
Metric Learning From Relative Comparisons by Minimizing Squared Residual

Eric Yi Liu∗†, Zhishan Guo∗†, Xiang Zhang∗‡, Vladimir Jojic∗† and Wei Wang∗†§

∗ {liuyi, zsguo}@cs.unc.edu, xiang.zhang@case.edu, vjojic@cs.unc.edu, weiwang@cs.ucla.edu
† Department of Computer Science, University of North Carolina at Chapel Hill

‡ Department of Electrical Engineering and Computer Science, Case Western Reserve University
§ Department of Computer Science, University of California at Los Angeles

Abstract—Recent studies [1]–[5] have suggested using con-
straints in the form of relative distance comparisons to represent
domain knowledge: d(a, b) < d(c, d) where d(·) is the distance
function and a, b, c, d are data objects. Such constraints are readily
available in many problems where pairwise constraints are not
natural to obtain. In this paper we consider the problem of
learning a Mahalanobis distance metric from supervision in the
form of relative distance comparisons. We propose a simple, yet
effective, algorithm that minimizes a convex objective function
corresponding to the sum of squared residuals of constraints.
We also extend our model and algorithm to promote sparsity
in the learned metric matrix. Experimental results suggest that
our method consistently outperforms existing methods in terms
of clustering accuracy. Furthermore, the sparsity extension leads
to more stable estimation when the dimension is high and only a
small amount of supervision is given.

Keywords-metric learning; Mahalanobis metric; relative com-
parisons;

I. INTRODUCTION

In many machine learning problems such as clustering and

nearest-neighbor classification, distance metrics are essential in

measuring the distance or similarity between objects. Recent

studies [1], [6]–[8] have suggested that task-specific metric

learning can help understand the relationships among features

and the resulting metrics outperform off-the-shelf distance

functions such as the Euclidean distance in many problems.

Such task-specific metrics are often learned from examples or

side knowledge in the form of constraints. For example, many

existing methods (see, for survey, [9]) focus on learning metric

from pairwise constraints: “a and b are similar”, “c and d are

not similar”. In clustering problems, these pairwise constraints

are often translated into Must-Link (a and b are in the same

cluster) and Cannot-Link (c and d are in different clusters)

constraints.

Here, we consider the problem of learning a distance metric

from constraints in the form of relative comparisons: “the

distance between two objects are greater (or smaller) than

the distance between another two objects”. Denoting the four

objects by a, b, c, d, we can write the comparison as:

d(a, b) < d(c, d)

where d(·) is the distance function. When the comparison is

defined only on three objects, it is of the form: d(a, b) <
d(a, c). Unlike pairwise constraints that are absolute qualitative
feedback, relative comparisons are more natural in represent-

ing vague domain knowledge. For instance, a domain expert

usually has some general sense of the closeness (similarity)

among a subset of data objects. Such knowledge of closeness

may be vague and only in a relative sense, that is, we can only

determine, between two objects, which one is closer to a given

third object, but we cannot determine an absolute closeness

measure.

Knowledge of relative comparisons are readily available

in many real world problems. One example is the ranking

problem in search engine (ranking search results or relevance

based advertisements). Query and user-click logs can effec-

tively provide knowledge in relative comparisons but not easily

expressed in pairwise constraints [1]. A metric learned from

these comparisons can reveal feature importance and feature-

feature interactions. Thus it can provide valuable guidance

in feature-engineering of ranking problems (e.g., to design

cross-features). Another example is clustering with structural

knowledge as supervision. We have previously shown that

paired relative comparisons can be used to express structural

knowledge unambiguously [5]. Existing structural knowledge

sources such as taxonomical databases can be effectively

translated into a minimum set of relative comparisons. For in-

stance, one can conduct clustering or classification analysis on

gene-expression data with comparisons extracted from partial

hierarchical knowledge in the Gene Ontology database.

In this paper, we present a simple, yet effective, algorithm

that learns a Mahalanobis metric from a given set of relative

comparisons. This is done by formulating and minimizing a

convex loss function that corresponds to the sum of squared

hinge loss of violated constraints. We also give an extension to

our model and algorithm to incorporate entry-wise ℓ1 penalty

that encourages sparsity in the learned metric matrix. We evalu-

ate the performance of our algorithm and two existing methods

in supervised clustering problems using real-world datasets. To

the best of our knowledge, this is the first direct evaluation

of methods that learn metrics from relative comparisons and

provides insights into practical applications. Experiments with

metrics of various dimensions suggest that our algorithm con-

sistently outperforms existing methods in terms of clustering

accuracy. With sparsity imposed, our algorithm can achieve

more stable estimation when the dimension is high and only a

small amount of supervision is given.

Throughout the paper, we denote matrices by uppercase

letters and vectors by lowercase letters in bold font. x(i) denotes

the i-th entry in vector x and M(i,j) denotes the (i,j)-th entry

of the matrix M . A positive-semidefinite matrix M is denoted

as M � 0 and we denote the set of m×m symmetric positive-

semidefinite matrices by Sm
+ . The trace and Frobenius norm of

matrix M are denoted as tr(M) and ‖M‖F .

II. PROBLEM FORMULATION

Let X = [x1, ...xn] be the set of data objects where each

data object xi ∈ Rm. A set of relative comparisons is given in

the form of:

C = {(xa, xb, xc, xd) : d(xa, xb) < d(xc, xd)}

Here we consider the distance function

dM (xi, xj) =
√

(xi − xj)TM(xi − xj)

where M is the Mahalanobis matrix we wish to learn. In order

for M to be a proper metric matrix, M has to be a m × m
positive-semidefinite matrix and we consider M to be also a

symmetric matrix that can be written as M = AAT where A
is a m×m matrix that represents a linear transformation from

the original feature space to a learned feature space.

A. Loss Function of Constraints

We propose to optimize over the sum of squared residuals in

satisfying constraints. Given a Mahalanobis metric M = AAT ,

the residual is zero for satisfied constraints and is the difference

of the M -defined distances (i.e., the Euclidean distances in the

A-transformed space) for violated constraints. This gives the

loss function of each constraint d(xa, xb) < d(xc, xd):

L(d(xa, xb) < d(xc, xd)) = H(dM (xa, xb)− dM (xc, xd))

where H(·) is the squared hinge function defined as:

H(x) =

{

0 if x ≤ 0
x2 if x > 0.

The rationale behind the loss function is analogous to

minimizing squared residual in regression. If most information

in constraints are correct, we should expect that the learned

M would perform reasonably well so that most constraints

are satisfied or close to the satisfaction boundary. Some of the

constraints may not be satisfied due to noise or expressibility

of Mahalanobis distance. But we prefer them not to deviate

much from the satisfaction boundary by imposing the squared

penalty. With squared loss upon violation, we obtain more

information than in the traditional way of casting relative

comparisons into linear constraints [1], [3], [4]. This is also

conceptually different from maximizing the number of con-

straints satisfied as in [2].

The summed loss function for all constraints is:

L(C) =
∑

(xa,xb,xc,xd)∈C

wa,b,c,dH(dM (xa, xb)− dM (xc, xd))

=
∑

(xa,xb,xc,xd)∈C

wa,b,c,dH(
√

(xa − xb)TM(xa − xb)−

√

(xc − xd)TM(xc − xd))

wa,b,c,d is the weight associated with each constraint. Such

weights can be derived from the confidence or probability of

each constraint or can simply be uniform when there is no extra

knowledge.

B. Regularized Objective Function

We also impose a regularization term on the overall loss

function so that the learned metric M conforms to prior

knowledge, especially when the number of constraints is small.

This is done by adding a “closeness” measure between M and

a given Mahalanobis metric (usually the identity matrix or the

precision matrix). Here we choose the LogDet divergence [6].

The overall objective function we wish to minimize is then:

Dld(M,M0) +
∑

(xa,xb,xc,xd)∈C

wa,b,c,dH(dM (xa, xb)− dM (xc, xd)) (1)

where M0 is a given prior metric matrix, and

Dld(M,M0) = tr(MM−1
0)− log det(MM−1

0)− d

Since M0 is a constant matrix, we replace the above defini-

tion by:

Dld(M,M0) = tr(MM−1
0)− log det(M)

which leads to the same solution.

C. Convexity of the Objective Function

Despite the usually unwanted square root operation, the

objective function to minimize is in fact a convex function

of M over the set of positive-semidefinite matrices.

Lemma 2.1: The loss function of each constraint is a convex

function of M over the set of positive-semidefinite matrices.

Proof of Lemma 2.1 is omitted due to space limit.

Since Dld(M,M0) is also a convex function of M , the

objective function is a sum of non-negatively weighted convex

functions and is thus a convex function of M over the set

of positive-semidefinite matrices. By doing some calculus, we

can see that the objective function is smooth and its derivative

exists for all M � 0.

D. The Optimization Problem

The optimization problem we wish to solve can be formally

written as:

minimize
M

(Dld(M,M0) +
∑

(xa,xb,xc,xd)∈C

wa,b,c,dH(dM (xa, xb)− dM (xc, xd)))

subject to M � 0. (2)

III. LEARNING ALGORITHM

We use a simple projected gradient method [10] to ensure

that M stays positive-semidefinite. Let F (M) be the objective

function (1) parameterized by M , vcd = xc − xd and vab =
xa − xb. The gradient of the objective function is given by:

∂F (M)

∂M(i,j)
= M−1

0(i,j) +M−1
(j,i) +

∑

C

wa,b,c,d gM (va,b, vc,d)

where gM (va,b, vc,d) = 0 if vTa,bMva,b < vTc,dMvc,d, other-

wise:

gM (va,b, vc,d) = va,b(i)va,b(j) + vc,d(i)vc,d(j)

−
va,b(i)va,b(j) × vTc,dMvc,d + vc,d(i)vc,d(j) × vTa,bMva,b

√

vTa,bMva,bv
T
c,dMvc,d

.

Below we present our algorithm LSML (Least Squared-

residual Metric Learning):

Algorithm LSML

Input: M0, X = {x1, ..., xn}: set of data objects,

C = {(xa, xb, xc, xd)}: set of relative comparisons

Output: a Mahalanobis metric M
1) Repeat until M converges:

2) ∇M ← ∂F (M)
∂M

3) Mbest ← 0, sbest ← F (M)

4) For each step size l,

5) M ′ ←M − l∇M

6) Decompose M ′ by M ′ = Q Λ QT

7) M ′ ← Q max(Λ, 0) QT

8) if F (M ′) < sbest
9) Mbest ←M ′, sbest ← F (M ′)

10) M ←Mbest

11) end

As long as the prior matrix M0 is symmetric, updates in

iterations will be symmetric and the resulting metric M stays

in Sm
+ . Lines (6-7) conduct the projection to Sm

+ by enforcing

nonnegative eigen values. The convergence is warranted since

this is a special case of the projected subgradient method [11].

A. Time Complexity

Two types of operations are performed for a constant number

of times in each iteration.

• the constraint loss and gradient calculations

• matrix inversions and eigen decompositions

The first type has complexity O(|C| ×m2) and the second

type has complexity O(m3). Thus the total time complexity is

O(max(|C|,m)×m2) per iteration.

IV. AN EXTENSION TO INCORPORATE SPARSITY

We propose an extension, named SpLSML, to our LSML

algorithm to promote sparsity in the learned metric matrix.

This can be beneficial when the dimensionality is high and the

supervision knowledge (number of constraints) is very limited.

The metric learning problem itself can be extremely data

hungry as the number of fitted parameters (number of entries

in M here) grows quadratically with the number of features.

Promoting sparsity in the learned metric matrix could suppress

unimportant M entries and lead to more stable estimation

with small amount of constraints. It also brings computational

benefits in evaluating similarity.

To encourage sparsity in M , instead of optimizing (2), we

try to optimize:

minimize
M

(Dld(M,M0) + λ ‖M‖1 +
∑

(xa,xb,xc,xd)∈C

wa,b,c,dH(dM (xa, xb)− dM (xc, xd)))

subject to M � 0 (3)

where ‖M‖1 =
∑

i,j |M(i,j)| is the entry-wise ℓ1 norm of

matrix M .

Note that, though the objective function in (3) is still convex

of M , its gradient is not smooth over all M � 0 due to

the ℓ1-norm term. As a result, with direct gradient descent,

convergence to zero is not warranted for entries that should

shrink to zero. To deal with this issue, here we propose to

use the alternating direction method of multipliers (ADMM)

[12], which is intended to blend the decomposability of dual

ascent with the superior convergence properties of the method

of multipliers. To apply ADMM, we re-write (3) as:

minimize
M,P

(Dld(M,M0) + λ ‖P‖1 + δSm

+
(M) +

∑

(xa,xb,xc,xd)∈C

wa,b,c,dH(dM (xa, xb)− dM (xc, xd)))

subject to M = P (4)

where δSm

+
(M) is a characteristic function of the set of

symmetric positive-semidefinite matrices:

δSm

+
(M) =

{

0 if M ∈ Sm
+

+∞ otherwise.

The augmented Lagrangian function is then given by:

Lρ(U,M,P) = tr(MM−1
0)− log det(M) + δSm

+
(M)

+
∑

C

wa,b,c,dH(dM (xa, xb)− dM (xc, xd))

+ λ ‖P‖1 + 〈U,M − P 〉+
ρ

2
‖M − P‖

2
F

where ρ ∈ R is the penalty parameter that only affects the

convergence rate and U ∈ Rm×m is a self-updated matrix

that links M and P . 〈U,M − P 〉 is the inner product between

matrices U and M − P which is defined as tr(U(M − P)).
Note that minimizing 〈U,M − P 〉+ ρ

2 ‖M − P‖
2
F over M or

P is equivalent to minimizing ρ
2 ‖M − P + U/ρ‖2F . We thus

obtain the ADMM updates as follows:

Mk+1 = argmin
M

tr(MM−1
0)− log det(M) + δSm

+
(M)

+
∑

C

wa,b,c,dH(dM (xa, xb)− dM (xc, xd))

+
ρ

2

∥

∥M − P k + Uk/ρ
∥

∥

2

F
(5)

P k+1 = argmin
P

λ ‖P‖1 +
ρ

2

∥

∥Mk+1 − P + Uk/ρ
∥

∥

2

F
(6)

Uk+1 = Uk + ρ(Mk+1 − P k+1). (7)

Since ρ
2 ‖M − P + U/ρ‖

2
F is also a smooth convex function

of M , we can easily adapt our previous algorithm to solve

(5). In addition, an inexact solution from a relatively small

number of iterations in solving (5) would suffice the need of

convergence [13] as long as the total error across iterations

is bounded. The optimization problem in (6) decomposes

into entry-wise optimization problems which can be solved

in isolation. We can thus optimize over each entry P(i,j)

separately and see that it has a closed-form solution:

P(i,j) = sgn(Mk+1
(i,j) +

Uk
(i,j)

ρ
)×max(|Mk+1

(i,j) +
Uk
(i,j)

ρ
| −

λ

ρ
, 0).

Here M and P are updated in an alternating fashion, and

the updates of U keep narrowing the distance between M and

P , so the states get nearer and nearer to the feasible region

of the original constrained optimization problem (4). We also

applied a simple updating scheme of ρ as in [12] to make the

convergence less dependent on the initial choice of ρ. In each

iteration, solving (5) is equivalent to a full run of LSML if

solved to high precision. But here we only require an inexact

approximation which can be obtained in few tens of gradient

moves.

V. EXPERIMENTS

In this section, we show the effect of our model and

algorithm in supervised clustering setting on datasets from the

UCI repository [14]. For each dataset, we supply our algorithm

sets of relative comparisons as supervision to learn a distance

metric. We then use the distance metric to conduct K-Means

clustering and measure the clustering accuracy in pairwise

F-measure as defined in [5]. We also include two existing

metric learning algorithms ([1], [2]) and two baseline methods

without metric-adaption in comparison.

A. Datasets and Constraints

Here we give results for six real-world datasets from the UCI

repository [14]. Table I lists the numbers of objects, dimensions

and clusters of these datasets. The Digits-389 and Letters-

IJLT datasets are subsets from the original Digits and Letters

handwritten character recognition datasets. The two subsets

contain the character classes that are considered difficult to

distinguish.

Dataset #objects #dimensions #clusters

Iris 150 4 3
Wine 178 13 3
Digits-389 3165 16 3
Letters-IJLT 3059 16 4
Ionosphere 351 34 2
Sonar 208 60 2

Table I
DATASETS USED IN EXPERIMENTAL EVALUATION

For each dataset, we randomly generated relative compar-

isons in the form of d(xa, xb) < d(xa, xc), where xa, xb belong
to the same class and xc is in a different class based on the

class labels associated with the dataset. The learning algorithms

evaluated in the experiments only learn from the relative

comparisons and do not make use of class label information.

The size of constraint sets ranges from 0.2 × |D| to 2 × |D|
where |D| is the number of objects in a dataset. For each input

size, we repeated with 50 randomly generated sets and take the

average to ensure consistent observation.

We chose not to generate all possible constraints in a selected

percentage of data objects, as adopted by several studies on

pairwise constraints and also in [2]. We feel that this design is

less suitable for relative comparisons whose constraint space

(|D|3) is much larger than that of pairwise constraints(|D|2).

B. Methods Evaluated

For the present evaluation, we regularize our algorithm to-

wards the identity matrix and the inverse of covariance matrix.

We assume a constant weight for all constraints and the weight

is inversely proportional to the number of constraints (w = µ
|C|).

Thus, in our LSML algorithm, there is only one parameter µ
to determine. We did a simple grid search to choose the µ
that attains the best overall accuracy for each dataset. For our

sparsity extension SpLSML, one more parameter (λ) is added
in the grid search. The other two implicit parameters (ρ, U)

only affects the convergence rate but not the converging point.

Also the two are self-updating and do not rely much on the

initial values.

Two existing metric learning approaches [1], [2] are included

in our evaluation. We refer to the method in [1] as “SVM-

Metric”, as it learns metrics from constraints by optimizing

a SVM-like quadratic function. In implementing this method,

we set the regularization parameter A = I as in [1] and did a

grid search for C for each dataset. The other existing method

included is the SSSVAD algorithm in [2]. This algorithm does

K-Means clustering and metric learning simultaneously. We

implemented the algorithm based on our understanding of the

paper and tuned the parameters to attain its best performance.

The parameter space (δ, γT , η, ρ) is however much larger than

that of the above methods. We tried to fix the learning rates η, ρ
first using a subset of datasets and then did grid search for the

best combination of δ, γT . Unlike in SpLSML, the learning rate

parameters in SSSVAD does affect the final results. SSSVAD’s

outcome is also affected by its initialization. Thus, we repeat

the learning process five times for each parameter setting

and input data (the accuracy measured for each dataset and

constraint size is the average of 50× 5 runs).

We also include two baseline methods that use fixed Ma-

halanobis metrics (the identity matrix and the inverse of co-

variance matrix). They correspond to Euclidean distance and

Euclidean distance after a standard PCA whitening transform.

Below we list all methods included in experiments:

• LSML / SpLSML

regularized towards both the identity matrix and the inverse of

covariance matrix (InvCov)

• SVM-Metric in [1]

• SSSVAD in [2]

• Euclidean

• InvCov

C. Clustering Accuracy with Learned Metrics

The clustering accuracy results for all six datasets are

presented in Figure 1. All four metric learning methods have

shown noticeable improvements in clustering over the corre-

sponding baselines in most experiments. Our algorithm LSML

regularized towards the two initial matrices (the identity matrix

and inverse of covariance matrix) consistently outperforms the

two existing methods by a large margin in almost all experi-

ments. This suggests that regularizing towards the identity ma-

trix or inverse of covariance matrix can work well empirically

when the data distribution is unknown. The difference between

using the two initial matrices depends on the specific datasets

and does not correspond to the baseline performance without

constraint-based learning.

The accuracy curves of all four metric learning methods are

relatively flat when datasets have smaller number of dimen-

sions. This indicates that they all tend to saturate early with

small number of constraints in these datasets (Figure 1 a,b,c,d).

For the datasets with larger number of features (Figure 1 e,f),

the accuracy of LSML keeps increasing with the number of

constraints fed. This is expected since the number of entries

in M grows quadratically with the number of dimensions. The

more entries to optimize, the more information we need to

extract from constraints. Under the same dimension, the SVM-

Metric, which parameterizes through only a diagonal matrix

(with A fixed), reaches its accuracy plateau with much fewer

constraints compared to LSML.

We also measured the accuracy variance across different

sets of constraints (data not shown due to space limit). The

variance is generally small compared to the accuracy gain with

constraints. All datasets but one have standard deviation below

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300

A
c
c
u

ra
c
y
 i
n

 P
W

-F
1

Number of Constraints

LSML-Identity
LSML-InvCov
SVM-Metric
SSSVAD
Euclidean
InvCov

(a) Iris

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 50 100 150 200 250 300 350 400

A
c
c
u

ra
c
y
 i
n

 P
W

-F
1

Number of Constraints

LSML-Identity
LSML-InvCov
SVM-Metric
SSSVAD
Euclidean
InvCov

(b) Wine

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000

A
c
c
u

ra
c
y
 i
n

 P
W

-F
1

Number of Constraints

LSML-Identity
LSML-InvCov
SVM-Metric
SSSVAD
Euclidean
InvCov

(c) Pendigits-389

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 1000 2000 3000 4000 5000 6000 7000

A
c
c
u

ra
c
y
 i
n

 P
W

-F
1

Number of Constraints

LSML-Identity
LSML-InvCov
SVM-Metric
SSSVAD
Euclidean
InvCov

(d) Letter-IJLT

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 100 200 300 400 500 600 700 800

A
c
c
u

ra
c
y
 i
n

 P
W

-F
1

Number of Constraints

LSML-Identity
LSML-InvCov
SVM-Metric
SSSVAD
Euclidean
InvCov

(e) Ionosphere

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 50 100 150 200 250 300 350 400 450

A
c
c
u

ra
c
y
 i
n

 P
W

-F
1

Number of Constraints

LSML-Identity
LSML-InvCov
SVM-Metric
SSSVAD
Euclidean
InvCov

(f) Sonar

Figure 1. The clustering accuracy for six UCI datasets with randomly generated relative comparisons. For each dataset, the number of constraints ranges from
0 to two times the number of objects in the dataset. Each measure is the average of 50 runs with independently sampled sets of constraints.

0.05 with |D| constraints fed. The four datasets with relatively

low dimension have standard deviation below 0.02. Though
the variance is affected by many intrinsic properties of each

dataset, we can clearly conclude that: 1) The variance decreases

with the number of constraints fed. 2) The variance increases

with number of dimensions. The SVM-Metric has comparable

variance with LSML in low-dimensional cases and moderately

lower variance in higher dimensional cases. The variance of

SSSVAD is considerably larger than that of the other methods

due to its clustering-based learning behavior.

D. Sparsity Extension

The extension SpLSML aims to promote sparsity in the

learned metric matrix which is beneficial with high dimensional

data and limited supervision (small number of constraints).

This is because promoting sparsity could suppress relatively

unimportant entries in M and lead to more stable estimation

with limited information. In our sparsity-promoted model, the λ
parameter controls the weight of the sparsity term (ℓ1-norm of

M). Obviously, when the weight is minimal, this reduces to the

basic LSML where all entries in M are being optimized. When

the weight is too high, a resulting metric that is highly sparse

could neglect important features or feature-feature interactions

and lead to a degenerated similarity measure. Thus we seek

an optimal trade-off point between fitting too many and too

few parameters by tuning the λ parameter together with w, the
weight of the constraint loss.

We find that in lower dimensional datasets (iris, wine, letter-

IJLT and pendigits-389), SpLSML does not exhibit significant

difference from the basic LSML. This is more or less expected

as the number of constraints is not small compared to the

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

A
c
c
u
ra

c
y
 i
n
 P

W
-F

1

S
p
a
rs

it
y
 o

f
th

e
 L

e
a
rn

t
M

e
tr

ic
Number of Constraints (as percentage of |D|)

LSML Accuracy
SpLSML Accuracy
SpLSML Sparsity

(a) Ionosphere

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

A
c
c
u
ra

c
y
 i
n
 P

W
-F

1

S
p
a
rs

it
y
 o

f
th

e
 L

e
a
rn

t
M

e
tr

ic

Number of Constraints (as percentage of |D|)

LSML Accuracy
SpLSML Accuracy
SpLSML Sparsity

(b) Sonar

Figure 2. Accuracy (left y-axis) and sparsity (right y-axis) achieved by
SpLSML in comparison with LSML (both regularized towards the inverse
of covariance matrix).

number of fitted parameters (m2). For the two datasets of

higher dimensionality, SpLSML can achieve noticeable gain by

suppressing relatively unimportant entries in M . The sparsity

achieved is more pronounced in dataset sonar which has

approximately three times more parameters to be fitted and

less objects and constraints than ionosphere.

Figure 2 shows the accuracy and sparsity achieved by our

sparsity extension (SpLSML) on sonar and ionosphere com-

pared with the basic LSML algorithm. For both regularization

matrices, SpLSML attains higher accuracy than the basic

LSML. The advantage is more significant with small number of

constraints as we have expected. We notice that stable gain can

be achieved even with only moderate sparsity. Also the sparsity

decreases with the number of constraints fed. This is because

the algorithm has more information to fit more parameters.

Thus keeping the same sparsity level may not necessarily help

improving accuracy. The entries that are “zeroed-out” even with

large number of constraints can be interpreted as features or

feature-pairs that are unlikely to contribute to the similarity

measure.
VI. RELATED WORK

The problem of learning a metric from relative comparisons

is first introduced in [1] with motivating examples from search

data. Schultz and Joachims proposed to model this as a

SVM-like quadratic programming problem. The distance or

(dis)similarity between objects is parameterized through a real

matrix A and a nonnegative diagonal matrix W . In the learning

process, A is usually pre-specified and W is to be fitted. A

simple choice for A such as I limits the expressibility of the

metric while determining a more suitable A beforehand can

be a non-trivial problem. Similar to the formulation in [1],

Rosales and Fung [3] and Huang et al. [4] have casted relative

comparisons into linear constraints with slack variables and

optimize on the sum of slack variables. They further promote

other properties such as sparsity by imposing different types of

penalty terms. The major difference between these models and

ours is that they cast relative comparisons into linear constraints

to satisfy while we use squared hinge function to minimize

“loss” from relative comparisons.

Kumar and Kummamuru proposed a very different approach

to learn metric from relative comparisons [2]. Their method

splits the whole data space into K partitions by clustering

where K is a pre-specified parameter corresponding to the

number of clusters. A weighted Euclidean distance is learned

within each partition or cluster. Though allowing much flexi-

bility, this model has several drawbacks: 1) The learned metric

corresponds to a K-clustering result and cannot be easily

generalized to unobserved cluster(s). 2) As a clustering-based

learning method, its results are sensitive to the initialization of

the clustering process and hidden parameters.

All the methods listed above compared their work against

studies on learning from pairwise constraints. However, relative

comparisons are only in relative sense and often obtained

without labeling objects (e.g., from a ranking list or structure

knowledge). The knowledge of relative comparisons and pair-

wise constraints cannot be translated into each other’s form

equivalently. In this paper, we try to compare methods in the

same class under a consistent setting.

Besides learning from relative comparisons, metric learning

is a much broader area with many efforts on learning from

pairwise constraints. Representative studies include [6]–[8]. In

[6], the authors proposed a LogDet divergence based learning

framework that does iterative projection onto pairwise con-

straints. Though it is mentioned that the framework can be

generalized to arbitrary linear constraints, we find it non-trivial

to extend it to handle relative comparisons: 1) Relative com-

parisons cannot be written as rank-1 constraint matrices which

allows closed-form updates in each projection. 2) The zone

consistency assumption of Bregman’s projection algorithm [15]

is not guaranteed even with the presence of slack variables.

VII. CONCLUSION

In this paper, we propose a formulation for metric learning

from relative comparisons by minimizing the sum of squared

hinge loss. A simple yet effective gradient-descent algorithm

is presented to solve the corresponding convex optimization

problem. We also give a sparsity-promoted extension which

improves the metric estimation when the number of constraints

is small compared to the number of features. Our algorithms re-

quire low effort in parameter tuning: the basic LSML algorithm

has only one parameter representing the weight of constraints;

the sparsity extension SpLSML adds one more parameter to

indicate the preference of sparsity. In the future we plan to

explore applications on large-size biological datasets.

Acknowledgement

We would like to thank Yunchao Gong for help on conducting

experiments. This work was partially supported by NSF IIS-0812464

and NIH R01HG006703.
REFERENCES

[1] M. Schultz and T. Joachims, “Learning a distance metric from
relative comparisons,” in NIPS, 2003.

[2] N. Kumar and K. Kummamuru, “Semisupervised clustering with
metric learning using relative comparisons,” IEEE Transactions
on Knowledge and Data Engineering, vol. 20, no. 4, pp. 496–
503, 2008.

[3] K. Huang, Y. Ying, and C. Campbell, “Generalized sparse metric
learning with relative comparisons,” Knowledge and Information
Systems, vol. 28, pp. 25–45, 2011.

[4] R. Rosales and G. Fung, “Learning sparse metrics via linear
programming,” in KDD, 2006, pp. 367–373.

[5] E. Y. Liu, Z. Zhang, and W. Wang, “Clustering with relative
constraints,” in KDD, 2011, pp. 947–955.

[6] J. Davis et al., “Information-theoretic metric learning,” in ICML,
2007.

[7] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric
learning for large margin nearest neighbor classification,” in
NIPS, 2006.

[8] E. Xing et al., “Distance metric learning with application to
clustering with side-information,” in NIPS, 2003, pp. 505–512.

[9] L. Yang and A. R. Jin, “Contents distance metric learning: A
comprehensive survey,” 2006.

[10] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, Mar. 2004.

[11] N. Z. Shor, “Minimization methods for non-differentiable func-
tions,” Series in Computational Mathematics, 1985.

[12] S. Boyd et al., “Distributed optimization and statistical learning
via the alternating direction method of multipliers,” Foundations
and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[13] J. Eckstein and D. P. Bertsekas, “On the douglas-rachford
splitting method and the proximal point algorithm for maximal
monotone operators,” Mathematical Programming, vol. 55, pp.
293–318, 1992.

[14] A. Asuncion and D. Newman, “UCI machine learning reposi-
tory,” 2007.

[15] Y. Censor and S. Zenios., Parallel optimization: Theory, algo-
rithms, and applications. Oxford University Press, 1997.

