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ABSTRACT
Genome-wide expression quantitative trait loci (eQTL) studies have
emerged as a powerful tool to understand the genetic basis of gene
expression and complex traits. The traditional eQTL methods fo-
cus on testing the associations between individual single-nucleotide
polymorphisms (SNPs) and gene expression traits. A major draw-
back of this approach is that it cannot model the joint effect of a
set of SNPs on a set of genes, which may corresponds to biologi-
cal pathways. In this paper, we propose a sparse (�1-regularized)
graphical model, SET-eQTL, to identify novel associations between
sets of SNPs and sets of genes. Such associations are captured
by hidden variables connecting SNPs and genes. These hidden
variables also naturally model the potential effect of unknown con-
founding factors. We compare three different methods on a yeast
segregant dataset. Extensive experimental results demonstrate that
the proposed graphical model SET-eQTL achieves better perfor-
mance than the other two alternatives.

Categories and Subject Descriptors
H.3.3 [GWAS]: eQTL; H.2.8 [System Biology]:

General Terms
Algorithms, Experimentation, Theory

Keywords
eQTL, Graphical Model, Gene Set, SNP Set

1. INTRODUCTION
Thanks to the advanced high-throughput technologies for profil-

ing gene expressions and assaying genetic variations, genome-wide
study of expression quantitative trait loci (eQTL) has been widely
applied to dissect genetic basis of gene expression and molecular
mechanisms underlying complex traits [5, 40, 28]. In a typical e-
QTL study, the association between each expression trait and each
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single-nucleotide polymorphism (SNP) is assessed separately [8,
51, 45].

Despite the successful applications of this single-locus approach,
there are several thorny issues that greatly limit its applicability.
First, the large number of SNPs and gene expression traits leads to a
huge number of correlated tests [14]. Many SNPs may be genuine-
ly associated with genes but may not reach a stringent genome wide
significance threshold after correction for multiple testing. Sec-
ond, the single-locus approach ignores the joint effect of a set of
SNPs on the activities of a set of genes, which may act and inter-
act with each other to achieve a specific cell function. It is widely
recognized that genes in the same biological pathway are often co-
regulated and may share a common genetic basis [31, 37]. It is a
crucial challenge to understand how multiple, modestly-associated
SNPs interact to influence the phenotypes [23]. Third, confound-
ing factors such as expression heterogeneity may result in spurious
associations and mask real signals [29, 42, 13].

Several approaches have been proposed to partially address these
challenging issues. To find SNP-SNP interactions, epistasis detec-
tion methods have been developed [17, 16, 2, 30]. These methods
focus on finding interactions between SNP-pairs. They still suffer
the multiple testing problem and are computationally intensive. Re-
cently, machine learning methods, such as Lasso and its variations
[45, 22, 24], have been applied to eQTL studies. These method-
s are effective in addressing the “large p small n” problem (i.e.,
high dimension and low sample size) and can aggregate associa-
tions across multiple SNPs [4]. However, they do not consider the
effect of confounding factors which may dramatically affect the re-
sults. Statistical models that incorporate confounding factors have
been proposed in [26, 43]. These methods are not specifically de-
signed to identify novel associations between SNP sets and gene
sets. Pathway analysis methods [7, 11, 46] aim to examine the as-
sociations between pre-determined SNP sets (usually from existing
knowledgebase, such as GO and KEGG [44, 27]) and the pheno-
types. Although this approach is appealing, it is limited to the priori
knowledge on the predefined SNP sets/pathways.

To better elucidate the genetic basis of gene expression and un-
derstand the underlying biology pathways, it is highly desirable to
develop approaches that can automatically infer associations be-
tween a group of SNPs and a group of genes. Intuitively, the eQTL
data can be modeled using a bipartite graph, where the SNPs are a
set of nodes and the genes are another set of nodes. The expression
levels of the genes can be treated as a function of SNP combination-
s represented by the (weighted) edges connecting SNPs and genes.
In [19], a method has been proposed to identify cliques in a bipar-
tite graph derived from eQTL data. The cliques are used to model
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the hidden correlations between SNP sets and gene sets. However,
this method depends on the availability of progeny strain informa-
tion, which is used as a bridge for modeling the eQTL association
graphs. Moreover, it does not consider the confounding factors.

To address the limitations of existing approaches, in this paper,
we propose a sparse linear-Gaussian graphical model, SET-eQTL,
to infer novel associations between SNP sets and gene sets. The
proposed model consists of three layers of nodes as shown in Figure
2. The upper layer nodes correspond to the set of SNPs in the
study. The middle layer consists of a set of hidden variables. The
hidden variables are used to model both the joint effect of a set of
SNPs and the effect of confounding factors. The lower layer nodes
correspond to the genes in the study. The nodes in different layers
are connected via arcs. Please refer to Section 3 for further details
of the proposed model.

To learn the parameters of the proposed model from the eQTL
data, which is usually of high dimension and low sample size, we
apply an �1-norm on the parameters [25, 45, 10, 15]. This ap-
proach yields a sparse network, where a large number of associ-
ation weights are zero [33]. In eQTL association networks, most
genes are regulated by a subset of SNPs. The matrix that describes
the connections between the SNPs and the regulated genes is ex-
pected to be sparse. Thus �1-regularization is a natural choice for
this problem.

We apply our model to a yeast data set and show that it has better
performance than two alternative methods. We further examine the
gene sets connected to hidden variables and find that most these
gene sets are strongly correlated with GO categories.

2. RELATED WORK
Recently, various analytic methods have been developed to ad-

dress the limitations of the traditional single-locus approach. Epis-
tasis detection methods aim to find the interaction between SNP-
pairs [17, 16, 2, 30]. The computational burden of epistasis detec-
tion is usually very high due to the large number of interactions that
need to be examined [32, 39]. Filtering-based approaches [12, 18,
50], which reduce the search space by selecting a small subset of
SNPs for interaction study, may miss important interactions in the
SNPs that have been filtered out.

Statistical graphical models and Lasso-based methods [45] have
been applied to eQTL study. A tree-guided group lasso has been
proposed in [22]. This method directly combines statistical strength
across multiple related genes in gene expression data to identify S-
NPs with pleiotropic effects by leveraging the hierarchical cluster-
ing tree over genes. Bayesian methods have also been developed
[26, 43]. Confounding factors may greatly affect the results of the
eQTL study. To model confounders, a two-step approach can be
applied [43, 21]. These methods first learn the confounders that
may exhibit broad effects to the gene expression traits. The learned
confounders are then used as covariates in the subsequent analysis.
Statistical models that incorporate confounders have been proposed
[34]. However, none of these methods are specifically designed to
find novel associations between SNP sets and gene sets.

Pathway analysis methods have been developed to aggregate the
association signals by considering a set of SNPs together [7, 11, 46,
36]. A pathway consists of a set of genes that coordinate to achieve
a specific cell function. This approach studies a set of known path-
ways to find the ones that are highly associated with the phenotype
[47]. Although appealing, this approach is limited to the prior-
i knowledge on the predefined gene sets/pathways. On the other
hand, the current knowledgebase on the biological pathways is still
far from being complete.

In [19], a method is proposed to identify eQTL association cliques
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Figure 1: Graphical model for linear regression
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Figure 2: The proposed graphical model with hidden variables

that expose the hidden structure of genotype and expression data.
By using the cliques identified, this method can filter out SNP-gene
pairs that are unlikely to have significant associations. It models
the SNP, progeny and gene expression data as an eQTL association
graph, and thus depends on the availability of the progeny strain
data as a bridge for modeling the eQTL association graph.

3. METHODS

3.1 The Proposed Graphical Model
Throughout the paper, we assume that, for each sample, the geno-

type and gene expression are represented by two column vectors.
Let x = [x1, x2, . . . , xK ]T represent the K SNPs in the study,
where xi ∈ {0, 1, 2} is a random variable corresponding to the i-th
SNP. Let z = [z1, z2, . . . , zN ]T represent the N genes in the study,
where zj is a continuous random variable corresponding to the j-th
gene. The traditional linear regression model for association map-
ping between x and z is

z = Wx+ μ+ ε, (1)

where z is a linear function of x with coefficient matrix W. μ
is a translation factor vector. ε is the additive noise of Gaussian
distribution with zero-mean and variance γI, where γ is a scalar.
That is ε ∼ N (0, γI). Figure 1 shows the conventional graphical
model representation of the linear regression method [4].

To infer associations between SNP sets and gene sets, we pro-
pose a graphical model as shown in Figure 2, which is able to cap-
ture any potential confounding factors in a natural way. Specif-
ically, we assume that there exist some latent factors regulating
the gene expression level, which serves as bridges between the S-
NPs and the genes. These latent variables are presented as y =
[y1, y2, . . . , yM ]T, where M is the total number of latent variables.

The exact role of these latent factors can be inferred from the net-
work topology of the resulting sparse graphical model learned from
the data (by imposing �1-norm on the likelihood function, which
will be discussed later in this section). Figure 3 shows an exam-
ple of the resulting graphical model. There are two types of hidden
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Figure 3: An example of the inferred sparse graphical model

variables. One type consists of hidden variables with zero in-degree
(i.e., no connections with the SNPs). These hidden variables corre-
spond to the confounding factors. Another type of hidden variables
serve as bridges connecting SNP sets and gene sets. In Figure 3, yk
is a hidden variable modeling confounding effects. yi and yj are
bridge nodes connecting the SNPs and genes associated with them.
Note that this model allows overlaps between different (SNP set,
gene set) pairs. It is reasonable because SNPs and genes may play
multiple roles in different biology pathways.

3.2 Objective Function
From the probability theory, we have that the joint probability of

x and z is

p(x, z) =

∫
y

p(x,y, z)dy. (2)

From the factorization properties of the joint distribution for a di-
rected graphical model, we have

p(x,y, z) = p(y|x)p(z|y)p(x). (3)

Thus, we have

p(z|x) = p(x, z)

p(x)
=

∫
y

p(y|x)p(z|y)dy. (4)

The two conditional probabilities follow normal distributions:

y|x ∼ N (y|Ax+ μA, σ
2
1IM),

and

z|y ∼ N (z|By + μB, σ
2
2IN),

where A ∈ R
M×K is the coefficient matrix between x and y, B ∈

R
N×M is the coefficient matrix between y and z. μA ∈ R

M×1

and μB ∈ R
N×1 are the translation factor vectors, of which σ2

1IM
and σ2

2IN are their variances respectively (σ1 and σ2 are constant
scalars and IM and IN are identity matrices).

To impose sparsity, we assume that A and B follow Laplace
distributions:

A ∼ Laplace(0, 1/λ),

and

B ∼ Laplace(0, 1/γ).

λ and γ are parameters of the �1-regularization penalty on the ob-
jective function. This model is a two-layer linear model and p(y|x)
serves as the conjugate prior of p(z|y). Thus we have

β·N (y|μy,Σy) = N (y|Ax+ μA, σ
2
1IM)·N (z|By + μB, σ

2
2IN)
(5)

where β is a scalar, μy and Σy are the mean and variance of a new
normal distribution respectively.

From Equations 4 and 5, we have that

p(z|x) =
∫
y

β · N (y|μy,Σy)dy = β (6)

Thus, maximizing p(z|x) is equivalent to maximizing β. Next, we
show the derivation of β. We first derive the value of μy and Σ−1

y

by comparing the exponential terms on both sides of Equation 5.

N (y|Ax+ μA, σ
2
1IM) · N (z|By + μB, σ

2
2IN)

= 1

(2π)
M+N

2 σM
1 σN

2

exp{− 1
2
[ 1
σ2
1
(y − Ax− μA)

T(y − Ax− μA)

+ 1
σ2
2
(z− By − μB)

T(z− By − μB)]}
(7)

The exponential term in Equation 7 can be expanded as

Ψ = − 1
2
[ 1
σ2
1
(y − Ax− μA)

T(y − Ax)

+σ2
2(z− By − μB)

T(z− By)]
= − 1

2
[ 1
σ2
1
(yTy − yTAx− yTμA − xTATy + xTATAx

+xTATμA − μT
Ay + μT

A AX + μT
AμA) +

1
σ2
2
(zTz− zTBy

−zTμB − yTBTz+ yTBTBy + yTBTμB − μT
B z+ μT

B By
+μT

B μB)]
= − 1

2
[yT( 1

σ2
1
IM + 1

σ2
2

BTB)y − 2
σ2
1
(xTATy + μT

Ay)

− 2
σ2
2
(zTBy − μT

B By) + 1
σ2
1
(xTATAx+ 2μT

A Ax+ μT
AμA)

+ 1
σ2
2
(zTz− 2μT

B z+ μT
B μB)]

(8)
Thus, by comparing the exponential terms on both sides of Equa-
tion 5, we get

Σ−1
y =

1

σ2
1

IM +
1

σ2
2

BTB, (9)

μT
yΣ

−1
y =

1

σ2
1

(xTAT + μT
A ) +

1

σ2
2

(zTB − μT
B B). (10)

Further, we have

μy = Σy[
1

σ2
1

(Ax+ μA) +
1

σ2
2

(BTz− BTμB)]. (11)

With Σ−1
y and μy, we can derive the explicit form of β easily

by setting y = 0, which leads to the equation below:

β · 1

(2π)
M
2 |Σy|

1
2

exp{− 1
2
μT

yΣ
−1
y μy}

= 1

(2π)
M+N

2 σM
1 σN

2

exp{Ψy=0}, (12)

where Ψy=0 is the value of Ψ when y = 0, and thereby

Ψy=0 = − 1
2
[ 1
σ2
1
(xTATAx+ 2μT

A Ax+ μT
AμA)

+ 1
σ2
2
(zTz− 2μT

B z+ μT
B μB)]

(13)

Thus, we get the explicit form of β as

β =
|Σy|

1
2

(2π)
N
2 σM

1 σN
2

exp{Ψy=0 + 1
2
(μT

yΣ
−1
y μy)}. (14)

Here, β = p(z|x,A,B,μA,μB, σ1, σ2) is the likelihood func-
tion for one data point x. Let X = {xd} and Z = {zd} be the
sets of D observed data points (genotype and the gene expression
profiles for the samples in the study). To maximize βd, we can
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minimize the negative log-likelihood of βd. Thus, our loss func-
tion is

J = − log
∏D

d=1 p(zd|xd)

= −∑D
d=1 log p(zd|xd)

= −∑D
d=1 logβd

(15)

Substituting Equation 14 into Equation 15, the expanded form of
the loss function is

J (A,B,μA,μB, σ1, σ2)
= D·N

2
ln(2π) +D ·M ln(σ1) +D ·N ln(σ2) +

D
2
ln |Σ−1

y |
+ 1

2

∑D
d=1{ 1

σ2
1
(xT

d ATAxd + 2μT
A Axd + μT

AμA)

+ 1
σ2
2
(zTd zd − 2μT

B zd + μT
B μB)− [ 1

σ2
1
(xT

d AT + μT
A)

+ 1
σ2
2
(zTd B − μT

B B)]Σy[
1
σ2
1
(Axd + μA) +

1
σ2
2
(BTzd − BTμB)]}

(16)
Taking into account the prior distributions of A and B, we have

that

p(z,A,B|x,μA,μB, σ1, σ2)
= β · Laplace(A|0, 1/λ) · Laplace(B|0, 1/γ) (17)

Thus, we can have the �1-regularized objective function

min
A,B,μA,μB,σ1,σ2

D∏
d=1

log p(zd,A,B|xd,μA,μB, σ1, σ2),

which is identical to

min
A,B,μA,μB,σ1,σ2

[J +D · (λ||A||1 + γ||B||1)], (18)

where || · ||1 is the �1-norm. λ and γ are the precision of the prior
Laplace distributions of A and B respectively, serving as the regu-
larization parameters which can be determined by cross or holdout
validation.

3.3 Optimization
To optimize the objective function, we use the Orthant-Wise Limited-

memory Quasi-Newton (OWL-QN) algorithm described in [1]. The
OWL-QN algorithm minimizes functions of the form

f(w) = loss(w) + C||w||1,
where loss(·) is an arbitrary differentiable loss function, and ||w||1
is the �1-norm of the parameter vector. It is based on the L-BFGS
Quasi-Newton algorithm [35], with modifications to deal with the
fact that the �1-norm is not differentiable. The algorithm is proven
to converge to a local optimum of the parameter vector. The al-
gorithm is very fast, and capable of scaling efficiently to problems
with millions of parameters. Thus it is a good option for our prob-
lem where the parameter space is large when dealing with large
scale eQTL data.

In addition to the loss function and penalized parameters, the
OWL-QN algorithm also requires the gradient of the loss function,
which (without detailed derivation) is given in the Appendix.

4. EXPERIMENTAL STUDY

4.1 Data set
We apply our method to a yeast eQTL dataset of 112 yeast segre-

gants generated from a cross of two inbred strains: BY and RM ([6,
38]). The dataset originally includes expression profiles of 6229
gene expression traits and genotype profiles of 2956 SNP markers.
After removing those SNP markers with percentage of NAs larger
than 0.1 (the imcomplete SNPs are imputed), and merging those

markers with the same genotypes, we get 1017 SNP markers. Sim-
ilarly, we drop genes with missing values and have 4474 expression
profiles left.

4.2 Baseline Methods
To compare the performance of different approaches, we devel-

oped two baseline methods. One method is based on clustering
SNP-gene correlation matrix. The other one is based on clustering
the resulting bipartite graph of Lasso.

4.2.1 The CoC-Pearson Method
The Pearson’s correlation coefficient matrix captures the statis-

tical correlation between SNPs and genes [41]. Let X = {xd} ∈
R

K×D be the genotype matrix and Z = {zd} ∈ R
N×D be the

phenotype matrix. The Pearson’s correlation coefficient matrix of
SNPs and genes is P = {Pi,j}, where

Pi,j =
cov(Xi,·,Zj,·)
σXi,·σZj,·

, (19)

i.e., the covariance of a (SNP,gene) pair divided by the product of
their standard deviations.

To detect associated SNP sets and gene sets, one straightforward
method is to co-cluster the correlation matrix. We adopt the imple-
mentation of co-clustering algorithm using information theory pro-
posed in [20]. The algorithm monotonically increases the preserved
mutual information by intertwining both the row and column clus-
terings at all stages and find the optimal co-clustering maximiz-
ing the mutual information between the clustered random variables
subject to constraints on the number of row and column cluster-
s. The implementation is publicly available from http://www.
cs.utexas.edu/users/dml/Software/cocluster.html.
We refer to this method as CoC-Pearson.

4.2.2 The BGC-Lasso Method
Another baseline method is based on clustering the bipartite graph

generated by applying Lasso [45]. We refer to this approach as
BGC-Lasso, which consists of the following two steps.

• Step 1: Learn SNP-gene association bipartite graph with Las-
so;

• Step 2: Perform bipartite graph clustering.

Lasso is popular method used in detecting SNP-gene associa-
tions in eQTL studies. With �1-penalty, it is suitable for detecting
the sparse association bipartite graph in step 1. The objective func-
tion of Lasso is

min
W

1

2
||WX− Z||2 + η||W||1 (20)

where || · ||2 is the �2-norm. η is the empirical parameter for the �1
penalty, and W is the parameter (also called weight) matrix param-
eterizing the space of linear functions mapping from X to Z. The
gradient of the least-squares loss function is

∇WL(W) = ∇W
1
2
· ||WX− Z||2

= 1
2
· ∇Wtr[(WX− Z)T(WX− Z)]

= WXXT − ZXT
(21)

In step 2, we apply bipartite graph clustering algorithm to iden-
tify association cliques. The intuition of the clustering algorithm is
shown in Figure 4. For a given number of clusters, we minimize
the normalized cut (Ncut) [49], and thus discover a set of dense
subgraphs. Each discovered dense subgraph corresponds to a pair
of associated SNP set and gene set. We use the algorithm in [9] to
extract subgraphs.

ACM-BCB 2012 469



SNPs Genes

Optimal 

Cut 

resulting 

minimal 

Ncut

Cluster 1

Cluster 2

Figure 4: Bipartite graph clustering

20 40 60 80 100 120 140
0

1

2

3

4

5
x 10

5

M (number of hidden variable)

L
o

g
 L

ik
e

lih
o

o
d

Figure 5: Tuning number of hidden variables

4.3 Parameter Tuning
In the proposed SET-eQTL method, we apply cross validation to

tune the three parameters, M , λ and γ. We randomly divide the
dataset into two groups of equal size, one as the training set, and
the other as the testing set. We first fix the values of λ and γ to tune
M . After finding the optimal M , we tune the other two parameters.
Figure 5 shows the log likelihood of the data with respect to differ-
ent M . From the figure, we observe that the optimal value of M
is 90. The optimal setting of other parameters are determined sim-
ilarly with λ=40 and γ=100. A similar approach is apply to tune
the parameter η in the BGC-Lasso method. For a fair comparison,
we set the number of clusters to be 90 for both BGC-Lasso and
CoC-Pearson.

4.4 Gene Ontology Enrichment Analysis
Hidden variables may model the joint effect of SNPs and hidden

confounders that have influence on a group of genes. To better un-
derstand the learned model, we look for correlations between a set
of genes associated with a hidden variable and GO categories (Bio-
logical Process Ontology) [44]. In particular, for each gene set H ,
we identify the GO category whose set of genes is most correlated
with H . We measure correlation by a p-value determined by the
Fisher’s exact test. Since multiple gene sets H need to be exam-
ined, the raw p-values need to be calibrated because of the multiple
testing problem [48]. To compute calibrated p-values for each H ,
we perform a randomization test, wherein we apply the same test
to 1000 randomly created gene sets that have the same number of
genes as H .

In Table 1, each row represents the gene set associated with a
hidden variable. For those 90 discovered gene sets, due to space
limitation, we only list the 20 gene sets with the smallest calibrated
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Figure 6: Pearson’s correlation coefficient matrix
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Figure 7: Absolute value of the W Matrix from Lasso

p-values and the 10 gene sets with largest calibrated p-values. The
calibrated p-values for the gene sets associated with hidden vari-
ables are listed in the third column in the table. The forth column
shows the false discovery rate (FDR) [3] of the gene sets. We ob-
served that with an FDR significance threshold 0.05, 74 out of 90
gene sets are significant. These gene sets may represent novel bi-
ological pathways. The remaining hidden variables may represent
hidden confounders.

4.5 Comparison with Baseline Methods
In this section, we analyze the performance of the proposed SET-

eQTL method, and the two baseline methods CoC-Pearson and
BGC-Lasso.

Figures 6(a) and (b) show the Pearson’s correlation coefficient
matrices before and after clustering. Figure 7(a) and (b) show the
W matrices learned by Lasso before and after clustering. In Fig-
ure 6(a) and Figure 7(a), the SNPs and genes are ordered by their
locations on the genome. As can be seen, there exists a diagonal
line in both of the figures. This is reasonable and indicates strong
cis-regulation effect of SNPs to the nearby genes. After clustering,
as shown in Figure 6(b), bright blocks representing clusters of S-
NPs and genes are detected. In Figure 7(b), clustering highlights
the diagonal line for the BGC-Lasso method. This indicates that
BGC-Lasso favors to cluster genes and SNPs which are closed to
each other together, and thus preserves the cis-regulation effect.

Leveraging the results from GO analysis, we are able to better
compare the performance of the three methods. Figure 8 and Fig-
ure 9 show the number of genes and SNPs within each cluster and
the corresponding calibrated p-value (Fisher’s exact test) of each
discovered gene set. For SET-eQTL, the hidden variable IDs are
used as the cluster IDs. It can be seen that the two baseline meth-
ods identify less significant gene sets. From Figure 8(c) and Figure
9(c), for the SET-eQTL method, we also observe that the gene sets
with large calibrated p-values tend to have very small SNP set as-
sociated with them. Those clusters are labeled in both two figures.
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Gene Set Size Raw p-value Calibrated p-value FDR GO Categories
272 7.89 × 10−11 0.000999001 0.0019 cellular amino acid biosynthetic process

246 9.73656 × 10−11 0.000999001 0.0019 cellular amino acid biosynthetic process

193 1.38557 × 10−10 0.000999001 0.0019 cellular amino acid biosynthetic process

303 1.31797 × 10−09 0.000999001 0.0019 oxidation-reduction process

175 1.67657 × 10−09 0.000999001 0.0019 sterol biosynthetic process

245 2.33971 × 10−09 0.000999001 0.0019 oxidation-reduction process

394 3.89874 × 10−09 0.000999001 0.0019 cellular amino acid biosynthetic process

358 5.03219 × 10−09 0.000999001 0.0019 oxidation-reduction process

202 9.33119 × 10−09 0.000999001 0.0019 cellular amino acid biosynthetic process

203 1.00467 × 10−08 0.000999001 0.0019 cellular amino acid biosynthetic process

238 1.58219 × 10−08 0.000999001 0.0019 oxidation-reduction process

217 3.27484 × 10−08 0.000999001 0.0019 cellular aldehyde metabolic process

233 3.42894 × 10−08 0.000999001 0.0019 transmembrane transport

185 3.98969 × 10−08 0.000999001 0.0019 oxidation-reduction process

174 5.49288 × 10−08 0.000999001 0.0019 cellular amino acid biosynthetic process

239 6.39407 × 10−08 0.000999001 0.0019 arginine biosynthetic process

156 9.79353 × 10−08 0.000999001 0.0019 transmembrane transport

284 1.03826 × 10−07 0.000999001 0.0019 oxidation-reduction process

195 1.22546 × 10−07 0.000999001 0.0019 oxidation-reduction process

273 1.29062 × 10−07 0.000999001 0.0019 oxidation-reduction process

... ... ... ... ...

212 0.000405478 0.070929071 0.0798 cellular amino acid biosynthetic process

890 0.000418442 0.080919081 0.0899 cellular aldehyde metabolic process

248 0.00067832 0.112887113 0.1239 oxidation-reduction process

272 0.000839893 0.151848152 0.1248 histidine biosynthetic process

387 0.000887019 0.150849151 0.1248 ion transport

195 0.000897876 0.117882118 0.1248 cellular response to nitrogen starvation

474 0.001130071 0.193806194 0.1964 cytokinesis, completion of separation

230 0.001410782 0.18981019 0.1964 oxidation-reduction process

369 0.002035531 0.327672328 0.3351 oxidation-reduction process

796 0.005892367 0.619380619 0.6263 regulation of transcription by chromatin organization

508 0.007873655 0.744255744 0.7443 RNA processing

Table 1: GO enrichment analysis of the gene sets associated with hidden variables
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Figure 8: Number of nodes within each cluster
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(c) SET-eQTL

Figure 9: Calibrated p-values of gene sets associated with clusters
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Figure 10: Comparison of three methods with GO enrichment analysis

Method Average raw p-value Average calibrated p-value Average FDR Number of gene sets with calibrated p-values < 0.05
CoC-Pearson 0.002894184 0.248684649 0.170045556 33

BGC-Lasso 0.004638634 0.33035853 0.415928889 28

SET-eQTL 0.000287769 0.037484737 0.038482222 77

Table 2: GO enrichment analysis of the gene sets identified by CoC-Pearson, BGC-Lasso and SET-eQTL

This is a strong indicator that these hidden variables may corre-
spond to confounding factors.

To further compare the three methods quantitatively, we apply
GO enrichment analysis on the gene sets learned by the three meth-
ods. Table 2 shows the average raw p-value, average calibrated p-
value, average FDR and the number of significant gene sets (with
significance level 0.05 after correction for multiple testing). The o-
riginal statistics of GO enrichment analysis on the gene sets learned
by the three methods are shown in Figure 10. The clusters are ar-
ranged by the ascending order with respect to their calibrated p-
values. As can been seen from Table 2 and Figure 10, the raw and
calibrated p-values, and FDRs of SET-eQTL are all much less than
those of BGC-Lasso and CoC-Pearson.

5. CONCLUSION
A crucial challenge in eQTL study is to understand how multiple

SNPs interact with each other to jointly affect the expression level
of genes. In this paper, we propose a sparse graphical model to
identify novel associations between SNP sets and gene sets. The
proposed model can also take potential confounding factors into
account. �1-regularization is applied to learn the sparse structure of
the graphical model. Using a yeast eQTL data set, we have shown
that the proposed method has superior performance over the other
two clustering-based methods.The inferred gene sets are strongly
correlated with Gene Ontology categories.
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Appendix
The partial derivatives of J with respect to A, B, μA, μB, σ1, and
σ2 are:
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