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Abstract

This paper describes research on the ARK (Au-
tonomous Mobile Robot in a Known Environment)
project. The technical objective of the project is to
build a robot that can navigate and carry out sur-
vey/inspection tasks in a complex but known indus-
trial environment. Rather than altering the robots
environment by adding easily identifiable beacons the
robot relies on naturally occurring objects to use as vi-
sual landmarks for navigation. The robot is equipped
with various sensors that are used to detect unmapped
obstacles, landmarks and objects. This paper de-
scribes the robot’s industrial environment, it’s control
architecture, and some recent results in processing the
robot’s range and vision sensor data for navigation.

1 Introduction

The ARK (Autonomous Robot for a Known Envi-
ronment) Project is a precompetitive research project
involving Ontario Hydro, the University of Toronto,
York University, Atomic Energy of Canada Ltd., and
the National Research Council of Canada. The project
started in September 1991 and will be completed in
August 1995. The technical objective of the project
is to develop a sensor-based mobile robot that can
autonomously navigate in a known industrial environ-
ment.

There are many types of industrial operations and
environments for which mobile robots can be used to
reduce human exposure hazards, or increase produc-
tivity. Examples include inspection for spills, leaks, or
other unusual events in large industrial facilities, ma-
terials handling in computer integrated manufacturing

1301

environments, and the carrying out of inspections, the
cleaning up of spills, or the carrying out of repairs in
the radioactive areas of nuclear plants - leading to in-
creased safety by reducing the potential radioactive
dose to workers.

The industrial environment is significantly different
from office environments in which most other mobile
robots operate. The ARK project will produce a self-
contained mobile robot with sensor-based navigation
capabilities specifically designed for operation in a real
industrial setting. The ARK robot is currently being
tested in the large engineering laboratory at AECL
CANDU in Mississauga, Ontario. This open area cov-
ers approximately 50,000 sq. feet of space and accom-
modates one hundred and fifty employees. Within the
Laboratory, there are test rigs of various sizes, mock-
ups of reactor components, a machine shop, a fab-
rication facility, a metrology lab and assembly area.
There are no major barriers between these facilities
and therefore at any one time there may be up to fifty
people working on the lab floor, three fork lift trucks
and floor cleaning machines in operation. Such an
environment presents many difficulties that include:
the lack of vertical flat walls; large open spaces (the
main isle is 400’ long) as well as small cramped spaces;
high ceilings (50°); large windows near the ceiling
resulting in time dependent and weather dependent
lighting conditions, a large variation in light inten-
sity, also highlights and glare; many temporary and
semi-permanent structures; many (some very large)
metallic structures; people and forklifts moving about;
oil and water spills on the floor; floor drains (which
could be uncovered); hoses and piping on the floor;
chains hanging down from above, protruding struc-
tures, and other transient obstacles to the safe motion
of the robot[12].



Large distances, often encountered in the industrial
environment, require sensors that can operate at such
ranges. The number of visual features (lines, corners
and regions) is very high and techniques for focusing
attention on specific, task dependent, features are re-
quired. Most mobile robotic projects assume the exis-
tence of a flat ground plane over which the robot is to
navigate. In the industrial environment this ground
plane is generally flat, but regions of the floor are
marked with drainage ditches, pipes and other unex-
pected low lying obstacles to movement. The ARK
robot requires sensors that can reliably detect such
obstacles.

The ARK robot’s onboard sensor system consists
of sonars and one or more ARK robotic heads and a
floor anomaly detector (FAD). The head consists of a
colour camera and a spot laser range finder mounted
on a pan-tilt unit[8] and a photo of the head is given
in Figure 1. The pan, tilt, camera zoom, camera focus
and laser distance reading of the ARK robotic head are
computer controlled. The ARK project is investigat-
ing different technologies for Floor Anomaly Detection
(FAD) to detect objects on the floor that cannot be de-
tected by the sonar system and are too large for ARK
to traverse. One technology that is being developed
is a laser based system built around the NRC BIRIS
laser head[1]. A second approach is to use stereo vi-
sion to localize potential floor anomalies. Some detail
of this second approach are described later in this pa-
per.

The ARK robot must navigate through its environ-
ment autonomously and cannot rely on modifications
to its environment such as the addition of radio bea-
cons, magnetic strips beneath the floors, or the use of
visual symbols added to the existing environment. In
order to navigate within this environment the ARK
robot uses naturally occurring objects as landmarks.
The robot relies on vision as its main sensor for global
navigation, using a map of permanent structures in the
environment (walls, pillars) to plan its path. While
following the planned path, the robot locates known
landmarks in its environment. Positions and salient
descriptions of the landmarks are known in advance
and are stored in the map. The robot uses the mea-
sured position of the detected landmarks to update its
position with respect to the map.

In this paper we describe some recent research as-
pects of the project. In particular we concentrate on
environmental path planning, the reactive control sys-
tem, colour based detection of objects and 3D scene
segmentation using the combined visual / range sen-
sor.

2 Mobile Platform and Sensors

The ARK project will eventually construct two
prototypes: one at the University of Toronto and
the other at AECL. ARK-1 (at Toronto) is being
jointly constructed by university and industry person-
nel. ARK-1 is used to test the ideas, sensors and al-
gorithms that will ultimately be included in ARK-2.
ARK-1 computation is primarily performed on-board
using standard workstations, while ARK-2 will uti-
lize special purpose realtime computers and most of
the computation will be performed on-board. Both
robots use visual data obtained through active vision
processes as a primary source of sensing for the robot.
They also use non-visual sensors such as infrared,
sonar and laser range-finders. Both ARK robots are
based on the Cybermotion Navmaster platform.

2.1 Mobile Platform

The main hardware components of the ARK-1
robot are a Navmaster mobile platform from Cyber-
motion, and a robotic head with sensors and a remote
link to a host computer network. The platform con-
sists of a base with three wheels and a rotating tur-
ret. The Navmaster comes equipped with a contact
sensitive bumper and six sonars, two of them face
forward, two backward and two sideways. We have
experimented with using additional sonars mounted
on the turret or the bumper to enhance the interpre-
tation of the sonar data[15]. Multiple return signals
were combined in a three dimensional grid in robot
coordinates using a Bayesian update rule. Additional
readings were obtained by small movements (less than
1 m) of the robot. This approach helped to map more
accurately obstacles in front of the robot and to reduce
the influence of noisy return signals.

The ARK-1 robot communicates with a network of
host computers via an 8-channel remote serial link.
The communication between the robot and the host
is on the level of processed signals from sensors and
commands sent to the robot. The on-board comput-
ers collect the data from various sensors, preprocess
it and send it via the radio link to the host com-
puter network. The computers in the network ana-
lyze this data, and generate commands for individual
units of the robot (platform, head, sonar controllers,
range-finder). The on board computers perform time
critical functions such as emergency stop, positioning
the head and moving the platform. The host net-
work of computers consists of a multiprocessor SGI
Power Series 4D380 and several Sun SPARC 2 work-
stations, all running the Unix operating system. This
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arrangement is particularly convenient for software de-
velopment but it does make it difficult to experiment
with real-time issues on the platform. The non-real-
time nature of the Unix operating system combined
with unpredictable delays in the serial modem con-
spire against real-time control.

In ARK-2, most of the computation, such as pro-
cessing and interpretation of data from various sensors
and generation of control commands, will be done on
board. The communication link in ARK-2 is based
upon a wireless ethernet link which has a much higher
bandwidth than is currently available with the serial
link on ARK-1. In addition ARK-2 has a wireless
video link which runs independently of the wireless
ethernet. The wireless link on ARK-2 will be primar-
ily used for exchanging messages between the robot
and an operator. The on board computer will operate
under control of the real-time operating system.

2.2 Combined Vision / Range Sensor

A novel laser/vision sensor (Laser Eye) has been in-
stalled on the ARK turret. This sensor provides colour
images and range data to distances up to 100m which
are typical for the industrial environment. The Laser
Eye is a combined range / video sensor consisting of a
camera and a laser range-finder[8]. The range-finder
uses the time-of-flight principle and provides a single
depth measurement for each orientation of the sensor.
Measuring distances to objects in the scene requires
pointing the sensor at each of them in turn and read-
ing their depth. The range-finder uses an infra-red
laser diode to generate a sequence of optical pulses
that are reflected from a target. The time required to
travel to and from the target is measured to estimate
the distance.

The laser-eye has four degrees of freedom: two ex-
trinsic - head pan and tilt, and two intrinsic - camera
zoom and focus (see Figure 1). The head can tilt in
any direction between 65 degrees below and 95 degrees
above the horizon and the panning range covers 360
degrees. The head can rotate with speeds exceeding
180 degrees per second.

The range-finder measures distance to an object in
the centre of the camera field of view. The co-linearity
of the camera optical axis of and that of the range-
finder is achieved by using a hot mirror (one that re-
flects infra-red and transmits visible light) placed in
front of the camera lens. The mirror transmits the
visible light from the observed scene to the camera
with minimum attenuation. The hot mirror reflects
the transmitted infra-red beam and sends it in the
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Figure 1: Laser eye - The robot head with a combined
vision and range sensor.

direction of the optical axis of the camera. The re-
turning pulse is reflected by the hot mirror again and
projected on a detector in the range-finder[8]. A single
range measurement takes 0.12 - 0.5 second depending
on the selected accuracy. The time required to point
the head in a new direction depends on the required
rotation.

2.3 Using vision for FAD

The floor of an industrial environment can be very
complex. The AECL bay, for example, contains
drainage ditches (which can be open), cables, ducts,
etc., which are temporally varying structure which can
prevent the safe passage of the robot. Note that un-
like wall structure in a corridor environment which will
typically be sensed by touch sensors if the robot ap-
proaches the obstacle too closely, the drainage ditches
in the AECL bay could simply cause the robot to fall
into them and tip over, resulting in serious damage to
the robot. Before moving the robot onto a particular
piece of the floor it is important to insure that the
floor is traversable.

Two different approaches are being considered un-
der the ark project for Floor Anomaly Detection
(FAD). The first is based upon the use of a laser stripe
sensor using the BIRIS sensor developed by the Na-
tional Research Council (NRC) in Ottawa. This sen-
sor utilizes a laser stripe to scan the floor for obstacles
and utilizes the motion of the robot to sweep out floor



surfaces before the robot passes over them.

A second approach that is being considered is to
use stereo vision to verify that the floor in front of
the robot is solid. In a typical stereo vision applica-
tion, objects in one camera are matched with objects
in the other and these correspondences coupled with
the known geometry can be used to identify the three
dimensional location of structure in the environment.
Perhaps the most difficult task in stereopsis is the de-
termination of the correspondence of features in one
camera with features in the other. For a FAD detector,
however, it is not necessary to determine the corre-
spondences for arbitrary scene structure. Rather it is
only necessary to determine correspondences for struc-
ture that lies near a particular 3D plane (the floor). If
the cameras are modelled as pinhole cameras then it
is possible to warp one of the images so that the floor
has zero disparity (see [5] for a sample derivation and
also (3]).

Matching the raw left and right images for points to
determine if they are on the floor would be very com-
plex. Points in the warped right image which lie on the
floor have zero horizontal and vertical disparity while
objects which do not lie on the floor (such as the pen,
cup and book) have non-zero disparities. For FAD, lo-
cations which cannot be verified as being on the floor
are regions of potential hazard and should be avoided.
A number of different computational techniques are
begin investigated for verifying a (near) zero disparity
surface in front of the robot.

3 Control Architecture

The ARK control system consists of two levels: a
high level and a low level reactive system. The high
level is responsible for planning robot actions, global
path planning, selecting landmarks for sighting and
interactions with the user. The low level, reactive
component of the control system, uses the on board
obstacle avoidance system of the platform to detect
obstacles and to navigate around them.

The path planner assumes that the low level reac-
tive control structure will safely execute segments of
the plan in the presence of unmodelled or unexpected
obstacles. By breaking the path planning process into
a GOFAIR (Good Old Fashioned AI and Robotics)
task which can be processed using classical Al tools,
and a real time reactive process which can be pro-
cessed using a real time safety critical system imple-
mented as a subsumption architecture, ARK takes ad-
vantage of the best of both paradigms.
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3.1 Position Estimation and Global Path
Planning

The global navigation system uses visual landmarks
to update the robot position estimate. A dead reck-
oning system on the platform measures the distance
travelled and provides the current orientation. The
positional error introduced by the dead reckoning sys-
tem accumulates over time and has to be corrected
by measuring the robot position with respect to land-
marks stored in the map. The map is represented as a
2D floor plan that contains permanent objects, semi-
permanent objects entered by the user, obstacles de-
tected by the robot and landmarks. Each location in
the map is annotated with landmarks that are visible
from this location. A Kalman filter is used to update
the current position estimate[10]. The high level con-
trol system assumes the presence of a low level reactive
control system that can execute the path created by
the high level.

3.2 Reactive Control

The high level planner communicates with the reac-
tive subsystem through a very simple set of operations
that assumes the reactive phase of the planner will
operate autonomously and asynchronously; attempt-
ing to achieve the current subgoal(13]. The low level
control of the robot is based around the subsumption
approach described by Brooks[2].

The robot is guided by a set of behaviours that
operate in parallel. Each behaviour maps a sen-
sory reading from the robot’s environment into an
external action of the robot. Conflicting behaviours
are arbitrated based on an absolute prioritization of
behaviours. There are three basic behaviours that
control the robot: move, avoid, and escape. Avoid
watches for an obstacle detected by the front sensing
sonar. If an object appears the avoid behaviour stops
the robot, and turns it to a new direction so that the
robot will not collide with the obstacle. The escape
behaviour watches for an obstacle directly in front of
the tobot, in which case, it causes the robot to back-
up and then to turn to a new direction. The escape
behaviour helps to get out of certain deadlocks that
may occur with the avoid behaviour when the robot
gets stuck in a corner. The move behaviour steers the
robot towards a precomputed goal position.



4 Using Vision for Navigation

Computer vision plays a major role in the ARK
project. The ARK robot uses vision to detect and
track landmarks and to search for other known ob-
jects. Subsequent surveys and preliminary vision test-
ing have yielded many potential candidates for ARK
landmarks in the AECL bay. It is important that
these landmarks not only image well but that they oc-
cur frequently. Typical landmarks within the AECL
laboratory consist of alpha-numeric location signs, fire
extinguisher markers, doorways, overhead lights, and
pillars. The only criteria used for selecting landmarks
is that they are distinguishable from the background
scene by colour or contrast. These criteria allow the
use of both grey level and colour image processing al-
gorithms for landmark identification.

5 Detecting Landmarks and Objects
Using Colour

Visually searching for objects requires scanning the
environment or checking expected locations with a
camera.When searching for a landmark the robot can
predict where to point the camera as it knows its own
approximate location on the map and the coordinates
of the landmark. Uncertainty in the robot’s position
requires selecting a wide field of view for the camera.
An attention mechanism that selects potentially “in-
teresting” locations in an image or environment signif-
icantly speeds up and simplifies the search. Features
such as intensity, colour, high contrast, motion and
presence of significant edges are often used to focus at-
tention. Once ¢andidate locations have been selected,
each of them is inspected closely to verify the presence
of the target object.

Colour is used to identify possible candidates in
an image. The colour classification scheme consists
of an off-line training phase and an on-line classi-
fication of pixels on a real-time image processor[7].
Colour information is used for pixelwise classification
of images and assigning pixels to possible target can-
didates or background classes. Real-time performance
is achieved by creating look up tables (LUTSs) during
the training phase and using fast indexing during the
on-line classification.

5.1 Real-time Colour Classification

Classification of every pixel in the image is a com-
putationally expensive task. Modern image process-

1305

ing systems are often equipped with large look up ta-
bles that allow for real-time processing of every pixel.
Combination of multiple data streams, for example
RGB, into one channel enables us to index into the
LUT and achieve the real-time performance of an ar-
bitrary (non-linear) conversion. The nature of this
conversion is determined by the contents of the LUT.
The problem is how to create a LUT that will effec-
tively capture the important variability of the data.

Resolution of the feature space can reach 22* (3 x 8
bit colour bands) for standard colour cameras. Often
it is sufficient to operate on smaller arrays. There are
hardware limitations as well, for example, the Dat-
acube MV20 advanced processor, used in the project,
has a look up table with a maximum of 64 k entries.
The contents of look up tables are often determined
by manual selection. A more systematic approach uses
training by showing examples and manually delineat-
ing the objects of interest. Cells in colour space, cor-
responding to the feature combinations present in the
training set, are assigned to appropriate classes. For
low resolution of the feature space (200 cells) such a
technique is sufficient, as camera noise and blur create
dense clusters[14]. For high resolution look up tables
containing, for example 64 k cells, this approach is not
reliable as insufficient training data creates “holes” in
the feature space. Such holes cause misclassification
of the data. Various heuristic techniques of filling the
space have been used to bridge the gaps[11].

5.2 Implementation and Results

The training phase (clustering and creation of the
LUT) is implemented on a Unix host. The real-time
colour classification i1s implemented on the MaxVideo
20 image processing system. The classifier is trained to
detect red and green circular plates similar to the ones
displayed on the wall in the scene shown in Figure 2.

Figure 3 shows the results of pixelwise classification,
filtering and reconstruction of large blobs representing
red and green classes. The results of this processing
are not perfect - both red plates have been detected
but among the four green candidates only one corre-
sponds to the target object. Also, detection of indi-
vidual plates is not perfect as regions in the shade or
reflecting light are misclassified. Different techniques
could be used to decide whether the detected blobs
correspond to valid objects or not. At this resolution,
however, it might be difficult to decide if the shape
deformations are caused by noise, particularly if the
sensor is positioned at a difficult viewing angle. It is
much better to point the robotic head at every candi-



Figure 2: An office scene with coloured objects (lumi-
nance is shown only).

Figure 3: Real-time colour detection and reconstruc-
tion of object candidates from Figure 2
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date in turn and then acquire and process a new set
of images.

Each detected candidate is described by a set of pa-
rameters that define its position in the image, size and
location of its bounding window. The new orientation
of the head is calculated from a kinematic model of
the head that includes the pan, tilt and the initial size
of the field of view. The new setting for zoom is se-
lected so that the blob of interest is fully included in
the new view but dominates the field of view.

6 Using Vision and Range for Navi-
gation

The robotic head with the Laser Eye provides
colour images and sparse range measurements at dis-
tances up 100 m. With the current version of the head
we can obtain sparse range measurements at a rate
over 2 Hz. For the real-time operation of the robot
it is important to minimize the number of measure-
ments. We use image data to plan where to point the
range-finder[6,8].

We assume that nearly all significant depth dis-
continuities in the scene coincide with the boundaries
of detected regions. This assumption requires that
the initial segmentation creates an over- rather than
under-segmented representation of the image. The
under-segmentation can cause potential problems as
it requires additional depth measurements to split the
region along a depth discontinuity. The size of the re-
gions should not be too small as it is difficult to obtain
reliable distance measurements for small regions due
to the finite size of the laser spot and accuracy of the
robotic head.

The initial segmentation creates an image tessel-
lated into primary regions of homogeneous image
properties (intensity, colour, etc.). The segmentation
method adopted for the project consists of smoothing,
morphological edge detection and the watershed trans-
form. This has been described in detail elsewhere[6].
Large numbers of closed regions of similar image prop-
erties are created as a result as shown in Figure 4.

For the scene shown in Figure 4 the initial segmen-
tation created almost two hundred primary regions.
Assuming the simple model with one range measure-
ment per region, creation of the complete range map
requires almost 200 range measurements. By apply-
ing the above technique we have been able to reduce
the number of range measurements required to cre-
ate the dense range map from 64k samples (sampling
every pixel in a 256x256 grid) to a much more man-



Figure 4: Segmentation of the AECL bay.

ageable number of 200 to 1000 samples (200 regions x
1...5 targets per region). This has been achieved if the
initial over-segmentation of the image identified inten-
sity discontinuities and that they account for nearly all
the depth discontinuities. For the mobile robot, op-
erating in real-time, this may still be too slow. If we
look at the intensity image ourselves, it seems that a
few range measurements, taken at the “right” orienta-
tions, could provide the essential information essential
for a specific task. We decided to look to models of
human attention for inspiration.

The attention scheme, used here, depends on three
components[9]: (i) a priori information, (ii) selection
of salient features, and (iii) a given task and previous
results of attentive processing.

The a priori information is encoded as a function
biased to look at specific parts of the image. This func-
tion represents preferred behaviour (directional sensi-
tivity) of the system, for example, data in the centre
or below the horizon might be more important than
at the periphery of the camera image.

Representing the segmented image data as a graph
allows easy access to underlying regions and bound-
aries in the graph and for access to adjacent ones.
The regions are described by features such as inten-
sity, colour, texture descriptors, and their size and
shape. The boundaries between adjacent regions are
described by their size, shape, orientation and contrast
between regions on both sides. Detection of winners,
in the Winner Take All scheme [4], uses a combina-
tion of these features and is biased by the specific task
performed by the robot.

For example, looking for a passage might involve
searching for a dark region in the image. Depth dis-
continuities are likely to occur at boundaries between
contrasting regions. If the task is to provide a qual-
itative range map, then selecting large regions first
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Figure 5: Bright regions selected by a uniformly biased
attention model ,

will enable faster coverage of the image by range data.
Results of previous range measurements can influence
the selection of the next target. This selection is task
dependent. For example, when searching for an ob-
stacle, if a depth discontinuity is detected, then the
next ranging operations should concentrate on recov-
ering the full extent of the closer object and not the
distant one. If such a discontinuity is detected while
searching for a passage then the successive ranging op-
erations should concentrate on objects further away -
the opposite strategy.

Figure 5 shows the attended receptive fields and
the path of 10 saccadic movements between regions
of high intensity. The initial bias is uniform and con-
tributions from all receptive cells (pixels) are treated
equally and, as the result, large bright regions are at-
tended first. Edges of high contrast are likely locations
for depth discontinuities. Boundaries between regions
now serve as salient features. Pointing the range-finder
at a boundary is not practical so two regions on both
sides are selected for attention. Figure 6 shows a se-
quence of saccades between contrasting regiors with a
bias to the central part of the image. To minimize the
number of measurements, each region is attended only
once even if it is selected by two different boundaries.

7 Discussion

The ARK robot relies on its combined vision and
range sensor to navigate through the industrial envi-
ronment. This sensor is unique as it operates at large
distances that are typical for the industrial setting.
Such distances are not covered by other available tech-
niques used by mobile robots: stereo and active trian-
gulation. Long distance sensory data allows the robot



Figure 6: High contrast regions selected by a centrally
biased attention model

to detect landmarks, search for objects and possible
paths well in advance. Early detection of such sit-
uations allows the robot to modify its trajectory or
to change the plan without the need for an exhaustive
search of the environment. Our work concentrates now
on extending the reactive, subsumption based, control
architecture by implementing additional behaviours.
At present, we are moving now with our experiments
from the university laboratories to large open spaces
of the AECL industrial bay.
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