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Abstract 

We propose models of 3D shape which may be viewed as deformable bodies composed of simulated 
elastic material. In contrast to traditional, purely geometric models of shape, deformable models are 
active--their shapes change in response to externally applied forces. We develop a deformable model 
for 3D shape which has a preference for axial symmetry. Symmetry is represented even though the 
model does not belong to a parametric shape family such as (generalized) cylinders. Rather, a symmetry- 
seeking property is designed into internal forces that constrain the deformations of the model. We 
develop a framework for 3D object reconstruction based on symmetry-seeking models. Instances of 
these models are formed from monocular image data through the action of external forces derived from 
the data. The forces proposed in this paper deform the model in space so that the shape of its projection 
into the image plane is consistent with the 2D silhouette of an object of interest. The effectiveness of our 
approach is demonstrated using natural images. 

1 Introduction 

The problem of reconstructing the shapes of 3D 
objects from their images has attracted much at- 
tention in computational vision. The develop- 
ment of powerful mathematical models of 3D 
shape is a reasonable approach toward the 
resolution of this problem. In this paper we pro- 
pose shape models that may be viewed as de- 
formable bodies composed of simulated elastic 
material. By coupling deformable tubes to de- 
formable spines, we create models whose de- 
formations exhibit an affinity for certain 3D sym- 
metries. The shape constraints intrinsic to the 
model are formalized by strain energy function- 
als which dictate the elastic properties of the 
material [1] and by internal coupling forces 
which produce the desired symmetries. 

In this paper we consider axial symmetry con- 
straints inspired by the influential "generalized 
cylinder" model of shape [21. However, two im- 
portant features distinguish symmetry-seeking 
deformable models from generalized cylinders 
and from parametric shape families such as su- 
perquadrics [3, 4]. First, these other models are 

purely geometric, hence passive. In contrast, our 
deformable models are active. They react to ex- 
ternally applied forces as one would expect real 
elastic objects to react because deformable mod- 
els are governed by the variational principles of 
elasticity theory. A second advantage of our mod- 
els is their ability to represent symmetry without 
sacrificing the possibility of representing detailed 
shape information. This stands in contrast with 
existing abstractions of symmetric shape, such as 
the parametric shape families or smoothed local 
symmetries [5]. 

The active response of deformable models sug- 
gests the following framework for object recon- 
struction: Model instances are formed from 
visual data by combining the internal shape con- 
straints with whatever external constraints may 
be derived from the data. The models" internal 
constraints are genetic--while permitting the 
reconstruction of a wide variety of natural 
shapes, they serve to overcome the often highly 
underdetermined nature of the reconstruction 
problem. The external constraints are interpreted 
as external forces applied to the models. The 
framework is based on the dynamics of elastic 
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bodies and reconstruction algorithms can be ob- 
tained in a principled way by applying standard 
numerical solution techniques. 

The symmetry-seeking model developed in 
this paper may be described informally as 
follows: Imagine a deformable sheet made of 
elastic material (a membrane-thin-plate hybrid). 
Take this sheet and roll it to form a tube. Next, 
pass through the tube a deformable wire spine 
made of similar material. At regularly spaced 
points along the spine, couple it to the tube with 
radially projecting (Hookean) spring forces so as 
to maintain the spine in more or less axial posi- 
tion within the tube. Include additional forces 
that coerce the tube into a quasi-symmetric shape 
around the spine. Finally, provide extra control 
over shape by introducing expansion/compres- 
sion forces radiating from the spine. The rigidi- 
ties of the spine and the tube can be controlled 
independently, and their natural rest metrics and 
curvatures can be either prescribed or modified 
dynamically. If the circumferential metric of the 
tube is set to zero, for instance, the tube will tend 
to contract around the spine, unless the other for- 
ces prevail. The model will shorten or lengthen as 
the longitudinal metrics of the tube and spine are 
modified. In short, a variety of  interesting be- 
havior (including visco-elasticity) can be ob- 
tained by adjusting the control variables de- 
signed into the model. 

In this paper, the forces applied to the sym- 
metry-seeking model are derived from mon- 
ocular images. The applied forces deform a 
model in 3-space so that its projection into the 
image plane is consistent with the 2D silhouette 
of an object of interest. The model reconstructs 
3D shapes by achieving a stable equilibrium be- 
tween the externally applied forces and the in- 
ternal stresses due to the model's deformation 
constraints. A user can guide the reconstruction 
process (e.g., push the model into a desired 
equilibrium) by applying additional forces on 
the model though interactive pointing devices, or 
by dynamically adjusting the model's material 
properties or the strengths of its symmetries. 

Because we consider here the restricted case of 
computing 3D models of objects from a single 
monocular image, we tacitly assume that a view- 
point has been chosen wherefrom all significant 
object features are visible, and that the axis of  the 

object is not severely inclined away from the 
image plane. To simplify the extraction of sil- 
houette information in the image-based force 
field computations, we consider images of ob- 
jects with relatively subdued surface texture 
placed before a contrasting background. The 
particular image force field that we have chosen 
to experiment with is obtained by computing the 
image-intensity gradient. This is an admittedly 
simple force field, but our approach readily ex- 
tends to any type of image forces, including those 
that are based on sophisticated image analysis. 

Figure 1 illustrates the reconstruction of a 
crook-necked squash from its image. After the 

(a) (b) 

(c) (d) 

Fig. 1. Reconstruction of a 3D symmetry-seeking model. (a) 
Squash image, (b) User initialized spine~ shown in black, (c) 
Initial tube. (d) Reconstructed model, displayed as wire- 
frames projected into the image. 
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user initializes the spine's projection in the image 
plane somewhere near the true axis of the object, 
the tube begins to inflate due to the internal ex- 
pansion forces. As the model deforms, its con- 
figuration in space is dynamically projected onto 
the image plane where its boundaries are subject 
to image-based forces; specifically, they are at- 
tracted by and lock onto significant image- 
intensity gradients. Complementary computer vi- 
sion and computer graphics operations are 
applied in synchrony during reconstruction [6]; 
(inverse) visual processing constrains and guides 
model formation, while (direct) graphical pro- 
cessing is responsible for the application of ex- 
ternal forces and for providing the user with 
visual feedback. 

In section 2 we compare our models to some 
common geometric models that have been em- 
ployed for object representation. In section 3 we 
define the elastic curve and surface components 
of our model and give their strain energies of 
deformation. Section 4 defines the internal forces 
that couple these components together into the 
system of dynamic equations governing the 
symmetry-seeking model. In section 5 we formu- 
late the image potential functions associated with 
the object reconstruction problem. In section 6 
we present further results, including an example 
involving occluded objects. Finally, section 7 
proposes extensions to our models and to our ob- 
ject reconstruction framework. 

2 Comparison with Existing Shape Models 

The symmetry-seeking model of 3D shape de- 
veloped in this paper draws upon elastically 
deformable surface models for visual surface 
reconstruction [1, 7] and upon the idea of gener- 
alized cylinders first proposed by Binford [2], 
then implemented and further developed in 
several subsequent papers [8-14]. The general- 
ized cylinder model is an intuitively appealing 
abstraction of elongated shapes exhibiting axial 
symmetry. The representation of symmetric 
shape has a long history in computer vision and 
continues to attract much interest [15-19]. 

Our model captures axial symmetry much like 
the generalized cylinder. However, we take seri- 
ously the fact that many objects of interest 

possess only approximate symmetries. A major 
difference between our deformable model and 
generalized cylinders is that, while generalized 
cylinders impose symmetry constraints on objects 
they represent--inevitably with some loss of 
detailed shape information--our model ex- 
presses preference for certain symmetries through 
its internal forces, but it is not limited to shapes 
that possess these symmetries exactly. 

The broad representational power of deform- 
able models results by virtue of their distributed 
nature; every material point potentially con- 
tributes three spatial degrees of freedom. These 
degrees of freedom are mutually constrained, as 
tightly or as loosely as is desired, by the elastic 
strains internal to the model. As the internal for- 
ces are strengthened, the symmetry-seeking 
model will tend to impose the exact symmetries 
of a generalized cylinder. Conversely, by suf- 
ficiently weakening the internal forces, the model 
becomes capable of representing highly irregular 
objects including, in principle, quasi-symmetric 
objects with fractal-like surface structure. This 
assumes, of course, that sufficient constraint is 
maintained so that the reconstruction problem 
remains well-conditioned for the image data 
under consideration. Shape representations cap- 
able of applying constraint in this controllable 
manner are attractive for reconstruction and 
recognition; an early example is the spring- 
template-shape model proposed by Fischler and 
Elschlager [20]. 

The beometric coverage of deformable models 
can be significantly broader than the lumped- 
parameter families of shapes such as the super- 
quadric models developed for computer graphics 
by Barr [3] and later advocated for use in com- 
puter vision by Pentland [4]. These lumped- 
parameter models are capable of accurately rep- 
resenting only a restricted class of objects be- 
cause they ~'wire into the parameterization" a 
relatively small family of shapes, rather than 
place generic constraints on shape as do our 
deformable models. Lumped-parameter models 
cannot immediately accommodate most objects 
of interest, so objects must be hierarchically sub- 
divided into compatible primitives that may then 
need to undergo shape transformations [21]. 
Reliably automating the subdivision and subse- 
quent parameter-fitting steps remains a complex 
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and very open problem, especially when attempt- 
ing to represent natural shapes for the purposes 
of vision 112, 22]. 

3 Deformable Curves and Surfaces 

Let x = (xj . . . . .  xp) be a point in a p-variate 
material coordinate system, and let (X, Y, Z) be a 
point in Euclidean 3-space. A 3D deformable 
model is given by the image of  the unit p-cube in 
coordinate space [0, 1] e under  the mapping v(x) = 
(Vl(X), o2(x), o3(x)). We assume v to be a regular 
mapping in the sense that the vectors a~ = Ov/Ox~ 
for ct = 1 . . . . .  p are linearly independent  for all 
points x E [0, 1] r. 

A deformable space curve is a mapping from a 
univariate material coordinate space to Euclid- 
ian 3-space, while a deformable surface is a 
mapping from a bivariate coordinate space to 3- 
space. In either case, the mapping v determines 
the configuration of the deformable model in 3- 
space. For instance, v may represent a displace- 
ment away from a prescribed rest configuration. 
In this paper, however, it represents the 3-space 
positions of material points in the model; i.e., 

v l(x) = X(x)  

v2(x) = Y(x) (1) 

v3(x) = Z(x)  

The deformable material is characterized by a 
functional ~(v(x)) which associates a non-nega- 
tive strain energy with any admissible mapping. 
In our deformable models, g' is a p-variate in- 
stance of the controlled-continuity spline func- 
tionals defined in [7]. 

According to continuum mechanics, the non- 
rigid motion of a massless deformable body in a 
viscous ambient  medium, in response to a net ex- 
ternally applied force f[v(x)], is dictated by the 
first-order dynamic equation 

Ov(x) 8 ~lv(x)]  
Y ~ + 8v - fly(x)] (2) 

where y is the dissipation factor of the medium 
[23]. The second term on the left-hand side of the 
equation is the variational derivative of  the strain 
energy functional; it expresses the internal elastic 

force of the model. The model achieves equi- 
l ibrium when Ov/Ot = O. 

3.1 A Deformable Spine Model 

The spine model is a deformable space curve. To 
formulate it, we employ the scalar (p = 1) coor- 
dinate space x = s C [0, l]. The deformation en- 
ergy associated with a configuration v(s) = [X(s), 
Y(s), Z(s)] is given by 

l f01 ~s(,)  __ ~ w,(s) l,~l = + w~(s) lv,,I 2ds (3) 

where the subscripts of v denote derivatives with 
respect to the independent variable s. 

Ignoring boundary terms, the variational 
derivative of d "s is given by 

8 ~ s - 02 [ O2v'~ O ( 0 v )  
8v O s 2 t w 2 f f  ~-s 2 ) - f f  s W ' Oss (4) 

The weighting functions control the material 
properties: wl(s) controls the tension along the 
spine, while w2(s) controls rigidity of the spine. In 
particular, setting w,(so)= w2(so)= 0 permits a 
position discontinuity and setting w2(so) = 0 per- 
mits a tangent discontinuity to occur at so [7]. 

We associate with the spine a metric function 
L(s) which prescribes the natural arc length of the 
space curve as a function of s. This metric is in- 
troduced into (4) by defining Wl(S) = 

V/X~ + y~ + Z~ - L(s). The natural curvature C(s) 
is prescribed by defining w~(s)= •(s) -  C(s) 
where K(s) is actual curvature along the curve. 

3.2 A Deformable Tube Model 

The tube is composed of deformable sheet ma- 
terial. Using the p = 2 coordinate space x = 
(x,y) C [0, 1]:, the deformation energy of the con- 
figuration v(x,y)= [X(x,y), Y(x,y), Z(x,y)] is 
given by the functional 

1 £ ' £ '  
~Rv)  = ~ W,,o I vx I :  + wo,, I v~ I ~ 

+ w2.01 v~x 12 + 2w,., Ivxyl 2 

+ wo.2lvyel'-dxdy (5) 

where the subscripts of  v denote partial deriva- 
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fives with respect to the independent variables x 
and y. 

Ignoring boundary terms, the variational 
derivative of ~ is given by 

Sv - Ox ~ w2.o Ox 2] + 2 0 x O y -  wH Ox Oy 

+ OS~ Wo,2 Oy 2 j (6) 

-- 0 (WO, I~y) Ox 

The natural metric of the sheet along each 
material coordinate curve is introduced into (6) 

by definingw~.o(x,y ) = v/X~ + y2 + Z~ -Ll ,o(x ,y  ) 
and Wo,~(x, y) = x/X~ + y~ + z~ - Lo.~(x, y). Anal- 
ogous expressions for W2,o(X,y), wH(x,y ), and 
Wo.2(x, y) determine the sheet's natural curvatures, 
and discontinuities are inserted as described 
above (see [7] for details). 

The tube is formed by prescribing boundary 
conditions on two opposite edges of the sheet that 
"'seam" these edges together. We choose to seam 
the edge x = 0 to the edge x = 1, letting y span the 
length of the tube. The required periodic bound- 
ary conditions are 

v(O,y) = v( l ,y) ,  v~(O,y) = vx(1,y) (7) 

4 The Symmetry-Seeking Model 

We introduce three forces of interaction between 
the tube and the spine: The first force coerces the 
spine into axial position within the shell, the sec- 
ond predisposes the tube to radial symmetry 
around the spine, and the third controls expan- 
sion or contraction of the tube around the 
spine. 

To couple the two components, we first identify 
y-= s, bringing into correspondence the spine 
coordinate with the coordinate along the length 
of the tube (see figure 2). We then distinguish the 
configuration vector function of the spine vS(s) 
from that of the tube vr(x, s) with superscripts S 
and T. 

We define ~r(s) = l(s)-'  f~ vr(x, s) ] Vsr(X, s) ldx 
to be the centroid of the coordinate curve (s = 

to be the centroid of the coordinate curve (s = 
constant) circling the tube, whose length is given 

1 T by l(s) = f0 ] v;,(x, s)]dx. We also define the tube's 
radial vector function with respect to the spine as 
r(x,s) = vr(x ,s ) -  vS(s), the unit radial vector 
function f(x, s) = r(x, s)/I r(x, s) 1, and ~(s) = l(s) -I 
f~ [ r(x, s)[1 v~(x, s) [dx, the mean radius of the coor- 
dinate curve s = constant. 

The spine is coerced into an axial position 
within the tube by introducing the following 
forces on the spine and tube respectively: 

faS(S) = a(s)l~r(s) -- vS(s)] 

g ( x ,  s) = -a ( s ) l ( s ) - ' lV~(s )  - v~(s)l (8) 

where a(s) controls the strength of the force. 
To encourage the tube to be radially symmetric 

around the spine, we introduce the following 
force on the tube: 

fr(x, s) = b(s)(~(s) - [ r(x, s) I )f(x, s) (9) 

where b(s) controls the strength of the force. 
Finally, it is useful to provide control over ex- 

pansion and contraction of the tube around the 
spine. This is accomplished by introducing the 
force 

f~(x, s) = c(s) f (x ,  s) (1 O) 

where c(s) controls the strength of the force. The 
tube will inflate wherever c > 0 and deflate 
wherever c < 0. In particular, the two open ends 
of the tube can be cinched shut by assigning large 

~3 

0 
/ /  

/ 
/ /  

, , /  
X 

I 

Fig. 2. The parameter iza t ion  o f  the 3D model.  
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negative values to c(0) and c(1), thereby creating a 
sausage-like surface. 

Summing the above coupling forces into the 
dynamic equations (2) associated with the spine 
and tube, we obtain the following coupled dy- 
namic system describing the motion of the 
symmetry-seeking model: 

Ov s 8 ~s OpS s 
Y - ~ - +  8v ~ -  0v ~ + fa  

Ov r 8 gr Opt 
T ~ - +  8v ~ -  Ov ~ +far + f ~  + f y  

(11) 

The elasticity terms on the left-hand side of these 
coupled equations are given by (4) and (6) (with 
y = s in the latter), and ps and pr are generalized 
potential functions associated with the external 
image-based forces applied to the spine and 
tube respectively. 

5 Image Potentials 

Given the image I(q, 0 of an object, our re- 
construction approach applies image-based for- 
ces that deform the symmetry-seeking model to 
make its shape consistent with the object's sil- 
houette (occluding contour) in the image. We for- 
mulate a force field of attraction towards signifi- 
cant image intensity gradients which, by assump- 
tion, characterize occluding contours in our re- 
stricted domain. The limb (occluding boundary) 
of the deformable tube is made sensitive to this 
force field. Although this simple force field which 
acts parallel to the image plane is our first at- 
tempt at illustrating the feasibility of our ap- 
proach, we show in the next section that it none- 
theless yields interesting results. 

The coupling between the force field and the 
tube is through the external generalized potential 
function pr. We define 

prIvT(x, s)] = V(x, s) I V{Go * I(nIvr(x,  s)l)} I 
(12) 

which imparts on the tube boundary an affinity 
for steep image intensity changes. Here, Go * I 
denotes the image convolved with a (Gaussian) 
smoothing filter whose characteristic width is 
O. 

The operation II[vr(x, s)] denotes a projection 
of the material point 3-space coordinates IX(x, s), 
Y(x, s), Z(x, s)] into the image plane 0q, 0. While a 
perspective projection is generally appropriate, 
we have obtained satisfactory results in the ex- 
amples considered below using an orthographic 
projection I-I(X, Y, Z) ---* 0q, 0: (q, 0 = (X, Y). 

The weighting function ~t(x, s) is nonzero only 
for material points (x, s) near occluding bound- 
aries of the tube, which are selected by setting 

1 - l i" n(x, s) l i f l i .  n(x,  s) l < t 
W(x, s) = O, otherwise 

(13) 

where n(x, s) is the unit normal of the tube at 
(x, s), i is the unit normal to the image plane, and t 
is a small threshold (nominally 0.05). 

The spine of the model may be projected into 
the image in a similar fashion, where it can be 
subjected through ps to its own set of forces, but 
our experiments did not exercise this feature. 

6 Implementation and Results 

To solve the reconstruction problem, we numer- 
ically simulate the nonlinear, first-order dynamic 
system (11) to equilibrium: u s, u r such that OuS/ 
Ot = 0 = Our/&. The dynamic system is dis- 
cretized using standard numerical methods [24]. 
Finite difference techniques are used to dis- 
cretize the time derivatives and the variational 
derivatives 8 ~[vS(s)]/Sv s and 8 8T[vr(X, S)]/8V r (see 
[1] and [25]). Finite differences and numerical in- 
tegration are used to compute the internal coupl- 
ing forces. The image force OPr[vr(x, s)]/Ov r is 
computed numerically in the image domain (q, ~) 
using bilinear interpolation and first-order cen- 
tral differences. 

We have employed successfully both an ex- 
plicit Euler time-integration scheme and an 
analogue to successive-overrelaxation to solve 
the discrete-time equations to equilibrium. These 
iterative solution methods require only local 
operations, and the former is a parallel scheme. 
We have observed a significantly greater range of 
stability with an implicit Euler time-integration 
scheme in conjunction with direct solution me- 
thods [26]. We have also had success with the 
alternating direction implicit method, a hybrid 
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technique that combines some of the benefits of 
direct and iterative schemes. 

Our first example of constructing a 3D model 
involves the squash image shown in figure l(a). 
Figure 3 shows several frames from an animation 
sequence of the reconstruction process, followed 
by a rigid rotation of the resulting 3D model in 
space. The 3D model is rendered as a shaded 
space. 

The second example involves the reconstruc- 
tion of two quasi-symmetric objects, a pear and a 
potato, from a single image. Figure 4(a) shows the 
grey-level image of the still life scene. Figure 4(b) 
shows the initial model configuration, manually 
specified by the user. As shown in figure 4(c, d), 

our present techniques allow us to reconstruct 
complete 3D models of the objects. By virtue of 
the symmetry-seeking constraints intrinsic to the 
model, the invisible portions of surfaces have 
been smoothly extrapolated from portions in 
view. Figure 5 compares the 3D model recon- 
struction with a 2.5D visible-surface reconstruc- 
tion of the still life scene. The 2.5D reconstruc- 
tion of the stereo images shown was carried out 
using a stereo algorithm developed in an earlier 
paper [25]. 

Notice that the potato partially occludes the 
pear in the image. The results demonstrate that 
our approach can accommodate partially oc- 
cluded objects (incomplete boundaries). To han- 

(a) (b) (c) 

(d) (e) (f) 

Fig. 3. Reconstruction of a squash. (a) Squash image. Selected frames from an animation sequence are shown: (b) Initial state of 
the 3D model. (c) Intermediate shape during reconstruction. (d) Final reconstructed model. (e, f) Model rotating rigidly in 
space. The 3D model is rendered as a shaded shell. 
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(a) 

i 

(b) 

(c) (d) 

Fig. 4. Reconstruction of a still-life scene with symmetry-seeking deformable models. (a) Image of the scene. (b) Initial, user- 
specified configurations of the 3D models. Two graphically rendered views of the reconstructed still life: (c) frontal view of the 3D 
models; (d) side view. 

dle occlusions, we inhibit the image forces from 
acting on the partially occluded model wherever 
its projection onto the image plane happens to be 
obscured by the projection of an occluding 
model. We use a 3D ray-casting technique in 
conjunction with the projection operation II in 
(12) in order to determine those portions of mod- 
els that are occluded by other models and must 
therefore be inhibited. The ray-casting operation 
requires knowledge of the relative depth ordering 
of the objects. Since our current reconstruction 
process is driven by only a single monocular 
image, this information is not available directly 
(but see [27]). The user presently specifies the 

relative depth ordering; however, local depth or- 
dering information can be obtained through 
automatic means [28]. 

It is our experience that the user need not in- 
itialize the spine (or shell) of the model with any 
great accuracy. Typically, the user draws a rough 
medial axis running more or less the length of the 
object of interest in the image. From such an ini- 
tial configuration, the reconstruction process can 
successfully make the necessary adjustments to 
the spine and shell. It may be possible to auto- 
matically instantiate a reasonable spine by ap- 
plying medial axis [15] or smoothed local sym- 
metry [5] algorithms to the image. 
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(a) (b) 

7!' ", ,~' ::: = ~ : ~ :  :~ 
~iiii 

(c) (d) 

Fig. 5. Comparison of the 3D model reconstruction with a 2.5D visible-surface reconstruction of the still life scene. (a, b) Stereo im- 
ages of scene. (c) 2.5D recontruction using stereo matching techniques (from [25]). (d) 3D model reconstruction. 

7 Extensions 

The symmetry-seeking model developed in this 
paper has been designed to represent elongated 
objects that possess quasi-axial symmetry, and 
test objects have therefore been chosen appro- 
priately. By introducing other internal forces into 
the model, however, preferences can be induced 
not only for the axial symmetries studied here, 
but for any sort of regularity, such as spherical or 
mirror symmetry. Furthermore, it appears possi- 
ble to incorporate a weighted combination of for- 
ces associated with multiple symmetry states into 
a single deformable model. An interesting goal 
would be to have the multisymmetric deformable 

model autonomously "~infer'" the symmetry state 
most appropriate for an unknown object under 
consideration, possibly by computing the solu- 
tion to an optimization problem in the weight- 
parameter space. 

One of the most important virtues of the de- 
formable models developed in this paper is the 
possibility of using their underlying variational 
formulations to integrate multiple sources of 
visual information [29]. Physically, each infor- 
mation source makes a contribution to the net 
force field acting on the model. Information 
derived from higher-level sources--attentional 
mechanisms, top-down knowledge-based in- 
ference processes, a human operator, etc.--can 
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be used to instantiate the model and to guide the 
reconstruction process. The same is true regard- 
ing low-level information computed over multi- 
ple scales. 

The model can exploit multiscale information 
to autonomously avoid grossly suboptimal fixed 
points of (11) that may hinder reconstruction. In 
our present technique, suboptimal equilibria 
usually arise from significant intensity gradient 
fluctuations that can intervene between the in- 
itial configuration of the shell and the silhouette 
of the object (e.g., due to surface markings; how- 
ever, the internal expansion forces routinely 
drive the model over nominal intensity fluc- 
tuations arising from subdued surface texture). 
The reconstruction process may be guided away 
from undesirable fixed points using the scale- 
space continuation technique developed in [25]. 
To apply this technique, the external potential 
function given in equation (12) is interpreted as 
defining an embedding, where the characteristic 
width c of the Gaussian filter Go serves as a con- 
tinuous scale parameter for a parameterized 
family of dynamic equations (11). The continua- 
tion method yields an extended dynamic system 
governed by these parameterized equations 
coupled to an additional equation governing the 
evolution of c. This deterministic system finds a 
good fixed point of(11) at a coarse scale (large c), 
then tracks it continuously to a fine scale (small 
a), avoiding suboptimal fixed points along the 
way. 

As our examples show, 3D deformable models 
can be reconstructed directly from an image 
using meagre quantities of information. Al- 
though the computation of intervening "intrinsic 
image" or 2.5D surface representations may not 
be strictly necessary [30], there is no reason why 
the deformable model cannot beneficially assim- 
ilate quantitative or qualitative information from 
these types of representations. Similarly, stereo, 
motion, shading, and texture information may be 
integrated into a richly redundant force field 
which would sufficiently constrain the model 
over a more general class of reconstruction prob- 
lem than the one considered here. 

We have recently integrated stereo and motion 
information into the symmetry-seeking model 
[27]. The 3D model undergoes nonrigid motion 
in space, subject to forces emanating from dy- 

namic stereoscopic images. The stereo forces 
move model boundary points laterally and in 
depth such that their binocular projections are 
consistent with the evolving object silhouettes in 
both the left and fight images. We have demon- 
strated this approach by reconstructing the shape 
and the nonrigid motion of a 3D natural object. 
The explicit depth information extracted from 
the stereo force enables the model to reconstruct 
objects whose axes may be oriented obliquely 
with respect to the image plane. This depth infor- 
mation is also employed to determine interobject 
occlusion for the ray-casting operation men- 
tioned in the previous section. 

When mass distributions are added to our 
formulations, deformable models inherit realis- 
tic second-order dynamics [26]. These models 
not only appear promising for reconstructing 
free-form natural objects undergoing nonrigid 
motion, but they also offer a powerful approach 
to creating realistic graphical animation of simu- 
lated objects possessing such properties [31]. The 
purely geometric models in common use offer no 
such possibilities. 
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