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Abstract

This article surveys deformable models, a promising and vigorously researched computer-assisted
medical image analysis technique. Among model-based techniques, deformable models offer a unique
and powerful approach to image analysis that combines geometry, physics, and approximation theory.
They have proven to be effective in segmenting, matching, and tracking anatomic structures by exploiting
(bottom-up) constraints derived from the image data together with (top-dopmdri knowledge about
the location, size, and shape of these structures. Deformable models are capable of accommodating the
significant variability of biological structures over time and across different individuals. Furthermore,
they support highly intuitive interaction mechanisms that, when necessary, allow medical scientists and
practitioners to bring their expertise to bear on the model-based image interpretation task. This article
reviews the rapidly expanding body of work on the development and application of deformable mod-
els to problems of fundamental importance in medical image analysis, including segmentation, shape
representation, matching, and motion tracking.
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1 Introduction

The rapid development and proliferation of medical imaging technologies is revolutionizing medicine. Med-
ical imaging allows scientists and physicians to glean potentially life-saving information by peering noninva-
sively into the human body. The role of medical imaging has expanded beyond the simple visualization and
inspection of anatomic structures. It has become a tool for surgical planning and simulation, intra-operative
navigation, radiotherapy planning, and for tracking the progress of disease. For example, ascertaining the
detailed shape and organization of anatomic structures enables a surgeon preoperatively to plan an optimal
approach to some target structure. In radiotherapy, medical imaging allows the delivery of a necrotic dose
of radiation to a tumor with minimal collateral damage to healthy tissue.

With medical imaging playing an increasingly prominent role in the diagnosis and treatment of disease,
the medical image analysis community has become preoccupied with the challenging problem of extracting,
with the assistance of computers, clinically useful information about anatomic structures imaged through
CT, MR, PET, and other modalities (Sty&t al. 1991; Robb 1994; Ayache 1995a; Bizatal. 1995;

Ayache 1995b). Although modern imaging devices provide exceptional views of internal anatomy, the
use of computers to quantify and analyze the embedded structures with accuracy and efficiency is limited.
Accurate, repeatable, quantitative data must be efficiently extracted in order to support the spectrum of
biomedical investigations and clinical activities from diagnosis, to radiotherapy, to surgery.

Segmenting structures from medical images and reconstructing a compact geometric representation of
these structures is difficult due to the sheer size of the datasets and the complexity and variability of the
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anatomic shapes of interest. Furthermore, the shortcomings typical of sampled data, such as sampling
artifacts, spatial aliasing, and noise, may cause the boundaries of structures to be indistinct and disconnected.
The challenge is to extract boundary elements belonging to the same structure and integrate these elements
into a coherent and consistent model of the structure. Traditional low-level image processing techniques
which consider only local information can make incorrect assumptions during this integration process and
generate infeasible object boundaries. As a result, these model-free techniques usually require considerable
amounts of expert intervention. Furthermore, the subsequent analysis and interpretation of the segmented
objects is hindered by the pixel- or voxel-level structure representations generated by most image processing
operations.

This article surveys deformable models, a promising and vigorously researched model-based approach
to computer-assisted medical image analysis. The widely recognized potency of deformable models stems
from their ability to segment, match, and track images of anatomic structures by exploiting (bottom-up)
constraints derived from the image data together with (top-d@avpiiori knowledge about the location,
size, and shape of these structures. Deformable models are capable of accommodating the often significant
variability of biological structures over time and across different individuals. Furthermore, deformable
models support highly intuitive interaction mechanisms that allow medical scientists and practitioners to
bring their expertise to bear on the model-based image interpretation task when necessary. We will review
the basic formulation of deformable models and survey their application to fundamental medical image
analysis problems, including segmentation, shape representation, matching, and motion tracking.

2 Mathematical Foundations of Defor mable M odels

The mathematical foundations of deformable models represent the confluence of geometry, physics, and
approximation theory. Geometry serves to represent object shape, physics imposes constraints on how the
shape may vary over space and time, and optimal approximation theory provides the formal underpinnings
of mechanisms for fitting the models to measured data.

Deformable model geometry usually permits broad shape coverage by employing geometric represen-
tations that involve many degrees of freedom, such as splines. The model remains manageable, however,
because the degrees of freedom are generally not permitted to evolve independently, but are governed by
physical principles that bestow intuitively meaningful behavior upon the geometric substrate. The name “de-
formable models” stems primarily from the use of elasticity theory at the physical level, generally within a
Lagrangian dynamics setting. The physical interpretation views deformable models as elastic bodies which
respond naturally to applied forces and constraints. Typically, deformation energy functions defined in terms
of the geometric degrees of freedom are associated with the deformable model. The energy grows mono-
tonically as the model deforms away from a specified natural or “rest shape” and often includes terms that
constrain the smoothness or symmetry of the model. In the Lagrangian setting, the deformation energy gives
rise to elastic forces internal to the model. Taking a physics-based view of classical optimal approximation,
external potential energy functions are defined in terms of the data of interest to which the model is to be
fitted. These potential energies give rise to external forces which deform the model such that it fits the data.

Deformable curve, surface, and solid models gained popularity after they were proposed for use in
computer vision (Terzopoulost al. 1988) and computer graphics (Terzopoulos and Fleischer 1988) in the
mid 1980’s. Terzopoulos introduced the theory of continuous (multidimensional) deformable models in a
Lagrangian dynamics setting (Terzopoulos 1986a), based on deformation energies in the form of (controlled-
continuity) generalized splines (Terzopoulos 1986b). Ancestors of the deformable models now in common
use include Fischler and Elshlager’s spring-loaded templates (1973) and Widrow’s rubber mask technique
(1973).

The deformable model that has attracted the most attention to date is popularly known as “snakes”
(Kasset al. 1988). Snakes or “deformable contour models” represent a special case of the general multidi-
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Figure 1: Snake (white) attracted to cell membrane in an EM photomicrograph (Caettadni994).

mensional deformable model theory (Terzopoulos 1986a). We will review their simple formulation in the
remainder of this section in order to illustrate with a concrete example the basic mathematical machinery
that is present in many deformable models.

Snakes are planar deformable contours that are useful in several image analysis tasks. They are often
used to approximate the locations and shapes of object boundaries in images based on the reasonable as-
sumption that boundaries are piecewise continuous or smooth (Fig. 1). In its basic form, the mathematical
formulation of snakes draws from the theory of optimal approximation involving functionals.

2.1 Energy-Minimizing Defor mable M odels

Geometrically, a snake is a parametric contour embedded in the image (plajec . The contour
is represented as(s) = (z(s),y(s))", wherez andy are the coordinate functions ande [0, 1] is the
parametric domain. The shape of the contour subject to an ithage) is dictated by the functional

E(v) =8(v) +P(v). 1)

The functional can be viewed as a representation of the energy of the contour and the final shape of the
contour corresponds to the minimum of this energy. The first term of the functional,
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is the internal deformation energy. It characterizes the deformation of a stretchy, flexible contour. Two
physical parameter functions dictate the simulated physical characteristics of the camteyrcontrols

the “tension” of the contour whilex(s) controls its “rigidity”! The second term in (1) couples the snake

to the image. Traditionally,

1
P) = [ P(vie)ds, 3)

where P(z,y) denotes a scalar potential function defined on the image plane. To apply snakes to images,
external potentials are designed whose local minima coincide with intensity extrema, edges, and other image
features of interest. For example, the contour will be attracted to intensity edges in anlifmagg by

'The values of the non-negative functioms(s) andws(s) determine the extent to which the snake can stretch or bend at any
point s on the snake. For example, increasing the magnitude; ¢f) increases the “tension” and tends to eliminate extraneous
loops and ripples by reducing the length of the snake. Increasifg) increases the bending “rigidity” of the snake and tends
to make the snake smoother and less flexible. Setting the value of one or both of these functions to zero at pepwiit$
discontinuities in the contour at
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choosing a potentiaP(z,y) = —c|V[G, * I(x,y)]|, wherec controls the magnitude of the potenti&l,is
the gradient operator, an@, = I denotes the image convolved with a (Gaussian) smoothing filter whose
characteristic widtlr controls the spatial extent of the local minima/ef

In accordance with the calculus of variations, the contals) which minimizes the energg(v) must
satisfy the Euler-Lagrange equation

0 ov 0? 0*v
_% <w1£> + @ (’UJQ@) +VP(V(S,t)) =0. (4)

This vector-valued partial differential equation expresses the balance of internal and external forces when
the contour rests at equilibrium. The first two terms represent the internal stretching and bending forces,
respectively, while the third term represents the external forces that couple the snake to the image data. The
usual approach to solving (4) is through the application of numerical algorithms (Sec. 2.3).

2.2 Dynamic Deformable M odels

While it is natural to view energy minimization as a static problem, a potent approach to computing the local
minima of a functional such as (1) is to construct a dynamical system that is governed by the functional
and allow the system to evolve to equilibrium. The system may be constructed by applying the principles
of Lagrangian mechanics. This leads to dynamic deformable models that unify the description of shape
and motion, making it possible to quantify not just static shape, but also shape evolution through time.
Dynamic models are valuable for medical image analysis, since most anatomical structures are deformable
and continually undergo nonrigid motiamvivo. Moreover, dynamic models exhibit intuitively meaningful
physical behaviors, making their evolution amenable to interactive guidance from a user (Fig. 2).

A simple example is a dynamic snake which can be represented by introducing a time-varying contour
v(s,t) = (z(s,t),y(s,t)) " with a mass density(s) and a damping density(s). The Lagrange equations
of motion for a snake with the internal energy given by (2) and external energy given by (3) is

0%v ov 0 ov 02 0%v
W g s (5e) o (“’a—> = ~VP(s, ). ©)

The first two terms on the left hand side of this partial differential equation represent inertial and damping
forces. Referring to (4), the remaining terms represent the internal stretching and bending forces, while the
right hand side represents the external forces. Equilibrium is achieved when the internal and external forces
balance and the contour comes to rest (B&/,0t = &*v/0t?> = 0), which yields the equilibrium condition

(4).

2.3 Discretization and Numerical Simulation

In order to numerically compute a minimum energy solution, it is necessary to discretize the &teygy

The usual approach is to represent the continuous geometric madelerms of linear combinations of
local-support or global-support basis functions. Finite elements (Zienkiewicz and Taylor 1989), finite dif-
ferences (Presst al. 1992), and geometric splines (Farin 1993) are local representation methods, whereas
Fourier bases (Ballard and Brown 1982) are global representation methods. The continuous (mpdel

is represented in discrete form by a vectoof shape parameters associated with the basis functions. The
discrete form of energies such &6v) for the snake may be written as

E(u) = %uTKu + P(u) (6)

whereK is called thestiffness matrixand Ru) is the discrete version of the external potential. The min-
imum energy solution results from setting the gradient of (8),tevhich is equivalent to solving the set of

4
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Figure 2: Snake deforming towards high gradients in a processed cardiac image, influenced by “pin” points
and an interactive “spring” which pulls the contour towards an edge (Mclnerney and Terzopoulos 1995a).

algebraic equations
Ku=-VP=f @)

wheref is the generalized external force vector.
The discretized version of the Lagrangian dynamics equation (5) may be written as a set of second order
ordinary differential equations fax(¢):

Mii + Ca + Ku = f, (8)

whereM is the mass matrix an€@ is a damping matrix. The time derivatives in (5) are approximated by
finite differences and explicit or implicit numerical time integration methods are applied to simulate the
resulting system of ordinary differential equations in the shape parameters

2.4 Probabilistic Deformable M odels

An alternative view of deformable models emerges from casting the model fitting process in a probabilistic
framework. This permits the incorporation of prior model and sensor model characteristics in terms of
probability distributions. The probabilistic framework also provides a measure of the uncertainty of the
estimated shape parameters after the model is fitted to the image data (Szeliski 1990).

Let u represent the deformable model shape parameters with a prior probabil)tgn the parameters.
Letp(I|u) be the imaging (sensor) model—the probability of producing an infageen a model. Bayes'’

theorem (Ilu)p()
p(l|ju)p(u
p(I) ®)

expresses the posterior probabilitfu|7) of a model given the image, in terms of the imaging model and
the prior probabilities of model and image.

It is easy to convert the internal energy measure (2) of the deformable model into a prior distribution
over expected shapes, with lower energy shapes being the more likely. This is achieved using a Boltzmann
(or Gibbs) distribution of the form

p(ull) =

p(u) = Zi exp(—S(u)), (10)
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whereS(u) is the discretized version &(v) in (2) andZ is a normalizing constant (called the partition
function). This prior model is then combined with a simple sensor model based on linear measurements
with Gaussian noise

p(Iu) = Zi exp(—P(w)), (11)

where Ru) is a discrete version of the potenti@(v) in (3), which is a function of the imagHz, y).

Models may be fitted by finding which locally maximizep(ul|I) in (9). This is known as the maximum
a posteriori solution. With the above construction, it yields the same result as minimizing (1), the energy
configuration of the deformable model given the image.

The probabilistic framework can be extended by assuming a time-varying prior model, or system model,
in conjunction with the sensor model, resulting in a Kalman filter. The system model describes the expected
evolution of the shape parametarsover time. If the equations of motion of the physical snakes model
(8) are employed as the system model, the result is a sequential estimation algorithm known as “Kalman
snakes” (Terzopoulos and Szeliski 1992).

3 Medical Image Analysiswith Defor mable Models

Although originally developed for application to problems in computer vision and computer graphics, the
potential of deformable models for use in medical image analysis has been quickly realized. They have been
applied to images generated by imaging modalities as varied as X-ray, computed tomography (CT), an-
giography, magnetic resonance (MR), and ultrasound. Two dimensional and three dimensional deformable
models have been used to segment, visualize, track, and quantify a variety of anatomic structures ranging
in scale from the macroscopic to the microscopic. These include the brain, heart, face, cerebral, coronary
and retinal arteries, kidney, lungs, stomach, liver, skull, vertebra, objects such as brain tumors, a fetus, and
even cellular structures such as neurons and chromosomes. Deformable models have been used to track the
nonrigid motion of the heart, the growing tip of a neurite, and the motion of erythrocytes. They have been
used to locate structures in the brain, and to register images of the retina, vertebra and neuronal tissue.

In the following sections, we review and discuss the application of deformable models to medical image
interpretation tasks including segmentation, matching, and motion analysis.

3.1 Image Segmentation with Deformable Curves

The segmentation of anatomic structures—the partitioning of the original set of image points into subsets
corresponding to the structures—is an essential first stage of most medical image analysis tasks, such as
registration, labeling, and motion tracking. These tasks require anatomic structures in the original image
to be reduced to a compact, analytic representation of their shapes. Performing this segmentation manually
is extremely labor intensive and time-consuming. A primary example is the segmentation of the heart,
especially the left ventricle (LV), from cardiac imagery. Segmentation of the left ventricle is a prerequisite
for computing diagnostic information such as ejection-fraction ratio, ventricular volume ratio, heart output,
and for wall motion analysis which provides information on wall thickening, etc. (Satgh 1993).

Most clinical segmentation is currently performed using manual slice editing. In this scenario, a skilled
operator, using a computer mouse or trackball, manually traces the region of interest on each slice of an
image volume. Manual slice editing suffers from several drawbacks. These include the difficulty in achiev-
ing reproducible results, operator bias, forcing the operator to view each 2D slice separately to deduce and
measure the shape and volume of 3D structures, and operator fatigue.

Segmentation using traditional low-level image processing techniques, such as region growing, edge de-
tection, and mathematical morphology operations, also requires considerable amounts of expert interactive
guidance. Furthermore, automating these model-free approaches is difficult because of the shape complexity
and variability within and across individuals. In general, the underconstrained nature of the segmentation
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Figure 3: (a) Intensity CT image slice of LV. (b) Edge detected image. (c) Initial snake. (d)-(f) Snake
deforming towards LV boundary, driven by “inflation” force. (Mclnerney and Terzopoulos 1995a).

problem limits the efficacy of approaches that consider local information only. Noise and other image arti-
facts can cause incorrect regions or boundary discontinuities in objects recovered by these methods.

A deformable model based segmentation scheme, used in concert with image pre-processing, can over-
come many of the limitations of manual slice editing and traditional image processing techniques. These
connected and continuous geometric models consider an object boundary as a whole and can make use of
a priori knowledge of object shape to constrain the segmentation problem. The inherent continuity and
smoothness of the models can compensate for noise, gaps and other irregularities in object boundaries.
Furthermore, the parametric representations of the models provide a compact, analytical description of ob-
ject shape. These properties lead to a robust and elegant technique for linking sparse or noisy local image
features into a coherent and consistent model of the object.

Among the first and primary uses of deformable models in medical image analysis was the application of
deformable contour models, such as snakes (l€hat 1988), to segment structures in 2D images (Berger
1990; Cohen 1991; Ueda and Mase 1992; Rougon aetk&x"1993; Cohen and Cohen 1993; Leitner and
Cinquin 1993; Carlbonet al. 1994; Guptaet al. 1994; Lobregt and Viergever 1995; Davatzikos and Prince
1995). Typically users initialized a deformable model near the object of interest (Fig. 3) and allowed it to
deform into place. Users could then use the interactive capabilities of these models and manually fine-tune
them. Furthermore, once the user is satisfied with the result on an initial image slice, the fitted contour
model may then be used as the initial boundary approximation for neighboring slices. These models are
then deformed into place and again propagated until all slices have been processed. The resulting sequence
of 2D contours can then be connected to form a continuous 3D surface model (Lin and Chen 1989; Chang
et al. 1991; Cohen 1991; Cohen and Cohen 1993).

The application of snakes and other similar deformable contour models to extract regions of interest
is, however, not without limitations. For example, snakes were designed as interactive models. In non-
interactive applications, they must be initialized close to the structure of interest to guarantee good perfor-
mance. The internal energy constraints of snakes can limit their geometric flexibility and prevent a snake
from representing long tube-like shapes or shapes with significant protrusions or bifurcations. Furthermore,
the topology of the structure of interest must be known in advance since classical deformable contour models
are parametric and are incapable of topological transformations without additional machinery.

Various methods have been proposed to improve and further automate the deformable contour segmen-
tation process. Cohen and Cohen (1993) used an internal “inflation” force to expand a snakes model past
spurious edges towards the real edges of the structure, making the snake less sensitive to initial conditions
(inflation forces were also employed in (Terzopoudtsal. 1988)). Aminiet al. (1990) use dynamic pro-
gramming to carry out a more extensive search for global minima. Bbah (1994) and Grzeszczuk and
Levin (1994) minimize the energy of active contour models using simulated annealing which is known to
give global solutions and allows the incorporation of non-differentiable constraints.

Poonet al. (1994) also use a discriminant function to incorporate region based image features into the
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Figure 4: Image sequence of clipped angiogram of retina showing an automatically subdividing snake flow-
ing and branching along a vessel (Mclnerney and Terzopoulos 1995b).

@) (b) (€) (d)

Figure 5: Segmentation of a cross sectional image of a human vertebra phantom with a topologically adapt-
able snake (Mclnerney and Terzopoulos 1995b). The snake begins as a single closed curve and becomes
three closed curves.

image forces of their active contour model. The discriminant function allows the inclusion of additional
image features in the segmentation and serves as a constraint for global segmentation consistency (i.e. every
image pixel contributes to the discriminant function). The result is a more robust energy functional and a
much better tolerance to deviation of the initial guess from the true boundaries. Others researchers (Rougon
and Peteux 1991; Chakraborit al. 1994; Chakraborty and Duncan 1995; Heeiral. 1992; Gauctet al.

1994; Mangiret al. 1995) have also integrated region-based information into deformable contour models in

an attempt to decrease sensitivity to insignificant edges and initial model placement.

Recently, several researchers (Leitner and Cinquin 1991; Castlls 1993; Malladiet al. 1995;
Whitaker 1994; Casellest al. 1995; Mclnerney and Terzopoulos 1995b; Saptal. 1995) have been
developing topology independent shape modeling schemes that allow a deformable contour or surface model
to not only represent long tube-like shapes or shapes with bifurcations (Fig. 4), but also to dynamically sense
and change its topology (Fig. 5).

3.2 Volumelmage Segmentation with Defor mable Surfaces

Segmenting 3D image volumes slice by slice, either manually or by applying 2D contour models, is a
laborious process and requires a post-processing step to connect the sequence of 2D contours into a contin-
uous surface. Furthermore, the resulting surface reconstruction can contain inconsistencies or show rings
or bands. The use of a true 3D deformable surface model on the other hand, can result in a faster, more
robust segmentation technique which ensures a globally smooth and coherent surface between image slices.
Deformable surface models in 3D were first used in computer vision (Terzopeu#ds1988). Many re-
searchers have since explored the use of deformable surface models for segmenting structures in medical
image volumes. Miller (1991) constructs a polygonal approximation to a sphere and geometrically deforms
this “balloon” model until the balloon surface conforms to the object surface in 3D CT data. The segmenta-
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() (b)

Figure 6: (a) Deformable “balloon” model embedded in volume image deforming towards LV edges (b)
Reconstruction of LV (Mclnerney and Terzopoulos 1995a).

tion process is formulated as the minimization of a cost function where the desired behavior of the balloon
model is determined by a local cost function associated with each model vertex. The cost function is a
weighted sum of three terms: a deformation potential that “expands” the model vertices towards the object
boundary, an image term that identifies features such as edges and opposes the balloon expansion, and a
term that maintains the topology of the model by constraining each vertex to remain close to the centroid of
its neighbors.

Cohen and Cohen (1992b; 1993) and Mclnerney and Terzopoulos (1995a) use finite element and physics-
based techniques to implement an elastically deformable cylinder and sphere, respectively. The models are
used to segment the inner wall of the left ventricle of the heart from MR or CT image volumes (Fig. 6).
These deformable surfaces are based on a thin-plate under tension surface spline, the higher dimensional
generalization of equation (2), which controls and constrains the stretching and bending of the surface. The
models are fitted to data dynamically by integrating Lagrangian equations of motion through time in order
to adjust the deformational degrees of freedom. Furthermore, the finite element method is used to represent
the models as a continuous surface in the form of weighted sums of local polynomial basis functions. Unlike
Miller's (1991) polygonal model, the finite element method provides an analytic surface representation and
the use of high-order polynomials means that fewer elements are required to accurately represent an object.
Pentland and Sclaroff (1991) and Nastar and Ayache (1993a) also develop physics-based models but use a
reduced modal basis for the finite elements (see Section 3.5).

Staib and Duncan (1992b) describe a 3D surface model used for geometric surface matching to 3D med-
ical image data. The model uses a Fourier parameterization which decomposes the surface into a weighted
sum of sinusoidal basis functions. Several different surface types are developed such as tori, open surfaces,
closed surfaces and tubes. Surface finding is formulated as an optimization problem using gradient ascent
which attracts the surface to strong image gradients in the vicinity of the model. An advantage of the Fourier
parameterization is that it allows a wide variety of smooth surfaces to be described with a small number of
parameters. That is, a Fourier representation expresses a function in terms of an orthonormal basis and
higher indexed basis functions in the sum represent higher spatial variation. Therefore, the series can be
truncated and still represent relatively smooth objects accurately.

In a different approach, Szeliskt al. (1993) use a dynamic, self-organizing oriented particle system
to model surfaces of objects. The oriented particles, which can be visualized as small, flat disks, evolve
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according to Newtonian mechanics and interact through external and interparticle forces. The external
forces attract the particles to the data while interparticle forces attempt to group the particles into a coherent
surface. The particles can reconstruct objects with complex shapes and topologies by “flowing” over the
data, extracting and conforming to meaningful surfaces. A triangulation is then performed which connects
the particles into a continuous global model that is consistent with the inferred object surface.

Other notable work involving 3D deformable surface models and medical image applications can be
found in (Delingetteet al. 1992; Whitaker 1994; Tek and Kimia 1995; Davatzikos and Bryan 1995) as well
as several models described in the following sections.

3.3 Incorporating A Priori Knowledge

In medical images, the general shape, location and orientation of objects is known and this knowledge may
be incorporated into the deformable model in the form of initial conditions, data constraints, constraints on
the model shape parameters, or into the model fitting procedure. The use of implicit or explicit anatomical
knowledge to guide shape recovery is especially important for robust automatic interpretation of medical
images. For automatic interpretation, it is essential to have a model that not only describes the size, shape,
location and orientation of the target object but that also permits expected variations in these characteristics.
Automatic interpretation of medical images can relieve clinicians from the labor intensive aspects of their
work while increasing the accuracy, consistency, and reproducibility of the interpretations.

A number of researchers have incorporated knowledge of object shape into deformable models by using
deformable shape templates. These models usually use “hand-crafted” global shape parameters to embody
a priori knowledge of expected shape and shape variation of the structures and have been used successfully
for many applications of automatic image interpretation. The idea of deformable templates can be traced
back to the early work on spring loaded templates by Fischler and Elshlager (1973). An excellent example
in computer vision is the work of Yuillet al. (1992) who construct deformable templates for detecting
and describing features of faces, such as the eye. In medical image analysis, dtipedd990) note that
axial cross sectional images of the spine yield approximately elliptical vertebral contours and consequently
extract the contours using a deformable ellipsoidal template.

Deformable models based on superquadrics are another example of deformable shape templates that are
gaining in popularity in medical image research. Superquadrics contain a small number of intuitive global
shape parameters that can be tailored to the average shape of a target anatomic structure. Furthermore, the
global parameters can often be coupled with local shape parameters such as splines resulting in a powerful
shape representation scheme. For example, Metaxas and Terzopoulos (1993) employ a dynamic deformable
superquadric model (Terzopoulos and Metaxas 1991) to reconstruct and track human limbs from 3D bioki-
netic data. Their models can deform both locally and globally by incorporating the global shape parameters
of a superellipsoid with the local degrees of freedom of a membrane spline in a Lagrangian dynamics for-
mulation. The global parameters efficiently capture the gross shape features of the data, while the local
deformation parameters reconstruct the fine details of complex shapes. Using Kalman filtering theory, they
develop and demonstrate a biokinetic motion tracker based on their deformable superquadric model.

Vemuri and Radisavljevic (1993; 1994) construct a deformable superquadric model in an orthonormal
wavelet basis. This multi-resolution basis provides the model with the ability to continuously transform
from local to global shape deformations thereby allowing a continuum of shape models to be created and to
be represented with relatively few parameters. They apply the model to segment and reconstruct anatomical
structures in the human brain from MRI data.

As a final example, Bardinedt al. (1995; 1996b; 1996a) fit a deformable superquadric to segmented
3D cardiac images and then refine the superquadric fit using a volumetric deformation technique known
as free form deformations (FFDs). FFDs are defined by tensor product trivariate splines and can be vi-
sualized as a rubber-like box in which the object to be deformed (in this case the superquadric) is em-
bedded. Deformations of the box are automatically transmitted to embedded objects. This volumetric

10
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aspect of FFDs allows two superquadric surface models to be simultaneously deformed in order to re-
construct the inner and outer surfaces of the left ventricle of the heart and the volume in between these
surfaces. Further examples of deformable superquadrics can be found in (Pentland and Horowitz 1991;
Chenet al. 1994) (see Section 3.5).

Several researchers cast the deformable model fitting process in a probabilistic framework (see Section
2.4) and include prior knowledge of object shape by incorporating prior probability distributions on the
shape variables to be estimated (Vemuri and Radisavljevic 1994; Staib and Duncan 1992a; @{ating
1993). For example, Staib and Duncan (1992a) use a deformable contour model on 2D echocardiograms
and MR images to extract the LV of the heart and the corpus callosum of the brain, respectively. This closed
contour model is parameterized using an elliptic Fourier decompositiora gmiri shape information is
included as a spatial probability expressed through the likelihood of each model parameter. The model
parameter probability distributions are derived from a set of example object boundaries and serve to bias the
contour model towards expected or more likely shapes.

Szekelyet al. (1996) have also developed Fourier parameterized models. Furthermore, they have added
elasticity to their models to create “Fourier snakes” in 2D and elastically deformable Fourier surface models
in 3D. By using the Fourier parameterization followed by a statistical analysis of a training set, they define
mean organ models and their eigen-deformations. An elastic fit of the mean model in the subspace of
eigenmodes restricts possible deformations and finds an optimal match between the model surface and
boundary candidates.

Cooteset al. (1994) and Hillet al. (1993) present a statistically based technigue for building deformable
shape templates and use these models to segment various organs from 2D and 3D medical images. The
statistical parameterization provides global shape constraints and allows the model to deform only in ways
implied by the training set. The shape models represent objects by sets of landmark points which are
placed in the same way on an object boundary in each input image. For example, to extract the LV from
echocardiograms, they choose points around the ventricle boundary, the nearby edge of the right ventricle,
and the top of the left atrium. The points can be connected to form a deformable contour. By examining the
statistics of training sets of hand-labeled medical images, and using principal component analysis, a shape
model is derived that describes the average positions and the major modes of variation of the object points.
New shapes are generated using the mean shape and a weighted sum of the major modes of variation. Object
boundaries are then segmented using this “point distribution model” by examining a region around each
model point to calculate the displacement required to move it towards the boundary. These displacements
are then used to update the shape parameter weights.

3.4 Matching

Matching of regions in images can be performed between the representation of a region and a model (label-
ing) or between the representation of two distinct regions (registration). Registration of 2D and 3D medical
images is necessary in order to study the evolution of a pathology in an individual, or to take full advan-
tage of the complementary information coming from multimodality imagery. Recent examples of the use
of deformable models to perform medical image registration are found in (Moshfeghi 1991; Moskifeghi
al. 1994; Gueziec and Ayache 1994; Feldmar and Ayache 1994; Bookstein 1989; Haetadeh995;
Lavallée and Szeliski 1995; Thirion 1994). These techniques primarily consist of constructing highly struc-
tured descriptions for matching. This operation is usually carried out by extracting regions of interest with
an edge detection algorithm, followed by the extraction of landmark points or characteristic contours (or
curves on extracted boundary surfaces in the case of 3D data). In 3D, these curves usually describe differen-
tial structures such as ridges, or topological singularities. An elastic matching algorithm can then be applied
between corresponding pairs of curves or contours where the “start” contour is iteratively deformed to the
“goal” contour using forces derived from local pattern matches with the goal contour (Moshfeghi 1991).

An example of matching where the use of expligipriori knowledge has been embedded into de-
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Figure 7. The result of matching a labeled deformable atlas to a morphologically preprocessed MR image
of the brain (Sandor and Leahy 1995).

formable models is the extraction and labeling of anatomic structures in the brain, primarily from MR
images. The anatomical knowledge is made explicit in the form of a 3D brain atlas. The atlas is modeled
as a physical object and is given elastic properties. After an initial global alignment, the atlas deforms and
matches itself onto corresponding regions in the brain image volume in response to forces derived from im-
age features. The assumption underlying this approach is that at some representational level, normal brains
have the same topological structure and differ only in shape details. The idea of modeling the atlas as an
elastic object was originated by Broit (1981), who formulated the matching process as a minimization of a
cost function. Subsequently, Bajcsy and Kovacic (1989) implemented a multiresolution version of Broit's
system where the deformation of the atlas proceeds step-by-step in a coarse to fine strategy, increasing the
local similarity and global coherence. The elastically deformable atlas technique has since become a very
active area of research and is being explored by several researchers ¢E@hn$991; Geeet al. 1993;

Sandor and Leahy 1995; Christensstral. 1995; Bookstein 1991; Bozma and Duncan 1992; Decletck

al. 1995; McDonaldet al. 1994; Delibasis and Undrill 1994; Subseti al. 1995; Davatzikost al. 1996;

Snellet al. 1995).

There are several problems with the deformable atlas approach. The technique is sensitive to initial
positioning of the atlas—if the initial rigid alignment is off by too much, then the elastic match may perform
poorly. The presence of neighboring features may also cause matching problems—the atlas may warp to an
incorrect boundary. Finally, without user interaction, the atlas can have difficulty converging to complicated
object boundaries. One solution to these problems is to use image preprocessing in conjunction with the
deformable atlas. Sandor and Leahy (1995) use this approach to automatically label regions of the cortical
surface that appear in 3D MR images of human brains (Fig. 7). They automatically match a labeled de-
formable atlas model to preprocessed brain images, where preprocessing consists of 3D edge detection and
morphological operations. These filtering operations automatically extract the brain and sulci (deep grooves
in the cortical surface) from an MR image and provide a smoothed representation of the brain surface to
which their 3D B-spline deformable surface model can rapidly converge.

12
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3.5 Maotion Tracking and Analysis

The idea of tracking objects in time-varying images using deformable models was originally proposed in
the context of computer vision (Kass al. 1988; Terzopoulogt al. 1988). Deformable models have been

used to track nonrigid microscopic and macroscopic structures in motion, such as blood cells (Leymarie
and Levine 1993) and neurite growth cones (Gwyial. 1994) in cine-microscopy, as well as coronary
arteries in cine-angiography (Lengyef al. 1995). However, the primary use of deformable models for
tracking in medical image analysis is to measure the dynamic behavior of the human heart, especially the
left ventricle. Regional characterization of the heart wall motion is necessary to isolate the severity and
extent of diseases such as ischemia. Magnetic resonance and other imaging technologies can now provide
time varying three dimensional images of the heart with excellent spatial resolution and reasonable temporal
resolutions. Deformable models are well suited for this image analysis task.

In the simplest approach, a 2D deformable contour model is used to segment the LV boundary in each
slice of an initial image volume. These contours are then used as the initial approximation of the LV
boundaries in corresponding slices of the image volume at the next time instant and are then deformed
to extract the new set of LV boundaries (Singital. 1993; Ueda and Mase 1992; Ayaatteal. 1992; Herlin
and Ayache 1992; Geiget al. 1995). This temporal propagation of the deformable contours dramatically
decreases the time taken to segment the LV from a sequence of image volumes over a cardiac cycle. Singh
et al. (1993) report a time of 15 minutes to perform the segmentation, considerably less than the 1.5-2 hours
that a human expert takes for manual segmentation. Mclnerney and Terzopoulos (1995a) have applied the
temporal propagation approach in 3D using a 3D dynamic deformable “balloon” model to track the LV
(Fig. 8,9).

In a more involved approach, Amini and Duncan (1992) use bending energy and surface curvature to
track and analyze LV motion. For each time instant, two sparse subsets of surface points are created by
choosing geometrically significant landmark points, one for the endocardial surface, and the other for the
epicardial surface of the LV. Surface patches surrounding these points are then modeled as thin, flexible
plates. Making the assumption that each surface patch deforms only slightly and locally within a small time
interval, for each sampled point on the first surface they construct a search area on the LV surface in the
image volume at the next time instant. The best matched (i.e. minimum bending energy) point within the
search window on the second surface is taken to correspond to the point on the first surface. This matching
process yields a set of initial motion vectors for pairs of LV surfaces derived from a 3D image sequence. A
smoothing procedure is then performed using the initial motion vectors to generate a dense motion vector
field over the LV surfaces.

Cohenet al. (1992a) also employ a bending energy technique in 2D and attempt to improve on this
method by adding a term to the bending energy function that tends to preserve the matching of high curvature
points. Goldgofet al. (Goldgofet al. 1988; Kambhamettu and Goldgof 1994; Huang and Goldgof 1993;
Mishraet al. 1991) have also been pursuing surface shape matching ideas primarily based on changes in
Gaussian curvature and assume a conformal motion model (i.e. motion which preserves angles between
curves on a surface but not distances).

An alternative approach is that of Chetal. (1994), who use a hierarchical motion model of the LV con-
structed by combining a globally deformable superquadric with a locally deformable surface using spherical
harmonic shape modeling primitives. Using this model, they estimate the LV motion from angiographic
data and produce a hierarchical decomposition that characterizes the LV motion in a coarse-to-fine fashion.

Pentland and Horowitz (1991) and Nastar and Ayache (1993a; 1993b) are also able to produce a coarse-
to-fine characterization of the LV motion. They use dynamic deformable models to track and recover the LV
motion and make use of modal analysis, a well-known mechanical engineering technigue, to parameterize
their models. This parameterization is obtained from the eigenvectors of a finite element formulation of the
models. These eigenvectors are often referred to as the “free vibration” modes and variable detail of LV
motion representation results from varying the number of modes used.
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Figure 8: Sagittal slice of successive CT volumes over one cardiac cycle (1-16) showing motion of canine
LV (Mclnerney and Terzopoulos 1995a).
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Figure 9. Tracking of the LV motion during one cardiac cycle (1-16) using deformable balloon model
(Mclnerney and Terzopoulos 1995a).
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The heart is a relatively smooth organ and consequently there are few reliable landmark points. The
heart also undergoes complex nonrigid motion that includes a twisting (tangential) component as well as
the normal component of motion. The motion recovery methods described above are, in general, not able
to capture this tangential motion without additional information. Recently, magnetic resonance techniques,
based on magnetic tagging (Axel and Dougherty 1989) have been developed to track material points on the
myocardium in a non-invasive way. The temporal correspondence of material points that these techniques
provide allow for quantitative measurement of tissue motion and deformation including the twisting com-
ponent of the LV motion. Several researchers have applied deformable models to image sequences of MR
tagged data (Youngt al. 1993; 1995; Parlet al. 1996; Duncaret al. 1994; Kumar and Goldgof 1994;
Kraitchmanet al. 1995; Aminiet al. 1995). For example, Amingét. al (1995) and Kumar and Gold-
gof (1994) use a 2D deformable grid to localize and track SPAMM (Spatial Modulation of Magnetization)
tag points on the LV tissue. Pasgk al. (1995; 1996) fit a volumetric physics-based deformable model to
MRI-SPAMM data of the LV. The parameters of the model are functions which can can capture regional
shape variations of the LV such as bending, twisting, and contraction. Based on this model, the authors
guantitatively compare normal hearts and hearts with hypertrophic cardiomyopathy.

Another problem with most of the methods described above is that they model the endocardial and
epicardial surfaces of the LV separately. In reality the heart is a thick-walled structure. Denhean
(1994) and Parlkt al. (1995; 1996) develop models which consider the volumetric nature of the heart wall.
These models use the shape properties of the endocardial and epicardial surfaces and incorporate mid-wall
displacement information of tagged MR images. By constructing 3D finite element models of the LV with
nodes in the mid-wall region as well as nodes on the endocardial and epicardial surfaces, more accurate
measurements of the LV motion can be obtained. Young and Axel (1992; 1995), and Creswell (1992) and
have also constructed 3D finite element models from the boundary representations of the endocardial and
epicardial surfaces.

4 Discussion

In the previous sections we have surveyed the considerable and rapidly expanding body of work on de-
formable models in medical image analysis. The survey has revealed several issues that are relevant to the
continued development of the deformable model approach. This section summarizes the key issues and
indicates some promising research directions.

4.1 Autonomy vsControl

Interactive (semi-automatic) algorithms and fully automatic algorithms represent two alternative approaches
to computerized medical image analysis. Certainly automatic interpretation of medical images is a desirable,
albeit very difficult, long-term goal, since it can potentially increase the speed, accuracy, consistency, and
reproducibility of the analysis. However, the interactive or semiautomatic methodology is likely to remain
dominant in practice for some time to come, especially in applications where erroneous interpretations are
unacceptable. Consequently, the most immediately successful deformable model based techniques will
likely be those that drastically decrease the labor intensiveness of medical image processing tasks through
partial automation, while still allowing for interactive guidance or editing by the medical expert. Although
fully automatic techniques based on deformable models will likely not reach their full potential for some
time to come, they can be of immediate value in specific application domains where interactive techniques
are either impractical (e.g. 3D reconstruction of complex vascular structures) or for non-critical tasks (e.g.
segmentation of healthy tissue surrounding a pathology for enhanced visualization).
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4.2 Generality vs Specificity

Ideally a deformable model should be capable of representing a broad range of shapes and be useful in a
wide array of medical applications. Generality is the basis of deformable model formulations with local
shape parameters such as snakes. Alternatively, highly specific, “hand-crafted” or constrained deformable
models appear to be useful in applications such as tracking the nonrigid motion of the heart (Section 3.5),
automatically matching and labeling structures in the brain from 3D MR images (Section 3.4), or segmenting
very noisy images such as echocardiograms. Certainly attempts to completely automate the processing of
medical images would require a high degree of application and model specificity. A promising direction for
future study appears to be techniques for learning “tailored” models from simple general purpose models.
The work of Coote®t al. (1994) may be viewed as an example of such a strategy.

4.3 Compactness vs Geometric Coverage vs Topological Flexibility

A geometric model of shape may be evaluated based on the parsimony of its formulation, its representa-
tional power, and its topological flexibility. Generally, parameterized models offer the greatest parsimony,
free-form (spline) model feature the broadest coverage, and implicit models have the greatest topologi-
cal flexibility. Deformable models have been developed based on each of these geometric classes. In-
creasingly, researchers are turning to the development of hybrid deformable models that combine com-
plementary features. For objects with a simple, fixed topology and without significant protrusions, pa-
rameterized models coupled with local (spline) and/or global deformations schemes appear to provide a
good compactness-descriptiveness tradeoff (Terzopoulos and Metaxas 1991; Pentland and Horowitz 1991;
Vemuri and Radisavljevic 1994; Che al. 1994). On the other hand, the segmentation and modeling of
complex, multipart objects such as arterial or bronchial “tree” structures, or topologically complex structures
such as vertebrae, is a difficult task with these types of models. Polygon based or particle based deformable
modeling schemes seem promising in segmenting and reconstructing such structures. Polygon based models
may be made compacted by removing and “retiling” (Turk 1992; Gourdon 1995) polygons in regions of low
shape variation, or by replacing a region of polygons with a single, high-order finite element or spline patch.
A possible research direction is to develop alternative models that blend or combine descriptive primitive
elements, such as flexible cylinders, into a global structure.

4.4 CurvevsSurfacevsSolid Models

The earliest deformable models were curves and surfaces. Anatomic structures in the human body, however,
are either solid or thick-walled. To support the expanding role of medical images into tasks such as surgical
planning and simulation, and the functional modeling of structures such as bones, muscles, skin, or arterial
blood flow, may require volumetric or solid deformable models rather than surface models. For example, the
planning of facial reconstructive surgery requires the extraction and reconstruction of the skin, muscles, and
bones from 3D images using accurate solid models. It also requires the ability to simulate the movement and
interactions of these structures in response to forces, the ability to move, cut and fuse pieces of the model in
a realistic fashion, and the ability to stimulate the simulated muscles of the model to predict the effect of the
surgery. Several researchers have begun to explore the use of volumetric or solid deformable models of the
human face and head for computer graphics applicationsgtae1995; Essat al. 1993) and for medical
applications, particularly reconstructive surgery (Waters 1992; Delinget 1994; Piepeet al. 1992;

Geiger 1992) and there is much room for further research. Researchers have also begun to use volumetric
deformable models to more accurately track and analyze LV motion (Young and Axel 1992; Cregsavell

1992; Duncaret al. 1994; Parlet al. 1996).
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45 Accuracy and Quantitative Power

Ideally it should be possible to measure and control the accuracy of a deformable model. The most com-
mon accuracy control mechanisms are the global or local subdivision of model basis functions éMiller

al. 1991), or the repositioning of model points to increase their density in regions of the data exhibit-
ing rapid shape variations (Vasilescu and Terzopoulos 1992). Other mechanisms that warrant further re-
search are the local control and adaptation of model continuity, parameter evolution (including the rate
and scheduling of the evolution), and the automation of all accuracy control mechanisms. The paramet-
ric formulation of a deformable model should not only yield an accurate description of the object, but it
should also provide quantitative information about the object in an intuitive, convenient form. That is, the
model parameters should be useful for operations such as measuring, matching, modification, rendering, and
higher-level analysis or geometric reasoning. This “parameter descriptiveness” criterion may be achieved
in a postprocessing step by adapting or optimizing the parameterization to more efficiently or more de-
scriptively match the data. However, it is preferable to incorporate the descriptive parameterization directly
into the model formulation. An example of this strategy is the deformable model ofeé®ak (1995;

1996).

4.6 Robustness

Ideally, a deformable model should be insensitive to initial conditions and noisy data. Deformable models
are able to exploit multiple image attributes and high level or global information to increase the robustness
of shape recovery. For example, many snakes models now incorporate region based image features as well
as the traditional edge based features (Section 3.1). Strategies worthy of further research include the incor-
poration of shape constraints into the deformable model that are derived from low level image processing
operations such as thinning, medial axis transforms, or mathematical morphology. A classical approach
to improve the robustness of model fitting is the use of multiscale image preprocessing techniques (Kass
et al. 1988; Terzopoulogt al. 1988), perhaps coupled with a multiresolution deformable model (Bajcsy
and Kovacic 1989). A multiresolution technique that merits further research in the context of deformable
models, is the use of wavelet bases (Strang and Nguyen 1996) for deformations (éeralril993;

Vemuri and Radisavljevic 1994). A deformable model should be able to easily incorporate added constraints
and any othea priori anatomic knowledge of object shape and motion. Section 3.3 reviewed several of the
most promising techniques to incorporatepriori knowledge. For example, for LV motion tracking, a
promising research direction is the incorporation of biomechanical properties of the heart and the inclusion
of the temporal periodic characteristics of the heart motion. Future directions include modeling schemes
that incorporate reasoning and recognition mechanisms using techniques from artificial intelligence such as
rule-based systems or neural networks.

5 Conclusion

The increasingly important role of medical imaging in the diagnosis and treatment of disease has opened
an array of challenging problems centered on the computation of accurate geometric models of anatomic
structures from medical images. Deformable models offer an attractive approach to tackling such problems,
because these models are able to represent the complex shapes and broad shape variability of anatomical
structures. Deformable models overcome many of the limitations of traditional low-level image processing
techniques, by providing compact and analytical representations of object shape, by incorporating anatomic
knowledge, and by providing interactive capabilities. The continued development and refinement of these
models should remain an important area of research into the foreseeable future.
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