the diagonal elements of the covariance matrix

are 1, that is, SUi‚ i
=SOj‚ j

= 1.
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2.1.1. Summary statistic imputation. Under the null assumption where sO and sU are not associated,

kU and kO are each 0. Using the joint distribution, we can compute the distribution of the true statistics at

the untagged SNPs, sU conditioned on the statistics observed at the tag SNP, sO. The conditional distri-

bution follows an MVN, which is computed as follows:

P sU jsOð Þ*N SUOS - 1
O sO‚SU -SUOSO

- 1SOU

� �
(2)

The observed statistics are denoted ŝO. Thus, sU is imputed using a function of observed statistics:

ŝU(ŝO) =SUOS - 1
O ŝO (3)

Let A =SUOSO
- 1 and thus ŝU(ŝO) = AŝO.

2.1.2. SSI with variance reweighting. From the previous result, we have ŝU(ŝO) = AŝO. Notice that

the underlying joint distribution over the test statistics assumes that each of the statistics at the observed as

well as unobserved SNPs has variance one. On the contrary, Equation 3 shows that the variance of the

imputed statistic is <1. Variance reweighting proposes standardizing the statistics at the untagged SNPs.

Let si be the statistic at the ith untagged SNP. Thus, instead of imputing si using ŝi, we impute us-

ing ẑi = ŝiffiffiffiffiffiffiffiffiffiffi
var(ŝi)
p , so that all the imputed ẑi have variance equal to 1. We have var(ŝi) = E[SUi‚ OSO‚ O

- 1

ŝOŝO
TSO

- 1SOUi
] =SUi‚ OSO

- 1SO‚ Ui
. Thus we have

ẑi(ŝO) =
SUOSO

- 1ŝOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SUi‚ OSO

- 1SO‚ Ui

q (4)

2.2. The impact of imputation on the rejection boundary

SSI uses the following function to impute statistics at the unobserved statistics: ŝU(ŝO) = AŝO. Let Ai be

the ith row of matrix A, Ai =SUiO
TSO

- 1, where ST
UiO

is the correlation vector between untagged variant

snpi and all the observed SNPs. We choose thresholds t for rejecting statistics at each of the observed and

imputed SNP, that is, we reject the null hypothesis at observed SNP Oj if jŝOj
j > t, while we reject the null

hypothesis at unobserved SNP Ui if jŝUi
j > t, where t is chosen to control the family-wise error rate

(FWER). We would like to understand the conditions the threshold t for SSI relative to the threshold t when

no imputation was performed, that is, we want to provide conditions when imputation changes the rejection

boundary.

Theorem 1. The imputed statistic at snpi computed using SSI will change the rejection boundary iff the

sum of the absolute values of all the entries of Ai,
P

j jAijj > 1.

Proof. See Section S2 in Supplementary Material. -
In SSI-VR, instead of using ŝi as the imputed statistic for variant i, we use

ẑi =
ŝiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(ŝi)
p =

P
j

AijŝOjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j

A2
ij + 2

P
j 6¼k

AijAikSOj‚ Ok

r (5)

In SSI-VR, untagged variant i will effect the rejection boundary iff

P
j
jAijjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j
A2

ij
+ 2
P

j6¼k
AijAjkSOj‚ Ok

q > 1.

2.3. Two-step imputation

The two-step approach to SSI first performs genotype imputation followed by testing for association using

the imputed genotypes. Genotype imputation fills in the genotypes at the unobserved SNPs GU, given the

genotypes at observed SNPs GO (Marchini and Howie, 2010). Typically, this involves defining a probability

distribution for the missing genotypes, given the observed genotypes P(GujGO). Let pi(g) = P(GUi
= gjGO)

denote the posterior probability at unobserved SNP i. Given a vector g of N genotypes at an SNP, let the

association statistic s(g) be a function of the genotypes g. We can then compute the association statistic

at unobserved SNP i as the posterior mean of the association statistic: E [s(GUi
)jGO] =

P
g s(g)pi(g).
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In practice, instead of the posterior mean, association statistics are restricted to imputed SNPs, at which the

imputation is confident (e.g., using the INFO score reported by software such as IMPUTE2; Marchini et al.,

2007) followed by using the maximum a posteriori estimate of the genotype at each SNP. We focus on the

posterior mean as it accounts for the uncertainty in imputation and is easier to analyze. We first consider a

simple genotype imputation strategy that uses the pairwise correlation among SNPs in an MVN (Wen and

Stephens, 2010; Section 2.3.1). In Section 2.3.2, we consider the use of HMMs for genotype imputation.

2.3.1. Genotype imputation using MVN. First, we consider an MVN with mean zero and covari-

ance matrix given by the LD matrix to model the distribution of the genotype vector at the observed and

unobserved SNPs for each individual (Wen and Stephens, 2010). We can then impute the genotypes for

missing SNPs ĜU as a function of observed genotypes GO using the conditional mean for the MVN (Eq. 2).

Denoting the N · O matrix of standardized genotypes as XO and the imputed genotype vector across N

individuals at unobserved SNP i as x̂Ui
, we have the following:

x̂Ui
(XO) = (SUiOSO

- 1XO
T)T = XOSO

- 1SOUi
(6)

where SUiO is the ith row of matrix SUO.

Given a vector of continuous phenotypes y 2 RN measured across N individuals, the effect size b̂j for

observed SNP j can be estimated by a linear regression of y on the genotypes at SNP j: b̂j =
xOj

Ty

N
so that the

association statistic sj at this SNP j: ŝj = b̂jffiffiffiffiffiffiffiffiffiffi
var(b̂j)

p =
xOj

Ty

r
ffiffiffi
N
p . Here r denotes the standard deviation of the

phenotype. Analogously, the association statistic ŝi at unobserved SNP i is ŝi =
x̂T

Ui
yffiffiffiffiffiffiffiffiffiffiffiffiffi

var(x̂T
Ui

y)
p . From Equation 6,

we have the following:

ŝi =
SUiOSO

- 1XO
Ty

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SUiOSO

- 1XT
OXORO

- 1SOUi

q =
SUiOSO

- 1sOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SUiOSO

- 1SOUi

q (7)

Here we used
XT

OXO

N
=SO.

This function is identical to SSI-VR as seen in Equation 5. Thus, applying the imputation function in

Equation 6 to directly impute genotypes is equivalent to SSI-VR.

2.3.2. Genotype imputation using HMMs. We consider the use of an HMM for genotype impu-

tation. These models assume that a reference panel M is available that contains genotype data across

M = (U + O) SNPs (Scheet and Stephens, 2006; Marchini et al., 2007; Browning and Browning, 2007; Li

et al., 2010). The HMM models the conditional distribution of each of the pair of haplotypes (h(1)
n ‚ h(2)

n ) in

each of the N individuals in the study at the O observed and U unobserved SNPs by the conditional

distribution P(hjM). Specifically, h(a)
n *iidP(hjM) for n 2 f1‚ . . . ‚ Ng, h(a)

n 2 f0‚ 1gM
a 2 f1‚ 2g.

The effect size estimate for SNP j: b̂j = cov(hj‚ y)

var(hj)
and the association statistic sj = cov(hj‚ y)

r
ffiffiffiffiffiffiffiffiffiffi
var(hj)
p .

We show in Section S1 of the Supplementary Material that the vector of association statistics asymp-

totically follows an MVN:

s !d N (0‚ SS) (8)

The asymptotic covariance matrix of the association statistics SS depends on the specific HMM used. Under

the commonly used Li–Stephens model (Li and Stephens, 2003), this covariance matrix is as follows:

SS‚ ij =
(1 - h)2 + h

2
1 - h

2

� �
1
r2

i

‚ i = j

‚ i 6¼ j

exp - qij

2N

� �
Sij

8<
: (9)

Here Sij is the LD or the correlation between SNPs i and j, h is a parameter related to the mutation rate, and

qij is an estimate of the population-scaled recombination rate between SNPs i and j. Thus, the association

statistic computed using genotypes imputed using an HMM follows an MVN with mean zero and covariance

matrix equal to an LD matrix with shrinkage applied according to the recombination rate between SNPs.
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3. RESULTS

3.1. Overview of summary statistics

Assume we have a total of M = (U + O) SNPs that are partitioned into O observed (or tag) SNPs

fsnp1‚ snp2‚ snp3 . . . snpOg and U missing SNPs fsnp1‚ snp2‚ snp3‚ . . . snpUg for N individuals. For the

O tag SNPs, let sO be a vector of association statistics of length O, kO be a vector of NCPs of length O, and

let SO be a O · O matrix of their pairwise correlation coefficients. For the U missing SNPs, let sU be a

vector of association statistics of length U, kU be a vector of NCPs also of length U, and let RU be a U · U

matrix of their pairwise correlation coefficients.

Let SUO be a U · O matrix of the pairwise correlation, that is, LD, between missing SNPs and ob-

served SNPs. Thus, we have an M · M LD matrix, SLD. We can partition the LD matrix as follows:

SLD = SU SUO

SOU SO

� �
. For large sample sizes, the association statistics follow an MVN,

sU

sO

� �
*N kU

kO

� �
‚

SU SUO

SOU SO

� �� �
(10)

Under the null where we assume that none of the SNPs is causal, kU and kO are equal to 0.

3.2. Example

We consider a simple example to illustrate how imputation affects the rejection threshold at a given set

of SNPs. We consider three SNPs: snp1, snp2, and snp3. In this example, snp1‚ snp2 are observed, and snp3

is imputed. We assume the statistics of the tag SNPs (snp1‚ snp2),
s1

s2

� �
follows N 0

0

� �
‚

1 q
q 1

� �� �
where jqj � 1 and we use p(s1‚ s2) to denote this distribution. We also assume that the statistics of the tag

SNPs snp1‚ snp2 and the unobserved SNP snp3 jointly follow the distribution N
0

0

0

2
4
3
5‚

1 q a
q 1 a
a a 1

2
4

3
5

0
@

1
A

where jqj � 1, jaj � 1.

Thus, having the joint distribution of the statistics s1, s2, and s3, we can compute the conditional

distribution of the untyped SNP conditioned on the marginal statistics of the typed SNPs s1 and s2:

P s3js1‚ s2ð Þ*N a
a

� �T
1 q
q 1

� � - 1
s1

s2

� �
‚ 1 - a

a

� �T
1 q
q 1

� � - 1
a
a

� � !

Typically, SSI uses the posterior mean of the statistic s3, given the observed values of ŝ1 and ŝ2 to

estimate s3. In our example, this leads to the statistic s3 for snp3 being imputed as a function of ŝ1‚ ŝ2:

ŝ3(ŝ1‚ ŝ2) =
a

1 + q
ŝ1 + ŝ2ð Þ

We choose thresholds t for rejecting each of the statistics (ŝ1‚ ŝ2‚ ŝ3) such that the FWER, that is, the

probability of at least one false positive, is controlled at a level 0.05. For each tested SNP, we choose the

threshold to be the same.

In the case where no imputation is performed, we only test two SNPs. We use the same threshold t for

SNPs snp1 and snp2. Figure 1a shows the rejection boundary (the blue box) for two SNPs with correlation

q = 0:36 where the region outside this box corresponds to the rejection region. Given the joint density

p(s1‚ s2) of the association statistics (s1‚ s2)‚ we determined the rejection boundary by computing the

length of the side of the blue box such that the cumulative density in the rejection area, that is, the area

under the density p(s1‚ s2) outside the box is equal to 0:05. Mathematically, we need to find t such that

FWER(t) = 0:05 where:

FWER(t) � 1 -
Z

p(s1‚ s2)1 s1 2 - [t‚ t]f g1 s2 2 [ - t‚ t]f gds1ds2

Here 1 s1 2 - [t‚ t]f g1 s2 2 [ - t‚ t]f g defines the acceptance region, that is, the set of points

(s1‚ s2) 2 R2 where the null hypothesis at both SNPs is accepted.
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We now consider the effect of testing imputed SNPs in addition to the tag SNPs. The rejection regions

for snp1‚ snp2‚ snp3 are the regions outside the intervals R1 = [ - t‚ t]‚ R2 = [ - t‚ t]‚ R3 = [ - t‚ t], re-

spectively. We can compute the FWER for a given t by determining the probability mass outside the

rejection region. To do this, we note that the joint sampling distribution of (s1‚ s2‚ ŝ3) is determined only

by the distribution of (s1‚ s2) since ŝ3 is a deterministic function of s1 and s2.

FWER(t) � 1 -
Z

p(s1‚ s2)1 s1 2 - [ - t‚ t]f g1 s2 2 [ - t‚ t]f g 1 s3 2 [ - t‚ t]f gds1ds2ds3

= 1 -
Z

p(s1‚ s2)1 s1 2 [ - t‚ t]f g1 s2 2 [ - t‚ t]f g 1
a

1 + q
(s1 + s2) 2 [ - t‚ t]

	 

ds1ds2
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0.05

0.10

0.15
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0
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4

s1

s2

a b

c d

FIG. 1. The effect of imputation on the rejection boundary. This figure shows rejection boundary with no imputation,

with imputation (SSI), and variance reweighted imputation (SSI-VR) for an example containing two observed SNPs snp1,

snp2 and an unobserved SNP snp3. The contours represent the probability density of the statistics for the observed SNPs:

s1 and s2 projected in the plane. (a) The blue box is the rejection boundary with FWER 0.05 for snp1 and snp2 before

imputation. The polygon with red- and green-colored boundaries is the rejection boundary after imputation. (b, c) A

zoomed in version of (a) to show the rejection boundary changes. (b) The power change on two observed SNPs. (c) The

power change on the imputed SNP and has three points corresponding to different scenarios. (d) The rejection boundary of

imputation with SSI-VR in pink color in addition to the rejection boundary of imputation (SSI) seen in (a). We observe that

the variance reduction technique leads to power gain on imputed SNP while causing power loss on observed SNPs using

SSI-VR. FWER, family-wise error rate; SNPs, single-nucleotide polymorphisms; SSI, summary statistic imputation.
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Notice that, in the setting with imputation, the acceptance region 1 s1 2 [ - t‚ t]f g 1 s2 2 [ - t‚ t]f g
1 a

1 + q (s1 + s2) 2 [ - t‚ t]
n o

can never increase relative to the setting where only the tag SNPs are tested.

Now consider the case where the null hypothesis at both the observed SNPs is accepted. This happens when

jŝ1j � t and jŝ2j � t. Then the statistic at the imputed SNP is as follows:

jŝ3(ŝ1‚ ŝ2)j = j a
1 + q

(ŝ1 + ŝ2)j

� j a
1 + q

j jŝ1j + jŝ2jð Þ (triangle inequality)

� 2j a
1 + q

jt

Thus, if 2j a
1 + q j � 1, then we have jŝ3(ŝ1 + ŝ2)j � t. Thus, the imputed SNP will never be rejected when

neither of the observed SNPs is rejected. Thus, the acceptance region remains the same as the setting when

only the tag SNPs are tested. In other words, imputation does not change the rejection boundary.

On the contrary, when a
1 + q >

1
2
, then imputation will change the rejection region. Figure 1 shows the

effect of imputation with a = 0:80 and q = 0:36 so that ŝ3(ŝ1‚ ŝ2) = 0:5882(ŝ1 + ŝ2). The rejection boundary of

the observed SNPs snp1 and snp2 after imputation is shown by the red lines. The rejection region for snp3

corresponds to the region where j0:5882(s1 + s2)j > t, which corresponds to the green line. Thus, the

cumulative density outside the polygon of red and green lines is the same as the rejection area outside

the blue box. In Figure 1b, the shaded area indicates the power loss on the observed SNPs, and in Figure 1c,

the shaded area is the power gained from imputation.

Thus assume we have three points, p1, p2, and p3 in Figure 1c, which are three different pairs of

association statistics of observed SNPs snp1 and snp2. The first point is in both the blue rectangle and the

polygon, which means we will accept null with or without imputation. The second point p2 is the case that

without imputation we will reject null, and after imputation we will accept null because of the change of

boundary on observed SNPs. The third point p3 is the special case. In this case, the observed SNP does not

have a significant association because it lies inside the blue box, but after imputation, the imputed SNP has

a significant association since it lies outside the polygon and thus we reject the null.

3.3. Simulation results

As shown in previous work on summary statistics (Lee et al., 2013), the marginal statistics at typed SNPs

and untyped SNPs follow an MVN. With the assumption that none of the SNPs is significantly associated

with train, the mean of the MVN is 0.

As in the previous simple case having three SNPs, snp1‚ snp2, and snp3, under the null hypothesis of no

association, the summary statistics follow the distribution N
0

0

0

2
4
3
5‚

1 q a
q 1 a
a a 1

2
4

3
5

0
@

1
A.

Thus having the joint distribution of the statistics s1, s2, and s3, we can compute the conditional

distribution of the untyped SNP conditioned on the marginal statistics of the typed SNPs s1 and s2:

P s3js1‚ s2ð Þ*N a
a

� �T
1 q
q 1

� � - 1
s1

s2

� �
‚ 1 - a

a

� �T
1 q
q 1

� � - 1
a
a

� � !
(11)

SSI estimates s3 using the mean of the above distribution ŝ3. The variance of the imputed statistic:

var(ŝ3) = a
a

� �T
1 q
q 1

� � - 1
a
a

� �
is smaller than 1 (since Eq. 11 shows that the variance of s3js1‚ s2 is

1 - a
a

� �T
1 q
q 1

� � - 1
a
a

� �
and the variance is non-negative). Thus, in most summary statistic imputations

(Lee et al., 2013; Pasaniuc et al., 2014), snp3 is imputed as ẑ3 = ŝ3ffiffiffiffiffiffiffiffiffiffi
var(ŝ3)
p so that all the association statistics

have variance 1. Since the variance of ŝ3 is � 1, the new statistic jẑ3j � jŝ3j. As a result, for a given

threshold, the acceptance region in SSI-VR is never greater than with SSI. In other words, to achieve a

given FWER, the threshold t needs to be larger for SSI-VR than without, as shown in Figure 1d.

424 WU ET AL.

D
ow

nl
oa

de
d 

by
 1

72
.1

17
.6

1.
60

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
6/

21
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Now having snp3 imputed using summary statistics, we want to find out how power is affected by SSI

and SSI-VR. In Section S3 of the Supplementary Material, we analytically compute the average marginal

power function for both methods. To assess power, we assume that three SNPs, snp1‚ snp2, and snp3, are

drawn from a region associated with a trait. We assume that the untagged variant, snp3, is causal with NCP

so that (s1‚ s2‚ s3) follow a nonzero mean MVN:N
2:31a
2:31a
2:31

2
4

3
5‚

1 q a
q 1 a
a a 1

2
4

3
5

0
@

1
A. We choose the NCP to be

2.31 so that the maximum power of no imputation will be around 0.5, which will happen when both a and q
are 1. We let the correlation between untagged and tag SNPs a and the correlation between tag SNPs q vary

across: [0:1‚ 0:2‚ . . . ‚ 0:9‚ 1].

For each combination of [a‚ q], we determined a set of three thresholds (1) for no imputation, (2) for

imputation, and (3) imputation with variance correction. We drew 108 samples from each distribution, and the

power is defined as the probability that we reject the null hypothesis based on thresholds for each method.

In all the combinations except the cases that the LD matrix is no longer positive definite, we find the

power of no imputation, SSI, and SSI-VR (Fig. 2). In Figure 2a, we compared SSI versus no imputation,

FIG. 2. A comparison of the power of imputation (SSI) versus no imputation (a), SSI-VR versus no imputation (b),

and SSI versus SSI-VR in a simple example consisting of three SNPs, of which only two are observed. In each panel,

we plot the ratio of the power of the two methods under all configurations of a and q. In each figure, the configuration of

a and q that results in a covariance matrix that is not positive definite, for example, a = 1, q = 0:1, is left empty. (a)

Shows that for values of a � 1 + q
2

, the ratio is near one since the rejection boundary is unchanged (as predicted by our

theory). while for values of a > 1 + q
2

, the power of SSI is greater than that of no imputation. (b, c) Show that SSI-VR can

lose power relative to both no imputation as well as SSI for a range of configurations of linkage disequilibrium.
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and we show that SSI always increases power when a
1 + q >

1
2

as the ratio is always larger in 1. Since the

power of no imputation depends more on the correlation between tagged and untagged SNPs, we see the

power being sensitive to a. For instance, if a = 0:7 and q = 0:3, the average power of no imputation is

0.4918, while the average power of imputation with no correction is 0.6614. In Figure 2b, we compared

SSI-VR versus no imputation. We see comparing with Figure 2a, the power increasing much less signif-

icantly. In fact, in some cases, we observe SSI-VR has less power than no imputation. For example, when

a = 0:7 and q = 0:1, the average power of imputation with variance correction is 0.4639, and null has an

average power of 0.5154.

Then, we compare imputation and imputation with variance reweighting in Figure 2c and we notice that

SSI-VR will always cause power loss. and in the figure, the values of ratio are all larger than 1. For

instance, when a = 0:7 and q = 0:3, the average power of imputation is 0.6614, and the average power of

imputation with variance correction is 0.5403.

3.4. SSI achieves better power compared with existing methods in NFBC

To assess the power of imputation and the effect of SSI-VR on imputation in a real data set, we simulated

marginal statistics utilizing the NFBC data set.

We assume that every other SNP on chromosome 22 is missing. Thus, we observe half of SNPs on

chromosome 22 and perform imputation on the rest. We find the per-SNP threshold for only observed SNPs

(i.e., no imputation), for SSI and for SSI-VR with the constraint that FWER is controlled at 0.05. We

sampled association statistics from the multivariate distribution on the observed SNPs from the genome.

Then we used the sampled statistics to find the per-SNP significance threshold on the observed SNPs. We

found the threshold to be 4.59705. Having this threshold, we then assume that there are causal SNPs in the

genome, that is, the mean of statistics on these SNPs is not 0, and assess the power with no imputation. For

no imputation, we found an average power of 0.4946.

Table 1. We Show That the Two Classes of Imputation Method, Summary Statistic Imputation and Two-

Step Imputation, Have Similar Imputation Statistics on the Northern Finland Birth Cohort Data Set

Phenotype Chr rsID

True

statistics SSI

True

SSI SSI-VR

True

SSI-VR IMPUTE2

True

IMPUTE2

TG 2 rs673548 -5.444 -5.37 0.074 -5.37 0.074 -4.46 0.984

8 rs10096633 -5.679 -5.63 0.049 -5.76 0.082 -5.17 0.509

15 rs2624265 4.22 3.55 0.67 -3.85 0.37 3.60 0.62

HDL 15 rs1532085 7.13 5.59 1.54 6.33 0.8 6.47 0.66

16 rs3764261 12.01 8.23 3.78 10.19 1.82 6.47 5.54

16 rs255049 6.06 5.11 0.95 5.5 0.56 5.70 0.36

17 rs9891572 4.25 3.99 0.26 4.02 0.23 4.40 0.15

LDL 1 rs646776 -7.70 -7.7 0 -7.81 0.11 -6.96 0.74

2 rs693 6.81 6.27 0.54 6.34 0.47 5.91 0.9

11 rs102275 -4.51 -4.43 0.08 -4.45 0.06 -4.54 0.03

11 rs174546 -4.52 -4.43 0.09 -4.45 0.07 -4.58 0.06

11 rs174556 -4.69 -4.73 0.04 -4.85 0.16 -4.62 0.07

11 rs1535 -4.43 -4.46 0.03 -4.66 0.23 -4.45 0.02

19 rs11668477 -5.96 -3.78 2.18 -4.4 1.56 -5.33 0.63

19 rs157580 -5.161 -2.6 2.561 -3.11 2.051 -4.20 0.961

CRP 12 rs2650000 -7.08 -5.25 1.83 -6.54 0.54 -6.05 1.03

GLU 2 rs560887 -6.97 -6.21 0.76 -6.3 0.67 -5.69 1.28

7 rs10244051 5.31 4.34 0.97 4.45 0.86 4.97 0.34

7 rs2191348 5.30 4.33 0.97 4.47 0.83 4.97 0.33

11 rs1447352 -6.35 -5.08 1.27 -5.21 1.14 -4.75 1.6

11 rs7121092 -5.50 -4.93 0.57 -5.31 0.19 -4.60 0.9

We consider SNPs that were reported significant in a previous study (Sabatti et al., 2009). Then, we treat these SNPs as untyped and

impute the marginal statistics using SSI, SSI-VR, and two-step imputation using IMPUTE2 to impute genotype of untyped SNPs.

Chr, chromosome; CRP, C-reactive protein; GLU, glutamate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SNPs,

single-nucleotide polymorphisms; SSI, summary statistic imputation; TG, triglycerides.
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For the imputation methods, SSI and SSI-VR, we impute the association statistics using the sample

statistics. We impute in two ways, one utilizing the MVN of Equation (2), and the other one using the

variance reweighting technique as Equation (3). Under the null, we found per-SNP thresholds for SSI and

SSI-VR to be 4.5977 and 4.6891. We then assume that there are causal SNPs and used the thresholds to

compute the power of each of the imputation methods. We found the average power to be 0.50124 for SSI

and 0.4346 for SSI-VR. Notice that the threshold we found for no imputation, SSI, and SSI-VR is more

accurate than Bonferroni correction and thus less conservative.

In Table 1, we also impute the most significantly associated SNPs reported in previous studies using SSI,

SSI-VR, and a two-step imputation using IMPUTE2 to perform genotype imputation. We find the asso-

ciation statistics are similar across the three methods validating our theoretical results.

4. DISCUSSION

In this study, we have shown that the two broad classes of methods for imputating summary statistics in

GWAS, two-step imputation and SSI, have identical asymptotic distributions. We also showed that a

commonly used modification of SSI, variance reweighting, will cause power loss using simulation and real

data. This leads us to conclude that SSI (with no variance re-weighting) is more powerful while retaining

the computational efficiency of methods that rely on summary statistics alone. SSI assumes that statistics

follow MVN: this assumption breaks down for small sample sizes and for rare SNPs. Compared with

summary statistics, current HMM methods are likely to be more accurate for rare variation. A possible

future direction is to improve accuracy on rare variants and small sample sizes.
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