Deformable Models

Physically Based Models with Rigid and
Deformable Components

In an earlier work we proposed a class of physically
based models suitable for animating flexible objects in
simulated physical environments.' Our original formu-
lation works well in practice for models whose shapes
are moderately to highly deformable, but it tends to
become numerically ill conditioned as we increase the
rigidity of the models.

This article develops an alternative formulation of
deformable models. We decompose deformations into
areference component, which may represent an arbi-
trary shape, and a displacement component allowing
deformation away from this reference shape. The refer-
ence component evolves according to the laws of rigid-
body dynamics. Equations of nonrigid motion based on
linear elasticity govern the dynamics of the displace-
ment component. With nonrigid and rigid dynamics
operating in unison, this hybrid formulation yields well-
conditioned discrete equations, even for complicated
reference shapes, particularly as the rigidity of modeis
is increased beyond the stability limits of our prior for-
mulation. We illustrate the application of our deforma-
ble models to a physically based computer animation
project.

T he animation of graphics objects often requires the
coordinated motion of multiple geometric primitives,
each involving multiple variables such as position, orien-
tation, and scale. Conventional computer animation is
kinematic. To synthesize convincing motions, the anima-
tor must specify the variables at each instant in time

An earlier version of this article appeared in Graphics Interface 88.
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while satisfying kinematic constraints. A standard
scheme for rendering the task less onerous is to spline
trajectories automatically through key frames. Often the
results are not entirely satisfactory—motions, especially
as they increase in complexity, tend to acquire unnatu-
ral qualities. In short, creating natural-looking animation
kinematically requires patience and expertise.”

Dynamic animation goes beyond kinematic anima-
tion, offering unsurpassed realism through the use of
fundamental physical principles. Users can create realis-
tic motions by applying forces to dynamic, physically
based models in simulated physical worlds, while
numerical procedures automatically generate time-
varying values for the simulation variables in accordance
with the laws of Newtonian mechanics.**

Unlike conventional, purely geometric models, phys-
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ically based models exhibit a naturally animate response
to applied forces, as do objects in the real world. Physi-
cally based models encourage computer animators to
think more like choreographers, who tend to concentrate
on abstract qualities of motion (such as timing, rthythm,
and style) and remain rather unconcerned with the
kinematic details of routines, knowing that physics will
dictate the low-level motions of dancers. To “choreo-
graph” physically based models, we control the dynamic
simulation through its physical parameters, initial con-
ditions, and applied forces, which may be mediated by
constraints imposed on the simulation variables through
time.

Deformable models

Physically based simulation is indispensable when
animating continuously flexible objects. In our earlier
work, we proposed a class of physically based models
that describe the shapes and motions of deformable
curve, surface, and solid primitives." These primitives
simulate “elastic materials” such as string, rubber, cloth,
paper, metal, or sponge. Our results demonstrate com-
plex, realistic motions arising from the interaction of
deformable models with ambient media and impenetra-
ble obstacles. Attempts to recreate these free-form
motions kinematically—that is, without making use of
the physical principles underlying the dynamics of non-
rigid bodies—would seem contrived and unreasonably
tedious.

The deformable models in our earlier study' are
based on elasticity theory.” The (Lagrangian) equations
of nonrigid motion are expressed in terms of position
functions in Euclidean three space. These functions are
parametric in the material (intrinsic) coordinates of the
model—they explicitly locate each of its points in space
as a function of time. The partial differential equations
of motion include a nonlinear elastic force associated
with the deformable body. We designed this force to be
invariant with respect to rigid-body motion, since such
motions impart no deformation. Nonlinearity results
because the elastic force attempts to restore the shape of
the deformed body to a prescribed undeformed or rest
shape. This (generally free-form) shape is defined by as
many nonvanishing fundamental tensors as may be
necessary to specify it up to a rigid-body transformation
(e.g., for a deformable curve, the required tensors reduce
to the familiar arc-length, curvature, and torsion func-
tions along the prescribed undeformed curve).

The advantage of nonlinear elasticity is that it is in
principle the most accurate way to characterize the
behavior of certain elastic phenomena, such as large
deformations of shells. However, the nonlinear formu-
lation can lead to serious practical difficulties in the
numerical implementation of deformable models for
animation. It turns out that the discrete equations
involved become increasingly ill conditioned as we try
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to increase the rigidity of the model or the complexity
of the rest shapes. Sophisticated and computationally
costly algorithms are needed to integrate ill-conditioned,
nonlinear, time-varying partial differential equations
robustly.

Decomposition into reference and
displacement components

Linear elasticity theory appears attractive in formulat-
ing deformable models for computer animation, since
it avoids most of the complexities of the nonlinear the-
ory. Interestingly, our nonlinear formulation’ reduces to
a linear model when the rest shape has trivially zero fun-
damental tensors, i.e., when it is collapsed to a point. This
is clearly too restrictive. Another possibility, which we
have attempted with limited success, is to linearize the
equations and approximate nonlinear effects as explicit,
external forces. Unfortunately, the explicit forces tend to
degrade the stability of our time-integration algorithms.

In this article, we define for computer animation
deformable models that enjoy the benefits of linear
elasticity. Rather than being represented explicitly by
position functions, the new model incorporates two
types of dependent functions: functions that determine
a reference configuration for the body in three space, and
functions that determine the displacements of material
points away from the reference configuration. When
necessary, the three-space positions of points can be
determined by adding the displacement component to
the reference component.

The elastic behavior of the deformable model
manifests itself only in the displacement component,
which defines the deformation mode of the model. The
deformation mode is governed by linear elasticity, and
zero displacement implies an arbitrary shape deter-
mined by the reference component. But since the refer-
ence component represents a prescribed set of reference
positions in three space, the position and attitude of the
rest shape will remain fixed. For the deformable model
to permit a free motion mode in addition to an elastic
mode, we allow the reference component to evolve over
time according to the laws of rigid-body dynamics."

Thus, we obtain a hybrid model that includes both rigid
and deformation dynamics. With regard to numerical
implementation, this hybrid formulation of deformable
models offers an important benefit—it leads to discrete
equations that remain well conditioned as we make the
model more rigid.

The remainder of this article is organized as follows:
The next section describes the geometric representation
underlying the hybrid formulation. Then the equations
of motion governing the hybrid model and the energy of
linear elastic deformation are developed. We describe
our numerical solution, and finally we present an appli-
cation of our deformable models to a physically based
animation project.
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Geometric representation

Let u be the intrinsic or material coordinates of points
in a body Q. For a solid body, u=(u,,u,,u;) has three
coordinates. For a surface u=(uy,u,), and for a curve
u=(u,). In the three cases, respectively, and without loss
of generality, Q will be the unit interval [0,1], the unit
square [0,1]%, and the unit cube [0,1]°.

The positions of points in the body relative to an iner-
tial frame of reference @ in Euclidean three space are
given by a time-varying vector-valued function of the
material coordinates

x(u,t) = [zl(u5t)’x2(uvt)ax3(u) t)]’> (1)
where the prime denotes transposition. We write a three-
space vector in bold and its elements in italic.

We represent a deformable body as the sum of a refer-
ence component

r(u) = [ry(u), r2(u), r3(u)]’ (2)
and a displacement component
e(u,t) = [e1(u,t), e2(u, t), es(u, )] 3)

Both components can be conveniently expressed in body
coordinates; that is, relative to a body frame ¢ (see Fig-
ure 1) whose origin coincides with the body’s center of
mass

c(t):/(‘ly(u)x(u,t)du,

where p(u) is the mass density of the deformable body
(R is assumed to be the domain of integration for
integrals with respect to u and is henceforth suppressed).
We denote the positions of mass elements in the body
relative to ¢ by

(4)

q(u,t) = r(u) + e(u, ). (5)

The (noninertial) body frame 4 is conveyed along with
the body in accordance with the laws of rigid-body
dynamics." Define the linear and angular velocities of
¢ relative to ® as

dc de
v(t) = i w(t) = P (6)
where df is a quantity whose magnitude equals the
infinitesimal rotation angle and whose direction is along
the instantaneous axis of rotation of ¢ relative to ®. Then,
the velocity of mass elements of the model relative to ®,
given their velocities é(u,t)= de/dt relative to ¢, is
x(u,t) = v(t) + w(t) x q(u,t) + é(u,t). (7)
In this article, overstruck dots denote time derivatives
d/dt or 8/at, as appropriate.
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Figure 1. Geometric representation. Shape is decom-
posed into reference and displacement (or deforma-
tion) components.

Equations of motion

A deformable model is described completely by the
positions x(u,t), velocities x(u,t), and accelerations X(u,t)
of its mass elements as functions of material coordinates
u and time t. When these functions are expressed in the
inertial frame @ directly from Equation 1 (without mak-
ing reference to a body frame ¢ as in Equation 7) the
Lagrange equation of motion governing x{u,t) takes on
a relatively simple form:"

pux +yx + 6x€ =1, (8)
where u(u) is the mass density, y{u) is the damping den-
sity (here a scalar, but generally a matrix), and f{x,!)
represents the net external forces. This is a partial
differential equation (because of the dependence of 6, £
on x and its partial derivatives with respect to u—see
below). Given appropriate conditions for x on the bound-
ary of Q and initial conditions x(u,0), X(u,0}, we have a
well-posed initial-boundary-value problem (second order
in time and of the hyperbolic-parabolic type).

The external forces f are dynamically balanced against
the force terms intrinsic to the deformable model, which
are found on the left-hand side of Equation 8. The first
term is the inertial force due to the model’s distributed
mass as it resists acceleration. The second term is a
velocity-dependent (viscous) damping force that dissi-
pates the kinetic energy of the body’s mass elements as
they move through a viscous ambient medium. The third
term is the elastic force due to the deformation of the
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model away from its natural reference shape.

The elastic force is conveniently expressed as d, €, a
variational derivative'* of a deformation energy £(x)
associated with the model. The nonnegative functional
€ measures the potential energy associated with an
instantaneous elastic deformation of the body. Its value
increases with the magnitude of the deformation.

We used Equation 8 in our earlier study,’ where it
proved workable for models with moderately high flex-
ibilities. However, our experiments with increasingly
rigid models show a rapid deterioration of the numeri-
cal conditioning of the associated discrete equations: To
increase rigidity using this formulation, we must
increase the magnitude of nonquadratic terms in £, con-
sequently making Equation 8 more seriously nonlinear.

Instead we apply Equation 7, and reformulate the
equation of motion to treat rigid-body motion explicitly.
This permits us to use a purely quadratic elastic func-
tional €. The numerical conditioning of this hybrid for-
mulation will improve as the model becomes more rigid,
tending in the limit to well-conditioned, rigid-body
dynamics, while the capability of modeling nonrigid
bodies is retained. However, Equation 8 remains prefer-
able for extremely nonrigid models, such as very stretchy
rubber sheets, where the hybrid formulation may yield
unrealistic results because of the simple linear force
coupling the deformation to a rigid reference shape.

To obtain the equations of motion for the unknown
functions v, w, and e under the action of an applied force
f, we transform the kinetic energy that governs the defor-
mable body, using Lagrangian mechanics. Assuming
small deformations, this yields three coupled differen-
tial equations:

., d . .
mv + E/uedu+/7xdu =fv, (9a)

d d . .
3(Iw)+ a/uqx edu+/'yqxxdu:i"’, (9b)

1é + pv + pw x (w x q)

+2uw X € + pw X q + vX + de& =f. (9c)
Here, m = [udu is the total mass of the body, and the iner-
tia tensor I is a 3x3 symmetric matrix with entries

Lij = /#(6ijq2 — gigj) du, (10

where q=(q;,9,,9;] and d;; is the Kronecker delta. The
applied force f(u,t) contributes to elastic deformation, as
well as to a net translational force f¥(t) and net torque
f“(t) acting on the center of mass:

t”:/fdu; t“:/qxrdu.

We derive the above system of equations in Appendix A.
Let us examine Equations 9 in detail. Equations 9a and
9b describe v and w, the translational and rotational

(11)
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motion of the body’s center of mass. Together these ordi-
nary differential equations describe the motion of the
body frame ¢ relative to the inertial frame ®. The partial
differential Equation 9c¢ describes, relative to ¢, the defor-
mation e of the model from its reference shape r.

The first term of Equation 9a represents the net iner-
tial force experienced by the center of mass due to the
total moving mass of the body as if it were concentrated
at ¢. The second term represents an inertial force due to
the net displacement motion of mass elements about the
reference component r. The third term gives the net
damping force of the moving mass elements. An analo-
gous interpretation in terms of inertial torques holds for
Equation 9b. The first two terms give the inertial torques
resulting from the body’s moment of inertia about ¢ and
the net angular momentum from the displacement
motion of mass elements, while the third term gives the
net damping torque of the elements.

Equation 9c¢ indicates several inertial forces
experienced by individual mass elements as the body
deforms in ®. The first term represents the simple iner-
tial force of a mass element. The second term gives the
inertial force due to the linear acceleration of the center
of mass. The next three terms give the centrifugal force
on mass elements due to the rotation of ¢, the Coriolis
force due the velocity of the mass elements in ¢, and the
transverse force on these elements due to the angular
acceleration of ¢. The penultimate term gives the damp-
ing force on individual mass elements. In the next sec-
tion we examine the final term, which represents the
elastic force resulting from the deformation of elements
away from the reference component.

Elastic deformation

The elastic force due to deformational displacement
e(u,t) away from the reference component r(u) is repre-
sented in Equation 9c by d €, a variational derivative
with respect to e of an elastic potential energy functional
€. The general form of £ is

E(e) = /E(u,e,eu,euu,...)du, (12)

an integral over material coordinates of an elastic energy
density E, which depends on e and its partial derivatives
with respect to material coordinates.

In our earlier study,’ the elastic functional for a solid
deformable model was of the form £(x)= [|G - G°|*du, a
squared normed difference between the first-order or
metric tensors (matrices) G(x) of the deformed body and
G' of the undeformed body. Elastic functionals for sur-
face and curve models involve additional squared differ-
ence terms of second- and third-order tensors. The
collection of tensors associated with the undeformed
body describes its shape up to rigid-body motions, and
£ quantifies the model’s actual deformation away from
this rigid shape. Thus the reference component is incor-
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porated into the energy functional that is invariant with
respect to rigid-body motion. Such invariance is neces-
sary in the simple equation of motion (Equation 8).

The virtue of the new equations of motion (Equations
9) is that they make fewer demands on €. Because rigid
motion is represented explicitly, € no longer need be
invariant with respect to such motion. All that is required
is that £=0 when e = 0 and that € increase monotonically
with increasing e, as measured by some reasonable
norm.

We use a class of controlled-continuity generalized
spline kernels." These splines are given in the form of
Equation 12, with the potential energy density defined by

1 & m! \ (13)
FE=— _m! o |
2 mz=:0|f|2=:m jl!"-jd!w’(u)l el

where j=(j;,...,j;) is a multi-index with il =ji+ ... +ja,
where d is the material dimensionality of the model (d=1
for curves, d=2 for surfaces, and d=3 for solids), and
where the partial derivative operator

op = — 2

= (14)
! oult ... ouY

Thus, E is a weighted combination of partial derivatives
of e of all orders up to p. Generally, the smoothness of
the allowable deformation increases with increasing p.
The weighting functions wi(u) in Equation 13 control
the material properties of the deformable model over the
material coordinates.

In the interior of the material domain @, the variational
derivative of € with the spline density of Equation 13 is

P
bef =Y (-1)"AT e, (15)
m=0
where
m! m m
Ay, = l; T a0 (w; (w)3]") (16)
Ji=m

is a spatially weighted, iterated Laplacian operator of
order m. The operator is modified at the boundary in
accordance with the boundary conditions."

Numerical solution

The equations of motion (Equations 9 through 11 with
Equations 15 and 16) are continuous in material coor-
dinates and time. To simulate the deformable model
numerically, we discretize the equations using finite-
element or finite-difference approximation methods. "
First we discretize with respect to material coordinates
to obtain semidiscrete equations of motion, a large sys-
tem of simultaneous ordinary differential equations.

The second step is to integrate the semidiscrete system

November 1988

through time, thus simulating the dynamics of deforma-
ble models. We use a semi-implicit time integration
procedure that evolves the elastic displacements and
rigid-body dynamics from given initial conditions. In
essence, the evolving deformation yields a recursive
sequence of (dynamic) equilibrium problems, ecach
requiring the solution of a sparse linear system whose
dimensionality is proportional to the number of nodes
making up the discrete model.

We can use iterative methods to solve these linear sys-
tems, as well as direct matrix factorization methods."
Because of the linear elastic energy density (Equation
13), the system matrix remains constant; hence a direct-
solution method need factorize it only once at the begin-
ning, then simply resolve the vector on the right-hand
side at each time step, thus saving significant compu-
tation.

Our implementations to date use the second-order
(p =2) controlled-continuity spline model. Appendix B
presents implementation details for the case of surfaces.

Animation examples

To create animation we simulate numerically the
differential equations of motion. After each time step (or
every few time steps) in the simulation, we render the
models’ state data to create successive frames of the ani-
mation. We have implemented curve, surface, and solid
deformable models in two and three dimensions on
Symbolics 3600 series Lisp Machines, which provide an
excellent prototyping environment. The subsequent sec-
tions describe two of our physically based animations.

Flatland

Our Lisp Machines lack the computational power to
support real-time interaction with surface and solid
models of modest size (having more than about 100
nodes). However, we can interact with simple hybrid
models within a 2D world called Flatland. Flatland
models are planar deformable curves {displayed as
wireframes), capable of rigid-body dynamics and
elastodynamics (see Figure 2). The models may be sub-
jected to user forces controlled via a mouse, gravity,
impulsive forces due to collisions with obstacles, etc.'
The simulations illustrated in the figure involve a
50-node discrete model.

Cooking with Kurt

We have used the hybrid formulation of deformable
models developed in this article to create the physically
based animation “Cooking with Kurt,” which intimately
combines natural and synthetic images.'” The action
begins with live video of Kurt Fleischer walking into his
kitchen and placing several large vegetables on a cutting
board. The vegetables “‘come to life”” in what appears to
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Figure 2. Flatland animations. Models are ‘‘strobed’’ while undergoing motion subject to gravity, aerodynamic
drag, and collisions against frictionless walls. Velocity vector of the center of mass (dot) is indicated. Figure
2a shows a deformable hoop; Figure 2b, an arbitrary shape.

be the physical kitchen table environment. They bounce,
slide, roll, tumble, and collide with one another and with
the tabletop, cutting board, and back wall. Figure 3 shows
selected still frames. “Cooking with Kurt” demonstrates
that animating physically based models in a simulated
physical environment offers a powerful alternative to the
common practice of creating animation by key framing
and spline interpolation (in-betweening).

Another novel feature of this animation project is the
use of recently developed computer vision
techniques’®?° to reconstruct the 3D reference shapes r
of the deformable vegetable models from a 2D natural
gray-level image (the video frame shown in Figure 3b).
These techniques exploit the “modeling clay” properties
of deformable models. They provide systematic ways of
transforming raw image data into synthetic force fields
that sculpt deformable models into shapes consistent
with the imaged objects.

Given a viewpoint into the 3D space occupied by our
synthetic physical world, user-assisted optimization
methods served to position three planar surfaces such
that they project correctly into the tabletop, cutting
board, and back wall visible in the background image
(identical to Figure 3b but lacking the vegetables). This
approach also served in adjusting surface colors and
albedos, and in positioning the synthetic light source so
that the rendering of the vegetable models and their
shadows (cast on the planar surfaces) is consistent with
the image of the scene. Thus we could undetectably
excise the real vegetables from the scene and matte in our
synthetic animate copies (see Figure 3c). We used our
modeling testbed system?’ to render the models into the
background image.

Once the shapes of the real vegetables had been cap-
tured in the reference components, the models were ani-
mated by numerically simulating their discrete
equations of motion (their deformable shells are repre-
sented by about 500 variables). The animate vegetable
models exhibit deformations, linear and angular acceler-
ations, collisions, and other physically realistic motions.

46

The deformation parameters (w; in Equation 26) were
chosen to make the vegetable models appear rather “tur-
gid.” The forces that determine the motions include
“rocket thruster” driving forces, “‘servo control” forces
for following choreographed paths and maintaining atti-
tude, and interaction forces that arise from friction and
collision among the models and planar surfaces in the
simulated kitchen table environment.

Conclusion

We have proposed novel physically based models for
use in computer graphics animation. Our hybrid defor-
mable models unify rigid and nonrigid dynamics. By
incorporating a reference component with explicit (six-
degree-of-freedom) dynamic equations, we are able to
exploit a relatively simple linear theory to model free-
form elastic deformations. Reduction in computational
effort, ease in animating flexible objects having compli-
cated natural shapes, and good conditioning of the
numerical equations with increasing rigidity are among
the benefits accrued. Moreover, our hybrid formulation
makes it especially convenient to model the inelastic
deformations characteristic of modeling clay.** The
hybrid formulation complements our earlier work in
elastically deformable models and it significantly
extends our ability to create realistic animations of non-
rigid objects in simulated physical environments. H
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Figure 3. Selected still frames from ‘‘Cooking with Kurt’’'” showing live action and animation of 3D defor-
mable models in a simulated physical world: (a) Kurt Fleischer with real vegetables, (b) real vegetables on
a cutting board, (c) reconstructed deformable vegetable models matted into the background scene, (d) elastic
collision, (e) bouncing (note deformed base on large gourd), (f} rolling.
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Appendix A: Derivation of the equations
of motion

We apply Lagrangian mechanics to the kinetic energy
that governs deformable models:

T=/%)’:-:’(du,

where x(u,t) is the instantaneous velocity of mass ele-
ments. The energy can be rewritten, using Equation 7,
in terms of the geometric representation of Figure 1 as

(17)

T= /Tdu = / (v+wxq+eé)- (v+wxq+é)du
(18)
Expanding,
T= ka—E/dem (19
k=1
where the integrands are
T =ﬁv-v; To=pv-&; T3= ﬁé-é;
2 2
T4=§(wx q)-(wxq); Ts=mwxq-é& (20)

Te =pv-wxq.

Velocity-dependent energy dissipation may be incor-
porated in terms of the (Raleigh) dissipation functional

}':/qu:/%:’c-:‘cdu,

where y(u) is a damping density. Note that Equation 21
has the same form as Equation 19 with y replacing p.
Hence we express

F = E.’Fk— /deu

k=1

(21)

in the representation of Figure 1, where the associated
integrands F; to F, are readily obtained from Equation
20 by replacing u with y.

Using the functionals 7and Fand observing that £
does not depend on v and w, the equations of motion can
be expressed as

6¢T + 6y F =1Y,
69T + bwF =1,

(22)

where the d operators denote variational derivatives with
respect to the subscripted functions. The generalized
forces associated with v, w, and e are f*, f*, and f.
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In view of the time derivatives contained in the func-
tional terms 7y and F,, we have

6
d 07y 8F
beT + v Fi = E'aTk o
d 0T, a8F;
T +0uFi =) a0 (23)
80T, T, OF;
8eT +0eFi = 57:;‘ Be T 56
k=1

Now, [uqdu=0, since it is simply the center of mass
and lies at the origin of the body frame ¢; hence
T;=Te=0. The above sums may be derived term by
term:

_d(mv) + 4
dt v dt dt

6
Zaa—}--_v/'ydu+/'yedu0+0

k=1

peédu+0+0+4+0+0,

+0+wx/1qdu,

6

d oT: dL d

L% du + 0,
kz—:d =000+ dt/uqxe u+
. 0F:
ZT=0+0+0+/ q x (wx q)du (24)
k=1

—/7qxédu—v></*yqdu,

6

8 0T, _ (u)
257_0+u v+ ——
k=1

+u(d:xq—uxé)+0,

5. 9T
Z-&- 0+0+0+ o x (wxq)+mwxé+0,
k=1
6

OF:
Y. 5 =0+Iv+7E+0+70 xq+0.
k=1 €
The term

L=;;/§(wxq)-(wxq)du=/,uqx(wxq)du

is known as the angular momentum of the deformable
body as it rotates rigidly about the center of mass. It can
be shown that

L:/p(uq-q—qq-u)du:lu (25)

where I is the inertia tensor whose components are
given in Equation 10.
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Insert Equations 24 and 25 into Equations 22; then
Equations 23 yield the equations of motion (Equations 9).

Appendix B: Implementation details

To illustrate the implementation, we consider the case
of surfaces. Curves (solids) involve a straightforward
restriction (extension) of the two-parameter equations
developed in this section. Letting u=(u,;,u,)=(u,v) be the
surface’s material coordinates and letting p=2 in Equa-
tions 15 and 16 will yield the variational derivative

de€ =wooe — (wio€y), — (wor€s), (26)

+ (wZOeuu)uu + 2 (wlleuv),“, + (wOZevv)m) 9

where the subscripts denote partial derivatives with
respect to material coordinates. The functions w;(u)
locally control the partial derivatives of deformational
displacement e of the model. Specifically, w,, controls
the local magnitude of the deformation, w,, and wy,
control its local variations, while w,,, w,,, and w,, con-
trol its local curvatures.

Semidiscretization

We illustrate the semidiscretization step using stan-
dard finite-difference approximations. The unit square
domain Q=0=<u,v =1 of the surface is discretized as a
regular M x N discrete mesh Q" of nodes. The internode
spacings are h,=1/(M -1) and h, =1/(N -1) in the u and
v coordinate directions respectively. Nodes are indexed
by integers [m,n] where 0=m=<M and 0<n<N. We
approximate the (continuous) vector functions of (u,t) in
Equations 9 through 11 by arrays of {(continuous-time)
vector-valued nodal variables: r[m,n]=r(mh,,nh,),
e[m,n]=e(mh, nh,,t), and f,[m,n]|=f(mh,,nh,,t). We will
suppress the time-dependence notation until the next
section, where we consider integration through time.

The discrete elastic force requires approximating from
the nodal variables e[m,n] the first and second partial
derivatives of e with respect to material coordinates u
and v. We define the forward first-difference operators

Di"o(e)[m, n} =(e{m + 1,n] — e[m,n])/hs 27)
D¢, (e)[m,n] =(e[m,n + 1] — e[m, n])/h,

and the backward first-difference operators

Dio(e)[m,n] =(e[m,n] — e[m — 1,n])/hy

Dgy(e)im,n] =(e[m,n] — efm,n — 1))/hy. %)
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Using Equations 27 and 28, the forward and backward
cross-difference operators are

DY, (e)[m, n] =D{,(Dgy(e))[rm, ],

- - _ (29)
Dii(e)[m, n] =D1o(Dg, (e))[m, n],
and the central second-difference operators are
Do(e)[m, n] :D;O(Dro(e))[mv n], (30)

Doa(e)[m, n] =Dgy(Dg(e)m, .

Using the above difference operators, we discretize
Equation 26 as follows:

5e£ z’wooe[m, n] [31)

—Dl_o(wloD;roe)[m, n] — Dgl(meSLle)[m, n]
+D20(1U20Dzoe)[m, ’Il] + 2D;1(w11 D'ﬁe)[m, n]
+Doz(wozDoze)[mn, n).

Free (natural) boundary conditions are introduced by
nullifying the value of difference operators found inside
parentheses in Equation 31. Such conditions are appro-
priate at the boundaries of Q", where these operators
would attempt to access nodal variables e|m,n] outside
the discrete domain. Similarly. fractures are introduced
by nullifying the values of any difference operators
accessing nodal variables on opposite sides of such dis-
continuities.

If the nodal variables making up the grid functions
e|m,n] are collected into an MN-dimensional vector e, the
discrete approximation (Equation 31) may be written in
the grid vector form Ke where K is an MN-dimensional
square matrix. Because of the local nature of the finite-
difference discretization, K, known as the stiffness
matrix, has the desirable computational properties of
sparseness and bandedness.

The discrete mass and damping densities are grid
functions u[m,n] and y[m,n] respectively. Let M be the
mass matrix, a diagonal MN-dimensional square matrix
with the y[m,n] variables as diagonal entries, and let C
be the damping matrix construcied analogously from
y[m,n].

Using Equation 31, the equations of motion (Equations
9) can be expressed in semidiscrete form by the follow-
ing system of coupled ordinary differential equations:

dv v
— =g, 32
m—- =g (32a)
Li.(Iw) =g¥ (32b)
dt ’
Mé+ Ce+ Ke =_g_ea (32¢)
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where

(33a)

& —hahs (zg- %Zué—zvzﬁ) ,
m,n m,n m,n
& iahn (ng_f— L zvgxg) (33b)
m,n m,n

m,n

Eezg—p,\'/—y.wx(uxg)-—z;wx_é_+;ubxg_. (33c)

Note that the integrals in Equations 9 through 11 are
approximated by sums over nodal variables. Some of the
terms in Equation 9 have been brought to the right-hand
side to simplify the final step of the solution.

Numerical integration through time

To simulate the dynamics of our model, we integrate
the semidiscrete system (Equation 32) through time.
Dividing an open-ended interval from t=0 into time
steps At, the integration procedure computes a sequence
of approximations at times At, 2At,...,t,t + At,.... Each time
step requires the solution of two algebraic equations for
v and w, which describe the rigid motion of the body
frame ¢, in tandem with a linear algebraic system for the
displacement component e.

Substituting the discrete time approximation v =
(vi, a—Vvy)/At into Equation 32a, we obtain the integra-
tion procedure

v
% = —
t4+At = Vi + Bt (34)

for the linear velocity of ¢ at the next time instant. Simi-
larly, we obtain from Equation 32b

wepar = I}, (Tewe + Atg?) (35)
for the angular velocity of ¢ for the next time instant. At
each time step, the body is translated by d = Atv,, and
rotated by an angle of 8=At|w,| about the unit vector
a = [a5,0,,035) = w;/|w,| using the matrix

ajay versf + cos
asay versf + a3 siné
asai versf — assinf
aias versf — az sin @
asay versf + cos
azaz versf + agsinf

(36)

ajazversf + az sinf
asazversf — a;sinf | |
azaz versf + cos 8
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where versf =(1-cos6) denotes the versine of 8. The refer-
ence and displacement components are transformed as
follows:

rieat = Rry 4+ d; errat = Rey. (37)

Next, substituting the discrete-time approximations
€= (e.n-2e+e_u)/At’ and & = (e, ~€_y)/2At into
Equation 32¢, we obtain the procedure

Ae,inr =8y (38)
where the constant matrix
A=K+ LM+LC (39)
At? 2A¢L
and the effective force vector
1 1 a0
§,=sf+(mM+mC)9 “
1 1 -
—M- —C
+ (AtM X ) €
with
& = (& — &_nar)/At. (41)

Note that Equations 34 through 41 specify a semi-
implicit recursive procedure that evolves the rigid-body
dynamics and elastic displacements from given initial
conditions vg, wy, €, and &,. In particular, the displace-
ment e evolves as a time sequence of static equilibrium
problems is solved. Each is a sparse linear system (Equa-
tion 38) of size proportional to the number of nodes mak-
ing up the discrete model.

We have employed iterative methods, such as the suc-
cessive overrelaxation or the conjugate-gradient method,
as well as direct methods, such as Choleski factorization,
to solve the sparse linear systems (Equation 38).">"
Since A is a sparse matrix {(because of Equation 31, each
equation will have at most 13 nonzero coefficients), we
implement the direct method using an efficient profile
storage scheme. A more detailed description of our lin-
ear equation solvers is beyond the scope of this article.
Further computational savings can be had by neglecting
some of the interaction terms in the right-hand sides of
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Equation 33; for example, the centrifugal force may be
neglected unless large angular velocities w are expected,
while the Coriolis force may be neglected unless signif-
icant é is expected.
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