Published in the Proc. CVRMed’97, Grenoble, France, March, 1997.

Medical Image Segmentation Using
Topologically Adaptable Surfaces

Tim MclInerney and Demetri Terzopoulos

Dept. of Computer Science, University of Toronto, Toronto, ON, Canada

Abstract. Efficient and powerful topologically adaptable deformable
surfaces can be created by embedding and defining discrete deformable
surface models in terms of an Affine Cell Decomposition (ACD) frame-
work. The ACD framework, combined with a novel and original repa-
rameterization algorithm, creates a simple but elegant mechanism for
multiresolution deformable curve, surface, and solid models to “flow” or
“grow” into objects with complex geometries and topologies, and adapt
their shape to recover the object boundaries. ACD-based models main-
tain the traditional parametric physics-based formulation of deformable
models, allowing them to incorporate a priori knowledge in the form
of energy and force-based constraints, and provide intuitive interactive
capabilities. This paper describes ACD-based deformable surfaces and
demonstrates their potential for extracting and reconstructing some of
the most complex biological structures from medical image volumes.

1 Introduction

Segmenting and reconstructing structures from medical image volumes into a
more manageable analytic form is hindered by the sheer size of the data sets
and the complexity and variability of the anatomic shapes of interest. The short-
comings typical of sampled data, such as sampling artifacts, spatial aliasing, and
noise, often cause the boundaries of structures to be indistinct and disconnected.
The challenge is to extract boundary elements belonging to the same structure
and integrate these elements into a coherent and consistent model of the struc-
ture. In recent years, the use of deformable surface models [14, 11, 2, 9] has been
proposed to meet this challenge.

Deformable models offer an attractive approach to the medical image seg-
mentation problem because they combine many desirable features such as com-
pact and analytical representations of object shape, inherent connectivity and
smoothness that compensates for noise and boundary irregularities, the ability to
incorporate anatomic knowledge, and the support of intuitive interaction mecha-
nisms. Since the initial development of this successful boundary integration and
feature extraction technique, many useful variants of these models [5, 3, 13, 15, 6]
have been developed in an attempt to overcome their most significant limitations.
In particular, deformable models must usually be placed close to the boundaries
of the target object to guarantee good performance. The internal energy con-
straints of deformable models can limit their geometric flexibility and prevent
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them from representing long tube-like shapes or shapes with significant protru-
sions. Furthermore, the topology of the object of interest must be known in
advance since traditional deformable models are parametric and are incapable
of topological transformations without additional machinery. Finally, the energy
function of most deformable models depends on its parameterization and is not
directly related to the geometry of the object. New parameterizations can change
the model energy in arbitrary ways.

Our goal is the development of a unified, complementary framework that
overcomes the limitations of classical deformable models and increases their de-
gree of automation, while retaining all of their traditional strengths. In [10], we
introduced a new class of 2D deformable models known as topologically adaptable
snakes (T-snakes). These models exploit an Affine Cell Decomposition (ACD)
of the image domain, creating a theoretically sound framework that significantly
extends the abilities of classical deformable models. Embedding deformable mod-
els in an ACD framework allows the models to extract and reconstruct even
the most complex biological structures. The ACD framework, combined with a
novel reparameterization algorithm, creates a simple but elegant and powerful
mechanism for multiresolution deformable curve, surface, and solid models to
“flow” or “grow” into objects with complex geometries and topologies, adapting
their shape to conform to the object boundaries. The ACD framework enables
the models to maintain the traditional properties associated with classical de-
formable models, such as user interaction and the incorporation of constraints
through energy functions or force functions, while overcoming many of their
limitations. The framework also provides a convenient mechanism for the incor-
poration of “hard” geometric, topological and global shape constraints [8]. In
this paper, we will review the 3D ACD framework and describe the formulation
of topologically adaptable deformable surfaces (7T-surfaces). We will then pro-
vide several segmentation examples using these models in order to demonstrate
their potential for efficient, accurate and reproducible extraction and analysis of
anatomic structures from medical image volumes.

2 ACD-based Deformable Models

ACD-based deformable models, T-snakes and T-surfaces, are parametric models
that have the power of an implicit formulation by using a superposed affine cell
grid to quickly and efficiently reparameterize the models during their evolution.
In particular, a T-surface is defined as an elastic triangular mesh. This closed
surface model is a discrete approximation to traditional multidimensional snakes
models and retains many of the snakes properties. As the T-surface moves under
the influence of external and internal forces, we reparameterize it with a new
set of nodes and triangles by efficiently computing the intersection points of the
model with the superposed grid. We also keep track of the interior region of the
model by “turning on” any grid vertices the T-surface passes over during its
motion. By reparameterizing the T-surface at each iteration of the evolutionary
process, we create a simple, elegant and automatic model subdivision technique
and the grid provides a framework for robust topological transformations. This
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allows the model to be relatively independent of 1ts initial placement and “flow”
into complex shapes with complex topologies in a stable manner. Conversion to
a traditional parametric deformable surface representation is simply a matter of
disabling the grid at any time during the evolutionary process. By providing a
boundary representation as well as a representation of the interior region of an
object, this hybrid deformable model combines the space partitioning, intrinsic
parameterization and topological flexibility properties of an implicit formulation,
such as those described in [1, 7], with the boundary properties of a parametric
model. The advantage of retaining a parametric model formulation is that any
“soft” constraint expressed as an energy function or force function can be easily
incorporated into the physics-based framework.

2.1 Model Description

We define a T-surface as a closed oriented triangular mesh. The vertices of these
triangles, the model nodes, act as a dynamic particle system where the particles
are interconnected by discrete spring units. That is, we associate with each node
i a time varying position x;(t) = [#;(t), y: (1), z;(¢)], along with internal ” tension”
forces a;(t) and "rigidity” forces 3;(t), external inflation forces p;(¢), and external
image edge forces f;(¢) [8]. The behavior of the dynamic node-spring system is
governed by a simplified form of the discrete Lagrange equations of motion

vixi +o; + B, = p; +1i, (1)

where x; is the velocity of node i, 4; is a damping coefficient that controls the rate
of dissipation of the kinetic energy of the nodes, and f; are the external image
forces (typically scaled by a weight p) attracting the model towards image edges.
To drive the model towards object boundaries we use an external “inflation”
force, p; = qn;, where q is the force amplitude or weight and n; is the unit normal
at node 7. The weight ¢ is set to a negative value at node 7 if the image intensity
falls below a threshold value at this point. The strengths of the internal forces,
a;(t) and B;(1), are controlled by weights a; and b;, respectively. We integrate
the first-order dynamic system (1) forward through time using an explicit Euler
method.

2.2 Simplicial Cell Decomposition

The grid of discrete cells used to reparameterize our deformable surface is an
example of affine cell decomposition using simplicial cells. In a simplicial de-
composition, space is partitioned into cells defined by open simplices, where an
n-simplex is the simplest geometrical object of dimension n: a triangle in 2D
and a tetrahedron in 3D. The simplest triangulation of Euclidean space R™ is
the Coxeter-Freudenthal triangulation. It is constructed by dividing space using
a uniform cubic grid and the triangulation is obtained by subdividing each cube
into n! simplices. In R3, one such subdivision produces 6 tetrahedra per cubic

cell (Fig. 1).
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Fig.1. (a) Cubic cell division into 6 tetrahedra: po = (po,p1,ps,pr),

p1 = (po,p1,ps,p7), p2 = (Po,P2,p3,p7), ps = (Po,P2,P6,P7), p4 = (Po,ps,ps,p7),
ps = (po,pa,pe, p7). (b) Intersection of object boundary with grid tetrahedra.

Simplicial decompositions provide an unambiguous framework for the cre-
ation of local polygonal approximations of a closed surface. A simplex can be
classified in relation to the partitioning of space by a closed orientable surface
by testing the “sign” of its vertices. If the signs are the same for all vertices, the
simplex must be totally inside or outside the surface. If the signs are different,
the surface must intersect the simplex (Fig. 1b,c). In an n-simplex, the negative
vertices can always be separated from the positive vertices by a single plane;
thus an unambiguous polygonalization of a simplex always exists. Furthermore,
as long as neighboring cubical cells containing the simplices are decomposed so
that they share common faces, a consistent polygonization of the entire surface
will result.

The set of grid tetrahedra that intersect the surface (the boundary tetra-
hedra) form a three dimensional combinatorial manifold that has as its dual a
two dimensional manifold that approximates the surface. The two dimensional
manifold is constructed from the intersection of the true surface with the edges
of each boundary tetrahedron. The intersection points result in one triangle or
one quadrilateral (which can be subdivided into two triangles) approximating
the surface inside each boundary tetrahedron (Fig. 1b,c), where each triangle
or quadrilateral intersects a tetrahedron on three or four distinct edges, respec-
tively. The triangle (or quadrilateral) separates the positive vertices from the
negative vertices of the tetrahedron. The set of all these triangles constitute the
combinatorial manifold that approximates the original surface.

2.3 Iterative Reparameterization

The time derivatives in (1) are approximated by finite differences. During k time
steps of the numerical time integration (one deformation step), the model moves
(expands or shrinks, but not both) from its current position to a new position.
At the beginning of the deformation step, the model nodes are defined in terms
of the edges of the grid boundary tetrahedra. At the end of the deformation step,
the nodes have moved ”off” of the tetrahedra edges (Fig. 2). We then reestablish
the correspondence of the model with the grid by performing a local search and
intersection test. A bounding box is formed around each model triangle at its
new position and grid intersection points are computed and used as the new set
of model nodes.
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Fig. 2. llustration of reparameterization process using 2D contour. (a) Shaded regions
show examples of grid vertices that are “burned” by expanding contour, (b) new burned
grid vertices (white) added to current burned vertices (dark), (c) new contour after one
deformation step showing new grid intersections, burned grid vertices, and boundary
grid simplices (gray shaded).

During the evolution of a T-surface, it ”passes over” a set of grid vertices (Fig.
2). Using a flame propagation analogy, we say that these fixed grid points have
been ”burned”. By identifying and recording these burned grid vertices during
a deformation step, we are able to determine and track the interior region of the
T-surface. Furthermore, throughout the evolution of the model the interior grid
vertices act as an implicit function to unambiguously define the boundary of the
model by partitioning the image domain into an inside region and an outside
region. Determining the set of grid vertices that have been burned during a
deformation step uses a simple and robust classification algorithm [8]. Each T-
surface triangle may have passed over zero, one, or several grid vertices during a
deformation step. For each triangle, we form a bounding box around its current
position and new position, enabling us to quickly determine the subset of grid
vertices that may have been burned. For each of the grid vertices in this subset,
we partition the image domain into eight subspaces by forming three intersecting
planes. The three planes are formed by joining the two nodes of each model
triangle edge at their current position to the grid vertex in question. We then
classify the three nodes of the model triangle at its new position into one of
the eight subspaces. An efficient classification algorithm is then used to quickly
determine whether the grid vertex in question has been burned.

2.4 Topological Transformations

When a T-surface collides with itself or with another T-surface, or splits into two
or more parts, a topological transformation must take place. In order to effect
consistent topological changes, consistent decisions must be made about discon-
necting and reconnecting model nodes. The simplicial grid and the reparameter-
ization process automatically and unambiguously performs these reconnections.
By tracking the interior grid vertices (and hence the boundary grid tetrahedra)
and reestablishing the correspondence of the surface model with the grid after
every deformation step, we can always unambiguously determine the boundary
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or “isosurface” of the new T-surface(s). We simply compute new T-surface tri-
angles from the signs of the grid vertices in each boundary tetrahedron, and
from the intersection points computed previously, such that the inside and out-
side grid vertices of these tetrahedra are separated by a single plane. Thus, by
mimicing the evolving level set of an implicit function, the simplicial grid and
the reparameterization process guarantees that topological transformations are
handled automatically, consistently and efficiently.

2.5 The Final Algorithm

In contrast to the level set evolution techniques which accede control to a higher
dimensional implicit function, we retain an explicit parametric model formula-
tion. A parametric formulation allows us to track and control the evolution of
the model. Consequently, reparameterizations can be performed very efficiently
and constraints can be easily imposed on the model. The complete algorithm is
as follows:

For each k time steps:

1. For each time step, compute all forces, integrate the equations of motion and
update node positions.

2. Compute new grid intersection points for all model triangles.

3. For each model triangle, compute “burned” grid vertices and and determine
new boundary grid tetrahedra and new model triangles.

4. From the set of current model triangles, identify valid triangles and discard
invalid triangles. A model triangle is valid if its corresponding grid tetrahe-
dron is still a boundary tetrahedron.

A T-surface is considered to have reached its equilibrium state when all of the
model triangles have been inactive for a specified number of deformation steps.
Model triangle activity or movement is measured via the grid again using a flame
propagation analogy. Model triangles are assigned a “temperature” based on the
number of deformation steps the triangle (and its corresponding boundary grid
tetrahedron) has remained valid. A model triangle is considered inactive when its
temperature falls below a preset “freezing point”. Frozen model triangles can be
removed from the computation. This adjustable mechanism allows the system to
maintain a manageable computational burden for many segmentation scenarios.
Once a T-surface has reached equilibrium the grid can be disabled, if desired,
and the model run as a classical deformable surface.

3 Volume Image Segmentation with T-Surfaces

We have implemented a prototype system using T-surfaces. We have used the
system to segment and reconstruct a wide range of anatomic structures with
complex shapes and topologies. We initialize a T-surface using an implicitly de-
fined superquadric function which can be quickly scaled, bent and tapered, if
desired, and placed inside the object of interest (or scaled such that it contains
the object). The superquadric is then converted into a T-surface and the model
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will then expand (or shrink if it surrounds the object) and adapt to the object
boundaries. Multiple T-surfaces can be dynamically created and placed through-
out the object. They will then adapt and automatically merge to form one model
of the object.

(a) (b) (©)

Fig.3. T-surface segmenting vertebra phantom from CT image volume. The dark

shaded regions are frozen and have been removed from the computation.

In the first example, we apply a T-surface to a 120x 128 x52 CT image volume
of a human vertebra phantom to demonstrate the topological adaptability of the
T-surface (Figure 3). We use a 32 x 30 x 13 cell grid (where each cubical cell is
divided into 6 tetrahedra) with model parameters: p = 20.0, ¢ = 80.0, a = 20.0,
b = 60.0, and time step At = 0.001.

In the second example we segment and reconstruct the left-ventricular (LV)
chamber and aorta from a CT image volume of a canine heart. The image volume
dimensions are 128 x 128 x 118 and a 20 x 20 x 20 resolution grid was used (model
parameters: p = 61.0, ¢ = 60.0, ¢ = 20.0, b = 40.0, At = 0.002).

(b) (c (d) (e) ()

)

Fig. 4. T-surface segmenting L.V and aorta from CT image volume.

(a)

We manually seed the LV with a small T-surface and the segmentation then
proceeds automatically (Figure 4). The inflation force is weighted with LV region
image intensity statistics to reinforce the image edge forces. The final result, after
disabling the grid and converting to a classical deformable surface, is shown in
Figure 4(f). While there are a few image slices that may require manual editing,
most of the model fits very accurately and the entire process takes under 4
minutes on an SGI Indigo 2 workstation. Segmentation with T-surfaces is highly
reproducible; as long as the T-surface is seeded within the bright region of the
LV, it produces almost identical results.

In the third example, we have used a T-surface to segment and reconstruct
the vascular system of the brain from an MRA image volume. The data con-
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sist of a stack of 100 slices each with 512% pixels, 2 bytes per pixel (voxel size
0.4296875mm x 0.4296875mm x 0.7mm). The image volume was interpolated
to produce cubical voxels resulting in 162 slices. A T-surface is seeded at the
root of the vessel tree and then flows into the vessels, automatically extracting
the vascular system (Figure 5). A voxel resolution grid was used with model
parameters: p = 00.0, ¢ = 80.0, ¢ = 20.0, & = 60.0, At = 0.0005. The segmen-
tation takes about one hour on an SGI Indigo 2 workstation, primarily due to
the disk thrashing resulting from the massive data set and limited memory of
the workstation. When combined with image statistics-weighted inflation forces,
a T-surface behaves as an active region growing model that is able to integrate
edge information and filter out noise through the model smoothness constraints.
Although MR angiography produces high contrast images, they can have a large

Fig. 5. T-surface segmentation of cerebral vasculature from MRA image volume.

deviation in the gray scale range. This large range makes it difficult to segment
the images with simple thresholding techniques.

In this final example, we use a T-surface with a image statistics-weighted
inflation force to segment the cerebral cortex from a preprocessed MR image
volume (the skull has been manually removed from the image) (Figure 6). A
64 x 64 x 34 resolution grid was used for the 256 x 256 x 136 voxel image volume
(model parameters: p = 0.0, ¢ = 48.0, ¢ = 20.0, b = 40.0, At = 0.0008). The
T-surface was initialized to surround the cortex and then shrinks and conforms
to the CSF/gray matter interface. The automatically subdividing T-surface is
able to penetrate, with good success, into the narrow and deep cavities of the
highly convoluted cortex. A more accurate result could be obtained with a finer
resolution grid at the expense of increased computation time and a larger number
of model triangles.

4 Discussion

A potential problem with the fluid-like T-surface 1s that the internal smoothness
constraints and image edge forces may not be sufficient to prevent the model
from “leaking” out of gaps or weakly defined edges in object boundaries. There
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(a) (b) (c)

Fig. 6. T-surface segmentation of the cerebral cortex from MR image volume. (a) front
view, (b) top view, (c) side view.

are several possible solutions to this problem. One solution that is used in several
of the examples is to weight the inflation force with image intensity statistics
of the object. This means that the T-surface will expand at a node only if the
local image intensity is within some preset range of the mean gray value of the
object. Global or region image statistics can be used. Another solution is to use
a Chamfer distance map, which provides the distance to the nearest edge, to
again weight the inflation force. Other gradient vector fields derived from image
edge maps could also be used [12]. Finally, since ACD-based deformable models
are naturally multi-resolution models, this feature can be used with multi-scale
image preprocessing techniques [4, 14] to improve the robustness of the segmen-
tation.

5 Conclusion

Deformable models offer a flexible and powerful approach to medical image anal-
ysis. Nevertheless, classical deformable surface models suffer from several limi-
tations that prevent their application to the full range of medical image analysis
problems and inhibits their potential degree of automation. We have proposed
ACD-based deformable surfaces as a solution to many of these limitations. This
new class of deformable models can be used to segment, reconstruct, and analyze
complex anatomic structures from massive and noisy medical image volumes in
a highly automated manner. When combined with various constraint mecha-
nisms, the models have the capability of becoming completely automatic image
analysis tools. Finally, the evolution of our discrete deformable model is imple-
mented using a naturally parallel geometric algorithm, and we expect significant
performance gains on parallel machines.
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