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Genetic imputation has become standard practice in modern genetic studies. However, several important issues have not
been adequately addressed including the utility of study-specific reference, performance in admixed populations, and qual-
ity for less common (minor allele frequency [MAF] 0.005–0.05) and rare (MAF < 0.005) variants. These issues only recently
became addressable with genome-wide association studies (GWAS) follow-up studies using dense genotyping or sequenc-
ing in large samples of non-European individuals. In this work, we constructed a study-specific reference panel of 3,924
haplotypes using African Americans in the Women’s Health Initiative (WHI) genotyped on both the Metabochip and the
Affymetrix 6.0 GWAS platform. We used this reference panel to impute into 6,459 WHI SNP Health Association Resource
(SHARe) study subjects with only GWAS genotypes. Our analysis confirmed the imputation quality metric Rsq (estimated
r2, specific to each SNP) as an effective post-imputation filter. We recommend different Rsq thresholds for different MAF
categories such that the average (across SNPs) Rsq is above the desired dosage r2 (squared Pearson correlation between im-
puted and experimental genotypes). With a desired dosage r2 of 80%, 99.9% (97.5%, 83.6%, 52.0%, 20.5%) of SNPs with MAF
> 0.05 (0.03–0.05, 0.01–0.03, 0.005–0.01, and 0.001–0.005) passed the post-imputation filter. The average dosage r2 for these
SNPs is 94.7%, 92.1%, 89.0%, 83.1%, and 79.7%, respectively. These results suggest that for African Americans imputation
of Metabochip SNPs from GWAS data, including low frequency SNPs with MAF 0.005–0.05, is feasible and worthwhile for
power increase in downstream association analysis provided a sizable reference panel is available. Genet. Epidemiol. 36:107–
117, 2012. C© 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Genotype imputation has become standard practice to in-
crease genome coverage and improve power in genome-
wide association studies (GWAS) and meta-analysis [de
Bakker et al., 2008; Li et al., 2009; Marchini and Howie,
2010]. The wealth of literature using genotype imputation
has focused on using external reference panels (for exam-
ple, phased haplotypes from the International HapMap

Project [The International HapMap Consortium, 2007] or
the 1000 Genomes Project [The 2010]), largely in individ-
uals of European ancestry, for inference of genotypes at
common (minor allele frequency [MAF] > 0.05) genetic
markers.

GWAS have identified more than 4,300 genetic vari-
ants associated with human diseases and traits (http://
www.genome.gov/gwastudies/) [Hindorff et al., 2009].
Investigators across the world have begun efforts to
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fine map within regions where GWAS-identified SNPs
reside, through dense genotyping (e.g., using region-
centric or gene-centric chips such as the Metabochip for
metabolic-related traits [http://www.sph.umich.edu/
csg/kang/MetaboChip/], or the ITMAT-Broad-CARe
[IBC] for cardiovascular related traits, or the immunochip
for immune related diseases) or sequencing. Further-
more, multiethnic genetic association studies have been
recognized as potentially more powerful for both gene
discovery and fine mapping [McCarthy et al., 2008; Pulit
et al., 2010; Rosenberg et al., 2010; Teo et al., 2010] and
some initial efforts have been carried out [He et al., 2011;
Keebler et al., 2010; Lanktree et al., 2009; Lettre et al.,
2011; Smith et al., 2011; Waters et al., 2009]. In addition,
because GWAS-identified SNPs (mostly common) explain
only a small proportion of overall heritability for most
complex diseases and traits [Eichler et al., 2010; Maher,
2008; Manolio et al., 2009], whole-genome or whole-exome
sequencing for rare SNPs and genetic variants other than
SNPs (e.g., copy number variations, structural variants) are
under way.

So far, there has been relatively little research on the per-
formance of genotype imputation in this new context. Our
study provides a typical scenario where we had genotyped
8,421 African Americans from the Women’s Health Initia-
tive (WHI) [Anderson et al., 1998] SNP Health Associa-
tion Resource (SHARe) using the Affymetrix 6.0 genotyp-
ing platform. In an attempt to generalize genetic effects
across racial groups, the Population Architecture using Ge-
nomics and Epidemiology (PAGE) consortium genotyped
a subset of 1,962 African American WHI participants with
data on multiple metabolic-related phenotypes using the
Metabochip [Matise et al., 2011]. To increase our power to
detect moderate to small genetic effects, we sought to im-
pute the Metabochip SNPs in the remaining 6,459 individu-
als in WHI SHARe with Affymetrix 6.0 data only. Imputing
SNPs in the fine-mapping region tends to be more challeng-
ing because these SNPs tend to be rare and in low linkage
disequilibrium (LD) with GWAS SNPs. Here, we describe
a pipeline for constructing study-specific reference panels
using individuals genotyped or sequenced at a larger set of
genetic markers (in our case, individuals genotyped using
both Affymetrix 6.0 and Metabochip) and for imputation
into individuals with genotype data at a subset of markers
(in our case, individuals genotyped using Affymetrix 6.0
only). We benchmark the quality of our imputation in an
African American population, for SNPs on the Metabochip,
a region-centric genotyping platform, with particular focus
on low-frequency SNPs (MAF down to 0.001), using a large
study-specific reference panel containing 3,924 haplotypes.
An African American sample poses a greater challenge for
genotype imputation due to more complex LD patterns in
African Americans compared with individuals of European
ancestry [Egyud et al., 2009; Shriner et al., 2009], and in
which comparatively less discovery work has been done.

We first describe how we constructed our study-specific
reference panel using the 1,962 African American in-
dividuals with genotypes for both Affymetrix 6.0 and
Metabochip SNPs and how we performed imputation of
the Metabochip-only SNPs into the remaining 6,459 indi-
viduals. We then show several approaches through which
we estimated imputation quality for SNPs in different MAF
categories, with a special focus on less common (MAF:
0.01–0.05) and rare (MAF < 0.01) variants. We provide prac-
tical guidelines regarding post-imputation quality control

for different MAF categories, as well as for the inclusion of
rare variants during imputation.

MATERIALS AND METHODS

PRE-IMPUTATION QUALITY CONTROL
Prior to phasing and imputation, quality control was ap-

plied to both the Metabochip data and the GWAS data.
Specifically, for the GWAS dataset (n = 6,459) we removed
Affymetrix 6.0 SNPs with genotype call rates < 90% (m =
1,633), or Hardy-Weinberg exact test [Wigginton et al., 2005]
P-value < 10−6 (m = 16,327), or MAF < 0.01 (m = 14,014),
resulting in a 829,370 GWAS SNPs passing quality control
criteria [Reiner et al., 2011]. Separate quality control criteria
were applied to the Metabochip SNPs, leading to 182,397
QC + SNPs with genotype call rates >95% and Hardy-
Weinberg P-value > 10−6. Individuals were excluded if they
had a call rate below 95%, showed excess heterozygosity,
were part of an apparent first-degree relative pair, or were
ancestry outliers as determined by Eigensoft [Price et al.,
2006]. Details can be found in the PAGE Metabochip plat-
form paper [Buyske et al., 2011].

GENERAL PIPELINE FOR REFERENCE
CONSTRUCTION AND SUBSEQUENT
IMPUTATION

Figure 1 shows schematically how imputation was per-
formed. In the top left panel, we first merged geno-
types from the Affymetrix GWAS panel (blue) and the
Metabochip (yellow) SNPs genotyped as part of the PAGE
study for the 1,962 reference individuals (i.e., individu-
als with genotype data from both platforms). We then
reconstructed haplotypes encompassing both GWAS and
Metabochip SNPs for the reference individuals, constitut-
ing the reference panel of 3,924 haplotypes. In the top
right panel, haplotype reconstruction for target individu-
als (i.e., individuals with GWAS genotypes only) was car-
ried out similarly, but at the GWAS markers only. Finally,
a haplotype-to-haplotype (that is, data are in haplotype
form for both the reference and target individuals) impu-
tation was performed to generate estimated genotypes at
the Metabochip SNPs for the 6,459 target individuals.

RESULTS

GENOMEWIDE IMPUTATION USING LARGE
STUDY-SPECIFIC REFERENCE

After careful matching on strand (so that genotypes from
both Affymetrix 6.0 and the Metabochip are on the same
strand), SNP ID, genomic coordinates, and actual geno-
types for SNPs in common, we had a merged set of 987,749
SNPs for the 1,962 reference individuals. The average con-
cordance rate for the 23,703 SNPs in common was 99.7%.
For discordant genotypes, we kept the GWAS genotypes
to match those of the target individuals with GWAS data
only. Haplotypes were reconstructed on the merged set us-
ing MaCH [Li et al., 2010b]. In parallel, we constructed hap-
lotypes across the 829,370 QC + GWAS SNPs for all 8,421
individuals. Finally, we used the 3,924 haplotypes across
the merged set of 987,749 SNPs as reference to impute into
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Fig. 1. Reference construction and imputation pipeline using a study-specific reference panel. This schematic cartoon shows how we
constructed our study-specific reference panel using five individuals genotyped on both the Affymetrix 6.0 and the Metabochip platform
and how we performed imputation into the remaining five individuals with Affymetrix 6.0 data only.

haplotypes across GWAS SNPs of the target individ-
uals. The final haplotype-to-haplotype imputation was
performed using the software package minimac, which
generates the allele dosages (the fractional counts of an
arbitrary allele at each SNP for each individual, ranging
continuously from 0 to 2). Minimac also generates the SNP-
level quality metric Rsq, which is the SNP-specific esti-
mated r2 between allele dosages and the unknown true
genotypes. Rsq has been recommended as an efficient post-
imputation quality control metric. Rsq, estimated r2, and
estimated imputation r2 are used interchangeably in the lit-
erature [Browning and Browning, 2009; Li et al., 2009].

QUALITY ESTIMATE BY MASKING
GENOTYPES AT 2% GWAS SNPs

Aside from production (actual imputation presented in
the section above), we randomly masked 2% of the GWAS
SNPs among the target individuals in the minimac imputa-
tion step to estimate the true imputation accuracy as well
as to evaluate the utility of Rsq as a quality metric. By
comparing imputed dosages with experimental genotypes,
we and others have proposed several statistics to measure

true imputation accuracy [Browning and Browning, 2009;
Li et al., 2009; Lin et al., 2010; Marchini and Howie, 2010],
measuring either the concordance rate, correlation, or de-
gree of agreement. Here, we choose to report the dosage r2,
which is the squared Pearson correlation between the esti-
mated allele dosages and the true experimental genotypes
(recoded as 0, 1, and 2 corresponding to the number of mi-
nor alleles), because it is a more informative measure for
low frequency variants by taking allele frequency into ac-
count and because it is directly related to the effective sam-
ple size for subsequent association analysis [Pritchard and
Przeworski, 2001]. As dosage r2 is calculated using the true
genotypes (assuming the experimental genotypes are the
true genotypes), people also call it true r2. Like Rsq, dosage
r2 is also specific to each SNP.

Figure 2 shows the average dosage r2 values for the 2%
masked GWAS SNPs by chromosome. Genome-wide av-
erage is 93.68% (range 87.18 [chromosome 19] to 95.26%
[chromosome 10]). As expected, larger chromosomes (in
terms of physical length) tend to be slightly easier to im-
pute due to slightly lower recombination rates and there-
fore higher level of LD [The International HapMap Con-
sortium, 2005]. Chromosome 19, with the highest gene
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Fig. 2. Imputation accuracy by chromosome for 2% randomly
masked GWAS SNPs. Imputation accuracy (as measured by aver-
age dosage r2) for 2% GWAS SNPs masked at random is plotted
by chromosome.

TABLE I. Average dosage r2 by MAF, estimated by
masking 2% GWAS SNPs

Average Standard deviation
MAF No. of SNPs dosage r2 dosage r2

0.005–0.01 17 70.84% 18.23%
0.01–0.03 724 82.97% 16.07%
0.03–0.05 876 90.36% 11.03%
0.05–0.50 14,983 95.08% 7.70%

density, is most challenging for imputation. Table I shows
the average dosage r2 values by MAF. Not surprisingly,
lower frequency variants are harder to impute due to
poorer coverage by GWAS SNPs, lower degree of LD, and
more challenging haplotype reconstruction. For example,
the average dosage r2 for SNPs with MAF > 0.05 is 95.08%;
while the average for SNPs with MAF 0.005–0.01 is 70.84%.

While Figure 2 and Table I show the true imputation ac-
curacy, in practice, we are more interested in how well im-
putation quality metrics can predict true imputation accu-
racy (measured by dosage r2). Figure 3 assesses the quality
metric Rsq by plotting it against dosage r2. We can see that
Rsq can predict dosage r2 quite well, particularly for com-
mon SNPs and those with reasonable Rsq values. For exam-
ple, the Pearson correlation is 0.938 for all SNPs (regardless
of MAF and Rsq), 0.952 for SNPs with MAF > 0.03 (regard-
less of Rsq), and 0.955 for SNPs with MAF > 0.03 and Rsq
> 0.3.

Whereas masking GWAS SNPs is a simple approach to
estimate imputation accuracy, the approach estimates im-
putation quality for the “wrong” set of SNPs in that we
are imputing genotypes for Metabochip SNPs, not GWAS
SNPs. The two set of SNPs differ in two major aspects:
MAF and physical density distribution. First, in terms of
allele frequency distribution, while Affymetrix 6.0 SNPs,
like most commercially available genome-wide genotyp-
ing platforms, contain SNPs that are mostly common, the
Metabochip platform contains a much larger proportion of
lower frequency variants. For example, while only 4.3%
and 9.9% of the Affymetrix SNPs have MAF < 0.03 and
< 0.05, respectively, the proportions are 29.8% and 37.8%
for Metabochip SNPs. Supplementary Figure 1 shows the
MAF distributions of the Affymetrix 6.0 SNPs and the
Metabochip SNPs. Second, the physical distribution of the
SNPs is quite different. The Affymetrix 6.0 SNPs are rather
evenly spread across the genome. SNPs on the Metabochip,
chosen for fine mapping of regions identified through

Fig. 3. Rsq by dosage r2 for 2% randomly masked GWAS SNPs.
Estimated imputation accuracy (minimac output Rsq) is plotted
against the true dosage r2, for the 2% GWAS SNPs masked at
random.

GWAS to be associated with metabolic-related traits, scatter
unevenly across the genome and are concentrated around
GWAS-identified signals. Supplementary Figure 2 shows
two typical regions where the GWAS SNP density (green)
is quite uniform across the region, while Metabochip SNP
density (red) peaks in a subregion chosen for follow-up but
drops sharply outside the subregion of interest.

QUALITY ESTIMATE BY MASKING
GENOTYPES AT METABOCHIP SNPs FOR A
SUBSET OF REFERENCE INDIVIDUALS

To estimate the imputation quality for the actually im-
puted Metabochip SNPs, we masked Metabochip geno-
types for 100 reference individuals, imputed them, and
compared the estimated dosages with the masked exper-
imental genotypes. Note that we used haplotypes con-
structed from GWAS data only for the 100 individuals.
Supplementary Figure 3 shows the average dosage r2 by
chromosome. Again imputation quality is slightly higher
for larger chromosomes and lowest for chromosome 19.
Table II presents imputation accuracy by MAF, with and
without post-imputation filtering according to Rsq. First, it
is clear that lower frequency variants are harder to impute.
We and others have shown earlier that imputation accu-
racy increases with the reference panel size, especially for
the imputation of lower frequency variants [Li et al., 2009;
Marchini and Howie, 2010; The International HapMap
Consortium, 2010]. However, even with a reference panel
of 3,924 haplotypes, we are not able to obtain reasonable
imputed data for SNPs with MAF under 0.001. Without
post-imputation filtering, the average dosage r2 is merely
0.39%. If we apply a post-imputation filter of Rsq > 0.3
(>0.5), only 0.4% (0.3%) of the SNPs with MAF < 0.001
pass the filter with an average dosage r2 of 24.85% (30.45%).
For this rarest category of SNPs (MAF < 0.001), even at
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TABLE II. Average Rsq and dosage r2 by MAF, estimated by masking 100 reference individuals

No Rsq filter Rsq > 0.3 Rsq > 0.5

No. of Average Average Percent Average Average Percent Average Average
MAF SNPs Rsq dosage r2 SNPs Rsq dosage r2 SNPs Rsq dosage r2

0–0.001 18959 0.46% 0.39% 0.4% 72.31% 24.85% 0.3% 83.77% 30.45%
0.001–0.005 6925 21.80% 33.74% 23.8% 82.41% 73.94% 20.5% 89.24% 79.71%
0.005–0.01 7001 47.49% 64.87% 52.0% 87.32% 83.05% 48.2% 91.14% 86.00%
0.01–0.03 19894 77.57% 85.32% 83.6% 91.72% 88.98% 81.2% 93.21% 89.88%
0.03–0.05 13315 92.11% 91.73% 97.5% 94.27% 92.11% 96.3% 94.91% 92.57%
0.05–1.00 92597 96.94% 94.62% 99.9% 97.05% 94.71% 99.4% 97.30% 94.94%

Note: We evaluated a total of 158,691 of the total 182,397 QC+ Metabochip SNPs because 23,706 SNPs are both on the Metabochip and the
Affymetrix 6.0 panel and were excluded from quality evaluation to avoid upward bias.

Fig. 4. Accuracy and calibration of imputation. Percentages of SNPs passing post-imputation QC (left y axis) and average dosage r2 (right
y axis) are plotted against Rsq threshold used for post-imputation QC for SNPs in different MAF categories.

an Rsq threshold of 0.95, which retains merely 23 of 18,959
SNPs, we can only achieve an average dosage r2 of 47.82%
(Fig. 4(a)). Second, SNPs with MAF > 0.01 can be imputed
fairly well using a reference panel of this size. For exam-
ple, even without any post-imputation quality control fil-
ter, the average dosage r2 is 85.32%, 91.73%, and 94.62%
for SNPs with MAF 0.01–0.03, 0.03–0.03, and >0.05, indi-
cating that approximately 85–95% of the information can
be recovered for SNPs in these MAF categories. Third, we
are able to impute a considerable proportion of less com-
mon (MAF 0.001–0.01) variants reasonably well using a ref-
erence panel of this size along with post-imputation qual-
ity filtering according to Rsq. For example, we can obtain
an average dosage r2 of 79.71% for 20.5% of the SNPs with
MAF 0.0010–0.005 by excluding SNPs with Rsq < 0.5; and
an average dosage r2 of 83.05% for 52.0% of the SNPs with
MAF 0.005–0.01 by excluding SNPs with Rsq < 0.3, with
both Rsq thresholds selected such that the average Rsq is
above 80%.

OVERALL IMPUTATION PERFORMANCE AND
PRACTICAL GUIDELINES

In practice, we recommend using Rsq as the post-
imputation quality control metric. Figure 5 attests to the
high correlation between Rsq and dosage r2. We observe
that the vast majority of SNPs are both imputed well and
are predicted to be well imputed, corresponding to the
biggest point masses (red to yellow range according to SNP
frequency/count spectrum) with both high Rsq and high
dosage r2. Overall, we find that Rsq can predict dosage r2

fairly well, particularly for common SNPs and those with
reasonable Rsq values. For example, Pearson correlation
between Rsq and dosage r2 is 0.86 for SNPs with MAF
0.005–0.01 and Rsq > 0.5; and 0.93 for SNPs with MAF
0.01–0.03 and Rsq > 0.3. We also observe a noticeable point
mass at the right bottom corner, corresponding to SNPs that
are predicted to be poorly imputed (low Rsq) but are ac-
tually well imputed (high dosage r2). Closer examination
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Fig. 5. Rsq by dosage r2 Heatmap for Metabochip SNPs (esti-
mated by masking 100 reference individuals). Estimated impu-
tation accuracy (minimac output Rsq) is plotted against the true
dosage r2, for Metabochip SNPs by masking 100 reference indi-
viduals. Color scheme is defined by the number of underlying
SNPs, specifically, log10 (Frequency).

revealed that most of these SNPs are of low frequency
(95.4% have MAF < 0.03 and 99.7% have MAF < 0.05), for
which the imputation model has low confidence in the es-
timated dosages that actually match the true dosages fairly
well.

Furthermore, we recommend different Rsq thresholds for
different MAF categories. Figure 4 presents the percentage
of SNPs passing post-imputation QC (left y axis) and the
average dosage r2 (right y axis) as a function of Rsq thresh-
old (x axis). To achieve an average dosage r2 of at least 0.85
for example, one would have to use an Rsq threshold of
0.7 for SNPs with MAF 0.001–0.005 while an Rsq threshold
of 0 suffices for SNPs with MAF > 0.03. Based on Table II
and Figure 4, for our dataset, we chose an Rsq threshold of
0.5 for SNPs with MAF 0.001–0.005 and an Rsq threshold
of 0.3 for SNPs with MAF > 0.005, resulting in a total of
127,132 SNPs (out of 158,691) passing post-imputation QC.
The sample size for SNPs with MAF < 0.001 is too small
for conclusions, but the pattern suggests that the few SNPs
passing the post imputation filter of Rsq > 0.5 are well im-
puted. In general, we recommend selecting an Rsq thresh-
old such that the average Rsq is above the desired average
dosage r2.

TO INCLUDE OR NOT TO INCLUDE: RARE
SNPs DURING HAPLOTYPE
RECONSTRUCTION

One open question concerns whether rare SNPs should
be included for haplotype reconstruction, either for the ref-
erence individuals or for the target individuals. For the
reference panel construction, on one hand, we would like
to include as many variants as possible so that they can
be subsequently imputed in the target individuals. On the
other hand, inclusion of very rare SNPs may interfere with
phasing (in the extreme case, for example, singletons can-
not be phased), resulting in less accurately constructed hap-
lotypes, and ultimately leading to inferior imputation qual-

ity, with little or no benefit in return because these very
rare SNPs are unlikely to be accurately imputed into the
target individuals. Similarly, for the target individuals, in-
clusion of rare SNPs may harm phasing quality, leading
to less accurate imputation. On the other hand, as rare
to-be-imputed SNPs are more likely to be tagged by rare
GWAS SNPs than by common GWAS SNPs, inclusion of
rare GWAS variants is expected to increase imputation
quality for rarer SNPs. To evaluate this, we assessed the fol-
lowing 20 combinations by varying two parameters: MAF
threshold used for the reference panel construction and
MAF threshold used for phasing target individuals. For the
reference panel construction, we evaluated the following
four settings: (A) all MAF (i.e., no filtering by MAF); (B)
no singletons (i.e., removing SNPs with only one copy of
the minor allele among the 8,421 individuals with GWAS
data); (C) MAF > 0.001; and (D) MAF > 0.005. For phasing
target individuals, we evaluated the following five settings:
(i) all MAF; (ii) no singletons (i.e., removing SNPs with only
one copy of the minor allele among reference); (iii) MAF >
0.001; (iv) MAF > 0.005; and (v) MAF > 0.01. Note that for
our production imputation, we used (v) MAF > 0.01. We
picked a medium size chromosome, chromosome 12, for
evaluation.

As the comparisons among the four settings for build-
ing the reference panel show similar patterns across the five
settings for target haplotype reconstruction and vice versa,
we present the average of all settings defined by the other
parameter. For example, Table III shows the effect of includ-
ing rare variants for reference panel construction, where
the statistics (number of SNPs and average dosage r2) for
each of the four settings are averaged across the five set-
tings for reconstructing target haplotypes. Among the four
settings evaluated, setting B (no singletons) provides the
best trade-off: noticeable gains for MAF categories 0.001–
0.01 at little cost for common SNPs. For example, for SNPs
with MAF 0.001–0.005, at an Rsq threshold of 0.3, setting B
leads to 119 well-imputed SNPs with an average dosage r2

of 84.0%, outperforming setting A which also results in 119
well-imputed SNPs but with a lower average dosage r2 of
82.8%, setting C of 123 well-imputed SNPs with dosage r2

of 82.8%, and setting D of 0 well-imputed SNPs (by design).
For common SNPs with MAF > 0.01, all four settings have
similar performance. On the other hand, there is no clear
winner among the five settings for phasing GWAS data
(Table IV). Removing SNPs with MAF < 0.001 or 0.005 (set-
tings iii and iv) is slightly advantageous for imputing SNPs
with MAF 0.001–0.01. For example, with an Rsq thresh-
old of 0.3, average dosage r2 for SNPs with MAF 0.001–
0.005 is 85.6% and 84.0%, respectively, for settings iii and
iv; while dosage r2 for the other three settings is ≤ 83.0%.
However, these settings result in slightly lower imputation
quality for SNPs with MAF 0.01–0.05. For example, with an
Rsq threshold of 0.3, average dosage r2 for SNPs with MAF
0.01–0.03 is 90.4% (for 1,255 SNPs) and 90.6% (for 1,269
SNPs), respectively, for settings iii and iv; while dosage r2

for the other three settings is ≥ 91.0% for a larger number
of SNPs (number of SNPs ≥ 1,289).

DISCUSSION

As we are moving into the sequencing era, exist-
ing GWAS data provide an inexpensive opportunity to
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TABLE III. Effect of including rare variants for reference panel construction

A:All MAF B:No Singletons C:MAF > 0.1% D:MAF > 0.5%

Rsq No. of Average No. of Average No. of Average No. of Average
MAF threshold SNPs dosage r2 SNPs dosage r2 SNPs dosage r2 SNPs dosage r2

0–0.001 0 22 44.0% 22 43.7% 0 NA 0 NA
0.001–0.005 0 266 70.9% 266 72.9% 266 72.3% 0 NA
0.005–0.01 0 494 85.7% 494 85.7% 494 84.8% 494 85.3%
0.01–0.03 0 1,521 90.4% 1,521 90.3% 1,521 90.3% 1,521 90.3%
0.03–0.05 0 955 93.4% 955 93.5% 955 93.4% 955 93.4%
0.05–1.00 0 5,494 95.5% 5,494 95.5% 5,494 95.5% 5,494 95.5%
0–0.001 0.3 2 100.0% 3 75.8% 0 NA 0 NA
0.001–0.005 0.3 119 82.8% 119 84.0% 123 82.8% 0 NA
0.005–0.01 0.3 333 87.6% 333 87.8% 328 87.6% 335 87.6%
0.01–0.03 0.3 1,307 91.1% 1,306 91.0% 1,307 91.0% 1,307 91.0%
0.03–0.05 0.3 941 93.6% 941 93.7% 940 93.8% 941 93.7%
0.05–1.00 0.3 5,486 95.6% 5,486 95.6% 5,487 95.5% 5,487 95.5%
0–0.001 0.5 2 100.0% 2 65.8% 0 NA 0 NA
0.001–0.005 0.5 105 85.6% 103 86.4% 105 85.9% 0 NA
0.005–0.01 0.5 310 89.1% 310 89.3% 308 89.1% 311 89.2%
0.01–0.03 0.5 1,268 92.1% 1,266 92.0% 1,268 92.0% 1,269 91.9%
0.03–0.05 0.5 931 94.2% 932 94.2% 932 94.2% 931 94.1%
0.05–1.00 0.5 5,460 95.9% 5,460 95.8% 5,461 95.8% 5,459 95.8%

TABLE IV. Effect of including rare variants for haplotype reconstruction among target individuals

i:All MAF ii:No singletons iii:MAF > 0.1% iv:MAF > 0.5% v:MAF > 1%

Rsq No. of Average No. of Average No. of Average No. of Average No. of Average
MAF threshold SNPs dosage r2 SNPs dosage r2 SNPs dosage r2 SNPs dosage r2 SNPs dosage r2

0–0.001 0 22 45.3% 22 44.9% 22 44.2% 22 47.3% 22 37.5%
0–0.001 0.3 3 100.0% 2 100.0% 3 81.3% 2 75.0% 3 83.3%
0–0.001 0.5 3 100.0% 2 100.0% 3 81.3% 1 83.3% 3 83.3%
0.001–0.005 0 266 73.0% 266 72.7% 266 72.7% 266 71.8% 266 70.1%
0.001–0.005 0.3 102 83.0% 123 81.0% 122 85.6% 120 84.0% 133 82.3%
0.001–0.005 0.5 86 86.4% 104 84.5% 106 87.6% 107 86.5% 118 84.9%
0.005–0.01 0 494 85.5% 494 85.8% 494 86.6% 494 85.5% 494 83.4%
0.005–0.01 0.3 285 84.8% 332 88.8% 346 88.8% 350 88.3% 348 87.5%
0.005–0.01 0.5 264 86.4% 316 89.9% 325 90.1% 326 89.7% 317 89.8%
0.01–0.03 0 1,521 90.5% 1,521 90.6% 1,521 90.3% 1,521 90.1% 1,521 90.1%
0.01–0.03 0.3 1,289 91.4% 1,347 91.6% 1,255 90.4% 1,269 90.6% 1,373 91.0%
0.01–0.03 0.5 1,256 92.3% 1,293 92.7% 1,222 91.5% 1,231 91.6% 1,337 92.1%
0.03–0.05 0 955 93.4% 955 93.6% 955 93.2% 955 93.5% 955 93.5%
0.03–0.05 0.3 938 93.7% 943 93.8% 943 93.4% 933 93.8% 946 93.7%
0.03–0.05 0.5 932 94.1% 932 94.4% 934 93.9% 922 94.4% 938 94.1%
0.05–0.50 0 5,494 95.4% 5,494 95.5% 5,494 95.5% 5,494 95.5% 5,494 95.5%
0.05–0.50 0.3 5,486 95.5% 5,490 95.5% 5,487 95.5% 5,487 95.6% 5,484 95.7%
0.05–0.50 0.5 5,460 95.8% 5,463 95.8% 5,461 95.8% 5,457 95.9% 5,460 95.9%

leverage expensive sequencing data. Researchers across the
world are becoming increasingly keen on imputation as a
tool to infer genotypes at less common (MAF 0.01–0.05)
and rare (MAF < 0.01) variants. We have previously shown
that larger reference panels improve imputation accuracy
for less common variants. In particular, enlarging a refer-
ence panel of 60 haplotypes to 1,000 haplotypes increases
dosage r2 for SNPs with MAF < 0.05 from 74% to 93%
[Li et al., 2010a]. However, there has been little, if any, re-
search on truly rare variants: it is not until recently that
we have data available to assess imputation accuracy for
these truly rare variants. Here, we used a reference panel of

3,924 reference haplotypes to demonstrate that it is indeed
possible to impute a considerable proportion of rare vari-
ants reasonably well, even in a challenging admixed sam-
ple of African Americans. Specifically (as indicated in bold
in Table II), we were able to impute 99.9% (97.5%, 83.6%,
52.0%, 20.5%) of SNPs with MAF > 0.05 (0.03–0.05, 0.01–
0.03, 0.005–0.01, and 0.001–0.005) with average dosage r2

94.7% (92.1%, 89.0%, 83.1%, and 79.7%).
In the previous section, we presented results from mask-

ing Metabochip genotypes for 100 reference individuals
during minimac imputation, whom we also included along
with the other 1,862 individuals during reference panel
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TABLE V. Effect of including/excluding the 100 masked reference individuals during reference haplotype
reconstruction

n = 1,862 (Excluding) n = 1,962 (Including)

MAF Rsq threshold No. of SNPs Average dosage r2 No. of SNPs Average dosage r2

0–0.001 0 22 47.4% 22 40.3%
0–0.001 0.3 3 89.2% 2 85.2%
0–0.001 0.5 3 84.2% 2 77.1%
0.001–0.005 0 266 71.6% 266 72.6%
0.001–0.005 0.3 117 84.1% 123 82.3%
0.001–0.005 0.5 100 87.3% 108 84.7%
0.005–0.01 0 494 85.4% 494 85.4%
0.005–0.01 0.3 333 87.8% 332 87.5%
0.005–0.01 0.5 309 89.4% 310 89.0%
0.01–0.03 0 1,521 90.3% 1,521 90.4%
0.01–0.03 0.3 1,305 91.0% 1,308 91.1%
0.01–0.03 0.5 1,267 92.0% 1,268 92.1%
0.03–0.05 0 955 93.4% 955 93.4%
0.03–0.05 0.3 941 93.7% 940 93.7%
0.03–0.05 0.5 932 94.2% 931 94.2%
0.05–0.50 0 5,494 95.5% 5,494 95.5%
0.05–0.50 0.3 5,487 95.5% 5,487 95.6%
0.05–0.50 0.5 5,459 95.8% 5,462 95.8%

construction. One may reasonably argue that the inclu-
sion of the 100 individuals during phasing results in lo-
cal haplotype mosaics of other individuals better matching
haplotypes of these 100 individuals (because constructed
haplotypes of the 100 individuals are likely to serve as
template to construct haplotypes of other individuals), and
therefore over-estimated imputation accuracy. We evalu-
ated this potential over-estimation of imputation accu-
racy by re-constructing the reference panel only on the
other 1,862 individuals. Table V compares imputation ac-
curacy at Metabochip SNPs for the 100 masked individ-
uals with (phasing ref n = 1,962) or without (phasing ref
n = 1,862) them during phasing. We observed no obvi-
ous over-estimation: the quality is either very close; or
one has slightly smaller number of well-imputed SNPs
with slightly higher dosage r2 than the other. For exam-
ple, for SNPs with MAF 0.001–0.005, when using Rsq > 0.3
as the post-imputation filter, the reference constructed us-
ing 1,862 individuals resulted in slightly fewer (117) SNPs
passing the filter with a slightly better average dosage r2

(84.1%), than the reference constructed using 1,962 individ-
uals which had 123 SNPs passing the filter with an average
dosage r2 of 82.3%. The over-estimation may manifest itself
if the reference panel were smaller because the 100 masked
individuals would contribute more to the haplotype recon-
struction of other reference individuals.

We would also like to note that masking 100 reference
individuals, although allowing us to directly evaluate im-
putation quality at actually imputed Metabochip SNPs, still
has limitations. For example, sample MAF cannot go below
0.005 and SNPs with “population” MAF (calculated based
on n = 1,962 individuals) < 0.005 are either non-varying or
have the minor allele over-represented among the 100 indi-
viduals (i.e., sample MAF > “population” MAF). Therefore,
such SNPs are either not imputable (dosage r2 un-defined
and set to zero in our calculations) or tend to be easier to
impute than a typical SNP in the population MAF cate-
gory. The latter case leads to a winner’s curse phenomenon

such that the actual imputation quality tends to be over-
estimated. In order to obtain more reliable estimates for the
rarest MAF categories, we attempted a slightly more com-
plicated experiment on chromosome 12 where we masked
one reference individual at a time and imputed her geno-
types at Metabochip SNPs using other reference individ-
uals’ haplotypes. This experiment allows us to examine a
sample size of 1,962 instead of 100.

The overall recommendation of picking an Rsq thresh-
old such that the average Rsq is at least 80% to achieve an
average dosage r2 of 80% or above still applies. However,
compared with results based on 100 individuals, the actual
Rsq thresholds selected for the rare MAF categories are con-
siderably larger, but result in the passing of a larger propor-
tion of SNPs. For example, an Rsq threshold of 0.75 (instead
of 0.5 based on the 100 individuals) needs to be applied for
SNPs with MAF 0.001–0.005 for the average Rsq to be above
80%, passing 38.8% (instead of 20.5% SNPs). The larger Rsq
threshold and larger passing proportion are consistent with
the winner’s curse phenomenon we discuss above. For ex-
ample, for SNPs with population MAF 0.001–0.005, the vast
majority of SNPs are monomorphic among the 100 individ-
uals and thus have Rsq close to zero, reflected by the fact
that 68.7% of SNPs have Rsq < 0.1 (Fig. 4(b)). For the small
proportion of SNPs that have reasonable Rsq (Rsq > 0.3),
which is the proportion of SNPs with minor allele either
over-represented or in more extensive LD with neighbor-
ing SNPs among the sample of 100 masked individuals, the
distribution is highly skewed toward high values. For ex-
ample, among the 20.5% SNPs with Rsq > 0.5, 16.9% (or
82.0% of the 20.5%) have Rsq > 0.75 such that the aver-
age Rsq is 89.24%. In contrast, a much larger proportion of
SNPs are no longer monomorphic among the 1,962 individ-
uals and better represent the full range of SNPs in these rare
MAF categories, specifically by adding the more challeng-
ing SNPs (SNPs with less or no over-representation of the
minor allele, and SNPs with less extensive LD with neigh-
boring SNPs). For example, now only 1.8% (compared with
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68.7% above based on 100 individuals) SNPs have Rsq < 0.1
for SNPs with MAF 0.001–0.005. Among the 73.5% (com-
pared with 20.5% above) of SNPs with Rsq > 0.5, 38.8%
(or 52.8% of the 73.5%) have Rsq > 0.75 (Supplementary
Table 1).

Although this study examines an African American pop-
ulation genotyped using Affymetrix 6.0 platform, the rec-
ommendation to use Rsq threshold such that average Rsq
is around but over the desired dosage r2 value is generaliz-
able to other populations and other GWAS genotyping plat-
forms, based on similar experiments conducted in several
European and Asian populations using different choices
of genotyping platforms. For example, in a sample of Fil-
ipinos [Wu et al., 2010] genotyped using the Affymetrix 5.0
platform, we found applying a filter of Rsq > 0.6 for SNPs
with MAF 0.01–0.02, the average dosage r2 across the SNPs
passing the filter was 0.8085 with an average Rsq of 0.8417.
Additional assessment in other populations or using other
GWAS platforms can be found in our earlier work [Li
et al., 2011, 2010b]. Before more data become available,
however, caution needs to be taken when applying the rec-
ommendation to rare variants. For example, although im-
putation in general is more difficult in African populations
because of more combinations of the common alleles, recent
work [Fumagalli et al., 2010; Gravel et al., 2011] argue that
the more distinctive background of common alleles may
benefit imputation of rare variants. In addition, tagSNPs
on the Affymetrix 6.0 platform were selected largely based
on physical positions, in contrast to those on the Illumina
platforms that were selected largely to provide good cover-
age of the common SNPs according to HapMap-based LD.
Therefore, the Affymetrix 6.0 platform may perform better
for rare SNP imputation, particularly in samples of non-
European ancestry.

Our sample consist of females only, therefore, it is
straightforward to perform imputation on chromosome X.
Even for samples including males, widely used imputa-
tion methods can now perform X chromosome imputation
(see http://genome.sph.umich.edu/wiki/MaCH: machX
and [Marchini and Howie, 2010]). We did not attempt chro-
mosome X in our dataset because there are only 93 QC+
Metabochip SNPs on chromosome X.

In summary, by constructing a study-specific reference
panel of 3,924 haplotypes, we found it feasible to impute
SNPs on the Metabochip, a region-centric dense genotyp-
ing platform, in a sample of African Americans, including
less common SNPs with MAF 0.005–0.05. In addition, we
confirmed Rsq as an effective imputation quality metric for
these less common variants. In particular, we recommend
different Rsq thresholds for different MAF categories such
that the average Rsq is above 80%. Furthermore, we found
it helpful to remove singleton SNPs when constructing ref-
erence haplotypes.

We view this work useful for investigators conducting
fine-mapping studies using either dense genotyping or
next generation sequencing, particularly for studies in non-
European populations. Many efforts to fine map, especially
in non-European ancestry participants, are limited by small
sample sizes. Now that there are increasing numbers of
GWAS studies conducted in non-European populations,
imputation can provide a good solution to this sample size
problem. For admixed samples like those in our study, new
methods are being developed that both leverage the admix-
ture for phenotype-genotype association mapping and take

imputation uncertainty into account [Mao et al., 2011; Pasa-
niuc et al., 2011].
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