
Nonrigid image registration: guest
editors� introduction

Image registration is the process of determining correspondence between all

points in two or more images of the same scene. Image analysis applications that in-

volve multiple images of a scene often require registration of the images. Nonrigid

image registration refers to a class of methods where the images to be registered have

geometric differences that cannot be accounted for by similarity (global translation,

rotation, and scaling) transformations.
Image registration has a long history. One of the first examples of image registra-

tion appeared in the work of Roberts [33]. By aligning projections of edges of poly-

hedral solids with image edges, he was able to locate and recognize predefined

polyhedral objects in images. Registration of entire images first appeared in the re-

mote sensing literature. Anuta [1,2] and Barnea and Silverman [8] developed auto-

matic methods for registering satellite images using the sum of absolute differences

as the similarity measure. Leese et al. [20] and Pratt [31] did the same using cross-cor-

relation coefficient as the similarity measure. Use of image registration in the com-
putation of depth was initially pursued by Julesz [19], and then by Bakis and

Langley [7], Mori et al. [27], Levine et al. [22], and Nevatia [28]. Image registration

found its way into biomedical image analysis as data from various scanners that

measure anatomy and function became available [6,37,39].

Fischler and Elschlager [15] were among the first to use nonrigid registration to

locate deformable objects such as human faces in images. Burr [11] later recognized

handwritten characters by nonrigid registration. Bajcsy and Broit [4] developed a

nonrigid registration method that could align deformed images in their entirety. In
medical imaging, nonrigid registration was initially used to standardize MR and

CT brain images with respect to an atlas [5,9]. Most nonrigid image registration

methods are iterative and minimize a cost or an energy function, defined in terms

of the geometric and/or intensity difference between images. Witkin et al. [41] formu-

lated the general nonrigid registration problem (i.e., that of matching multiple, arbi-

trary-dimensional images or signals) as one of nonconvex energy minimization and

solved it efficiently using a scale-space continuation method. A smaller number of

methods are based on matched feature points and use nonlinear transformation
functions to align the images. The paper by Cachier et al. [12] in this issue classifies

various nonrigid image registration methods. Further surveys and classifications of

image registration methods can be found in papers by Gerlot and Bizais [18], Brown
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[10], van den Elsen et al. [38], Maurer and Fitzpatrick [26], Maintz and Viergever

[25], and Lester and Arridge [21].

Mostwork on nonrigid registration has usedmedical images, and in particular brain

images. The brain is of tremendous interest because of many applications in neurosci-

ence and neurosurgery, presenting many unique challenges. Nonrigid registration of
the brain is a difficult task, but hasmany important applications including comparison

of shape and function between individuals or groups [17], development of probabilistic

models and atlases [23], measurement of change within an individual, and determina-

tion of location with respect to a preacquired image during stereotactic surgery [34].

Detailed nonrigid registration and comparison of brain images requires the deter-

mination of correspondence throughout the brain and the transformation of one im-

age space with respect to another according to the correspondences.

There are three types of deformation which need to be accounted for in nonrigid
brain image registration: (1) change within an individual�s brain due to growth, sur-
gery, or disease; (2) differences between individuals; and (3) warping due to image

distortion, such as in echo-planar magnetic resonance imaging.

Deformations of type 1 represent an individual�s brain changes during develop-
ment, surgery, or degenerative process such as Alzheimer�s disease, multiple sclerosis,
or malignant disease. In the cases of growth and degenerative disease, the deforma-

tion is incremental and likely to be representable in terms of relatively small and

smooth transformations. During surgery, the brain deforms or shifts due to changes
in pressure, fluid loss, and other factors. This shifting is also smooth and incremen-

tal. For image-guided stereotactic surgery, the correction for this deformation must

be done in real-time. Physical modeling of tissue has been used extensively for this

purpose. In addition, there is a more severe deformation due to the removal of tissue

(and subsequent remodeling).

Deformations of type 2 are obtained when comparing anatomy between individ-

uals. A detailed nonrigid transformation that brings brain images from different in-

dividuals into correspondence to account for differences between the brains is
required. Neuroanatomic variation between individuals is usually great, particularly

in the cortex. Subcortical structures vary in shape and size between individuals in a

relatively smooth manner. The cortex, however, varies greatly due to differences in

folding patterns (extra and missing folds, different branching patterns, etc.), which

change the shape significantly, typically requiring transformations of high flexibility

and making registration quite difficult. In order to compare a group of individuals,

structural variation between individuals should be accounted for by registering an

atlas image to each individual�s image, in order to have a common coordinate system
for comparison. The field of deformation morphometry applied to medicine is seek-

ing to build on this fundamental registration step by developing meaningful descrip-

tions of anatomical shape derived directly from the non-rigid transformations

themselves. Functional differences, as seen in corresponding functional images, can

also be compared in this coordinate system.

Deformations of type 3 are obtained in magnetic resonance imaging by the imag-

ing process [35]. For example, echo planar image (EPI) data obtained in functional

imaging can exhibit severe geometric distortions. The displacements are dependent
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on the configuration of tissue in the subject, the orientation of the subject within the

scanner, and the MRI acquisition. Knowledge of acquisition physics can help con-

strain estimation of the deformation.

This special issue presents recent advances in nonrigid image registration are pre-

sented. Methods for matching image features and image regions are discussed in the
first four papers, surface matching is covered in the next two papers, and volume

matching is discussed in the last two papers. Chui and Rangarajan [13] describe a

feature-matching method that is an extension of the iterative closest point (ICP)

method, determining the transformation function and the feature correspondences

at the same time while minimizing an energy function. Paragios et al. [30] achieve

the same by first aligning the feature sets globally through chamfer matching and

then estimating the local deformations by local searching. Richard and Cohen [32]

find feature correspondences using image intensities in a region-matching approach.
Sclaroff and Isidoro [36] discuss registration and tracking of deformable objects in

videos. An object is defined by a triangular mesh and the mesh is tracked from

one frame to the next by minimizing an error measure. The method is demonstrated

to be robust under some occlusion, change in lighting, shadows, and surface specu-

larity. Audette et al. [3] describe matching of brain surfaces obtained by a range

scanner and by segmentation of a volumetric MR image. The surfaces are first

aligned globally by the rigid ICP method and then locally through a local ICP

method. Wang et al. [40] describe nonrigid registration of brain surfaces using geo-
desic distance and curvature measures. To register images nonrigidly, Cachier et al.

[12] extend the block-matching idea used for rigid registration [14,29] to Gaussian

windows for nonrigid registration. Lunn et al. [24] use a physically based tissue de-

formation model to nonrigidly register images by the finite element method.

The papers in this special issue also describe various applications of nonrigid im-

age registration. While Chui and Rangarajan [13] and Paragios et al. [30] mostly use

synthetic images to evaluate their methods, Sclaroff and Isidoro [36] use video im-

ages, and Richard and Cohen [32] use X-ray mammography to evaluate their work.
Audette et al. [3], Cachier et al. [12], Lunn et al. [24], and Wang et al. [40] use brain

images in their work. Richard and Cohen [32], Paragios et al. [30], and Sclaroff and

Isidoro [36] describe registration of 2-D images; Audette et al. [3] and Wang et al.

[40] describe registration of surfaces; Cachier et al. [12] and Lunn et al. [24] describe

registration of volumetric images; and Chui and Rangarajan [13] discuss registration

of both 2-D and 3-D images.

Although image registration has been a very active area of research for some time,

and although robust rigid registration methods have been developed [16], more work
in nonrigid image registration is needed. In a number of active areas, such develop-

ments go hand in hand with the fundamental issue of defining what we mean by cor-

respondence between inherently different spatial structures, as is the case when

comparing the brain anatomy of different individuals. Such issues must be addressed

in the context of the descriptions and measurements required in a particular applica-

tion. To register images with local geometric differences accurately, two main goals

must be reached. First, a large number of feature point correspondences that reflect

local geometric differences between the images to be registered must be found.
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Second, a transformation function should be determined that can describe and inter-

polate the point correspondences with a highly varying density without introducing

unrealistic deformations in areas where no corresponding structures exist. Point fea-

ture detection, image similarity measures and matching techniques, as well as trans-

formation functions that work with different image modalities, image contents,
magnitude and type of geometric differences between images, are still of great interest.

This issue would not have been possible if not for the efforts of its reviewers: Ravi

Bansal, Philipp Batchelor, Serge Belongie, Fred Bookstein, Hans Bosch, Fuhua

Cheng, Gary Christensen, Tim Cootes, Bill Crum, Christos Davatzikos, Frank

Dellaert, Corina Drapaca, Pierre Hellier, Derek Hill, Mark Holden, Anil Jain, Chan-

dra Kambhamettu, William Kervin, Frithof Kruggel, Hava Lester, Twan Maintz,

Julian Mattes, lain Matthews, Calvin Maurer, Graeme Penney, Franjo Pernus, Jo-

sien Pluim, Peter Roesch, Daniel Rueckert, Martin Satter, Stan Sclaroff, Oskar
Skrinjar, George Stockman, Barnabas Takacs, Paul Thompson, Baba Vemuri, and

Tony Yezzi. Their contributions are greatly appreciated.
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