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Abstract. Discriminative models that require full supervision are inef-
ficacious in the medical imaging domain when large labeled datasets are
unavailable. By contrast, generative modeling—i.e., learning data gen-
eration and classification—facilitates semi-supervised training with lim-
ited labeled data. Moreover, generative modeling can be advantageous in
accomplishing multiple objectives for better generalization. We propose
a novel multi-task learning model for jointly learning a classifier and
a segmentor, from chest X-ray images, through semi-supervised learn-
ing. In addition, we propose a new loss function that combines absolute
KL divergence with Tversky loss (KLTV) to yield faster convergence
and better segmentation performance. Based on our experimental results
using a novel segmentation model, an Adversarial Pyramid Progressive
Attention U-Net (APPAU-Net), we hypothesize that KLTV can be more
effective for generalizing multi-tasking models while being competitive in
segmentation-only tasks.
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1 Introduction

The effective supervised training of deep neural networks normally requires large
pools of labeled data. In medical imaging, however, datasets tend to be limited
in size due to privacy issues, and labeled data is scarce since manual annotation
requires tedious, time-consuming effort by medical experts, making it not only
expensive, but also susceptible to subjectivity, human error, and variance across
different experts. Although some large labeled datasets are available, they can
be seriously imbalanced by over-representation of common problems and under-
representation of rare problems.

The success of discriminative models such as regular CNNs for classification
or segmentation, depends on large labeled training datasets to make predictions
about future unobserved examples. Generative modeling has recently received
much attention with the advent of deep generative models, such as GANs. Since
they can learn real data distributions, they are becoming increasingly popular
given the abundance of unlabeled data.
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Via generative modeling, we can perform multi-task learning in a semi-
supervised manner, without large labeled datasets. In practice, we train a deep
learning model to perform a single task (classification, segmentation, detection,
etc.) by fine-tuning parameters until its performance no longer improves. The
same model can subsequently be enabled to perform better in other tasks. In fact,
the domain-specific features from the related tasks are leveraged to improve the
generalization of the model through multi-task learning [1]. Hence, one objective
regularizes another to accomplish multiple tasks within a common model.

We introduce a novel generative modeling approach to joint segmentation and
classification from limited labeled data, in a semi-supervised manner, and apply
it to chest X-ray imagery. Our technical contributions are twofold: (1) a novel
multi-task learning model for semi-supervised classification and segmentation
from small labeled medical image datasets and (2) a new loss function combining
absolute KL divergence and Tversky loss (KLTV) for semantic segmentation.

1.1 Related Work

Several single-task classification and segmentation models are available in the
chest X-ray literature. Based on the popular segnet architecture, Mittal et al. [2]
proposed a fully convolutional encoder-decoder with skip connections for lung
segmentation in chest X-ray images. Adversarial training of an FCN followed
by a CRF has been applied to non-overfitting mammogram segmentation [3].
Adversarial learning has been utilized for segmentation (semantic-aware genera-
tive adversarial nets [4], structure correcting adversarial nets [5], etc.) as well as
in disease classification from chest X-ray images (semi-supervised domain adap-
tation [6], attention-guided CNN [7], semi-supervised multi-adversarial encoder
[8])-

Unlike the above models, our model jointly performs both classification and
segmentation. Several prior efforts address multi-task learning with CNNs and
generative modeling. Rezaei et al. [9] proposed a GAN model combining a set
of auto-encoders with an LSTM unit and an FCN as discriminator for semantic
segmentation and disease prediction. Girard et al. [10] used a U-Net-like archi-
tecture coupled with graph propagation to jointly segment and classify retinal
vessels. Mehat et al. [11] proposed a Y-Net, with parallel discriminative and
convolutional modularity, for the joint segmentation and classification of breast
biopsy images. Another multi-tasking model was proposed by Yang et al. [12] for
skin lesion segmentation and melanoma-seborrheic keratosis classification, using
GoogleNet extended to three branches for segmentation and two classification
predictions. Khosravan et al. [13] used a semi-supervised multi-task model for
the joint learning of false positive reduction and nodule segmentation from 3D
CT. Ours is the first model to pursue a multi-task learning approach to the
analysis of chest X-ray images.
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Fig. 1. (a) Basic structure of the proposed APPAU-Net model. The segmentor S pre-
dicts segmentation ¢ from a given image x. The discriminator D predicts the class label
2 from image-real label pair (z,y); z = 0,...,n are real disease classes and z =n +1
denotes the predicted class; (b) Detailed architecture of the Discriminator D (as a
CNN) network of the APPAU-Net model.

2 Model Description

2.1 Adversarial Pyramid Progressive Attention U-Net

Our proposed APPAU-Net model consists of two major building blocks, a seg-
mentor S and a discriminator D (Fig.1). S primarily performs segmentation
prediction ¢ from a given image x. S consists of a pyramid encoder and a pro-
gressive attention-gated decoder modifying a U-Net. The S network, which is
illustrated in Fig. 2, receives the image input x at different scales in different
stages of the encoder [14]. This pyramidal input allows the model to access class
details at different scales. Moreover, while lowering resolution, the model can
keep track of the ROIs, avoiding the possibility of losing them after the sub-
sequent convolutions. The pyramid input to the encoder network enables the
model to learn more locally-aware features crucial to semantic segmentation.

Following [15], with deep-supervision, APPAU-Net generates side-outputs at
different resolutions from the decoder. The side-outputs are progressively added
to the next side-outputs before reaching the final segmentation at the original
image resolution. Combining pyramid inputs and progressive side-outputs helps
the model perform better in segmenting small ROIs. The side-output segmenta-
tion maps g; are compared to the ground truth mask to calculate the side-losses of
varying weights (higher resolutions are usually assigned higher weights). There-
fore, the final segmentation loss is calculated as

seg(L y) ZwlL(ynyL (1)

However, generating segmentation maps (side-outputs) at different stages
of the decoder might lead to loss of spatial detail. In cases with substantial
shape variability of the ROIs, this eventually incurs larger false positives. To
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Fig. 2. Architecture of the segmentor or PPAU-Net in our APPAU-Net model. The
encoder takes inputs at different scales and progressively adds the side-outputs from
the attention-gated decoder. The discriminator takes image-label or image-predicted
label pairs and classifies the images.

tackle this problem, we adapt soft-attention gates that help draw relevant spatial
features from the low-level feature maps of the pyramid encoder [16]. Feature
maps are then propagated to the high-level features to generate side-outputs at
different stages of the decoder. Attention-gated (AG) modules produce attention
coefficients « € [0, 1] at each pixel ¢ that scale input feature maps ! at layer
| to semantically relevant features #(9!. A gating signal from coarser resolution,
serves to determine the focus regions through the computation of intermediate
maps, as follows:

Gl = T (0 (D" +wg g™ +by)) + by, (2)

The linear attention coefficients are computed by element-wise summation and
a 1 x 1 linear transformation. The parameters are w,, wgy, by, and by. The inter-
mediate maps are then transformed using ReLU o7 and sigmoid o2 activations.
Finally, after element-wise multiplication of the feature map z(9* (via skip) and
nonlinear transformation, #("! is generated at each decoder stage.

The attention coefficients «; retain the relevant features by scaling the low
level query signal (V! through an element-wise product. These pruned features
are then concatenated with upsampled output maps at different stages of the
decoder. A 1 x 1 convolution and sigmoid activation is applied on each out-
put map in the decoder to generate the side-outputs at different resolutions.
With deep supervision and gating from the pyramid encoder, the model becomes
semantically more discriminative.
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2.2 Loss Functions

The two building blocks of our APPAU-Net model have different objectives.

Segmentor Loss: As in the semi-supervised learning-scheme, the segmentor’s
objective is just based on the labeled samples. We employ Tversky loss, a gen-
eralization of Dice loss that weighs false negatives higher than false positives in
order to balance precision and recall. The segmentor’s objective includes a seg-
mentation loss and an adversarial loss, where the segmentor wants the discrim-
inator D to maximize the likelihood for the predicted segmentation generated
by the segmentor. We combine an absolute KL divergence with a Tversky loss,
proposing the new loss function
Lg=Lg LS, oo (3)

sed(y,

where Lg = aLs,, + bLsy,, with Lg,, = > |(yu(i) —

. 3¢9 (y, )
(@)

95 log(y%) /351, and

ZZ” y;gz)i‘/,()ll) te
Sy + a ST Q8 + BT 5 G + €

LSTV =1- (4)

where §p;(¢) is the prediction probability that pixel ¢ is assigned label { (one
of the ROI labels) and ¢,;(i) is the probability that the pixel i is assigned the
non-ROI (background) label. Similarly, y,;(i) and y,;(i) denote the pixel-wise
mapping labels in the ground-truth masks. Hyper parameters a, b, o, and 3 can
be tuned to weigh the KIL-divergence against the Tversky loss (first pair) and
weigh FPs against FNs. Small constant € avoids division by zero. The second term
in the segmentor’s objective is an adversarial loss, where the segmentor wants
the discriminator to maximize likelihood for the paired data x and predicted
segmentation ¢. Therefore, the segmentor’s adversarial loss is

LS., = ~Eaguslogll - plz = n +1|(@,9)]. (5)
Since the main objective of the segmentor is to generate the segmentation map,
Ls,,, is usually weighed using a small number c.
Discriminator Loss: The discriminator is trained on multiple objectives—
adversary on the segmentor’s output and classification of the images into one
of the real classes. Since the model is trained on both labeled and unlabeled
training data, the loss function of the discriminator D includes both supervised
and unsupervised losses. When the model receives image-label pairs (z,y), it is
just the standard supervised learning loss

Lp ~Eay zmpaas 108[Pp(2 = i|x, y;i < n+1)]. (6)

sup
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Table 1. Segmentation-only performance comparison of different models in four dif-
ferent data setups.

Dataset | Model DS JS SSIM | F1 HD SN SP PR RC
MCX U-Net-TV 0.991 |0.9830.950 | 0.966 | 2.968 | 0.965 | 0.989 | 0.968 | 0.965
U-Net-KLTV 0.990 |0.980|0.947 1 0.962 | 3.009 | 0.966 | 0.985 | 0.958 | 0.966

Attention U-Net-TV 0.984 |0.968|0.922 | 0.937 | 3.768 | 0.915 | 0.987 | 0.960 | 0.915
Attention U-Net-KLTV | 0.990 | 0.980 | 0.941 | 0.960 | 3.063 | 0.957 | 0.987 | 0.962 | 0.957

PPAU-Net-TV 0.988 |0.978|0.966 | 0.958 | 3.143 | 0.967 | 0.982 | 0.949 | 0.967
PPAU-Net-KLTV 0.992 | 0.983|0.949 1 0.989 | 2.690 | 0.989 | 0.958 | 0.989 | 0.976
SCX U-Net-TV 0.964 | 0.931|0.860 | 0.955 | 4.181 | 0.975|0.799 | 0.936 | 0.975
U-Net-KLTV 0.960 |0.923|0.850 | 0.950 | 4.023 | 0.963 | 0.803 | 0.936 | 0.963

Attention U-Net-TV 0.958 [0.919|0.842 | 0.948 | 4.562 | 0.983 | 0.725 | 0.915 | 0.983
Attention U-Net-KLTV | 0.965 | 0.933 | 0.862 | 0.955 | 3.684 | 0.946 | 0.894 | 0.964 | 0.946

PPAU-Net-TV 0.954 |0.913|0.838 | 0.944 | 4.523 | 0.983 | 0.700 | 0.908 | 0.983
PPAU-Net-KLTV 0.964 | 0.930|0.858 | 0.954 | 3.855 | 0.961 | 0.836 | 0.946 | 0.961
JCX U-Net-TV 0.989 |0.979|0.937 | 0.985 | 2.804 | 0.990 | 0.956 | 0.981 | 0.990
U-Net-KLTV 0.990 | 0.980 | 0.939 | 0.986 | 2.553 | 0.980 | 0.988 | 0.995 | 0.977

Attention U-Net-TV 0.988 |0.977]0.929 | 0.983 | 2.882 | 0.993 | 0.940 | 0.974 | 0.993
Attention U-Net-KLTV | 0.989 | 0.977 | 0.932 | 0.984 | 2.781 | 0.981 | 0.970 | 0.986 | 0.981

PPAU-Net-TV 0.990 | 0.981|0.941 | 0.987 | 2.768 | 0.992 | 0.958 | 0.981 | 0.992
PPAU-Net-KLTV 0.990 | 0.979 | 0.937 | 0.985 | 2.751 | 0.987 | 0.959 | 0.982 | 0.987
CcCX U-Net-TV 0.978 | 0.958 | 0.907 | 0.968 | 3.322 | 0.974 | 0.928 | 0.962 | 0.974
U-Net-KLTV 0.969 |0.939|0.874 | 0.953 | 3.502 | 0.946 | 0.926 | 0.960 | 0.946
AttnU-Net-TV 0.970 |0.941|0.878 | 0.956 | 3.643 | 0.972 | 0.883 | 0.940 | 0.972
AttnU-Net-KLTV 0.971 |0.943|0.877 | 0.956 | 3.481 | 0.944 | 0.941 | 0.968 | 0.944
PPAU-Net-TV 0.969 |0.940|0.875 | 0.955 | 3.807 | 0.978 | 0.870 | 0.934 | 0.978
PPAU-Net-KLTV 0.967 |0.936|0.868 | 0.951 | 3.472 | 0.939 | 0.932 | 0.963 | 0.939

When it receives unlabeled data (z,y) or (z,¢) from two different sources, the
unsupervised loss combines the original adversarial losses for image-real label
and image-prediction pairs:

Lp,oye = _EZ,prdam IOg[l - p(Z =n-+ 1|$7 y)] (7)

and

Lpyea = =E(ag)~sloglp(z = n + 1z, 9)]. (8)

3 Experiments and Results

Dataset and Implementation Details: For the supervised segmentation, we used
our PPAU-Net model and KLTV as the loss function. We compared against all
the preliminary segmentation models and TV loss. Then we performed semi-
supervised multi-tasking for semi-supervised disease classification and lung seg-
mentation from chest X-ray images. We used three chest X-ray datasets: the
Montgomery County chest X-ray set (MCX) comprising 138 images, the Shen-
zhen chest X-ray set (SCX) comprising 527 images [17], and the JSRT dataset
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(JCX) comprising 247 images [18]. In addition, we created another dataset
(CCX) comprising 912 images, by combining prior datasets. Each dataset was
split into train and test sets in a 75:25 ratio and 10% of the train set was used for
model selection. Except for CCX, all the datasets were used for binary classifica-
tion (normal/abnormal), while CCX was used for 3-class classification (normal,
nodule, tuberculosis). The X-ray images were normalized and resized to 128 x 128
pixels. For multi-tasking, we used the Adam optimizer with momentum 0.9 and
learning rates 1.07° () and 1.0~* (D). Each model was trained using a batch
size of 16. All the convolutional layers were followed by batch-normalization,
except for the convolutions that generate side-outputs. We performed dropout
at a rate of 0.4 in the discriminator. Each model was evaluated after training for
300 epochs. For the classification, along with the overall accuracy, we reported
the class-wise F'1 scores. For the segmentation, we used the following performance
metrics: Dice similarity (DS), Average Hausdorff distance (HD), Jaccard index
(JI), Sensitivity (SN), Specificity (SP), F1 score, Structural Similarity Measure
(SSIM), Precision (PR), and Recall (RE) scores.

SEARANL

X-Ray (b) Ground Truth (¢) APPAU-Net-KLTV (d) APPAU-Net-TV
Fig. 3. Visual comparison of the lung segmentation by the APPAU-Net model with
TV loss (d) and KLTV loss (c). The predicted lung mask with TV and KLTV losses
are overlaid with the ground truth mask.

Segmentation-Only: At first, we evaluated the performance of our PPAU-Net
model for the segmentation-only task, and compared with the baseline models
incrementally. Table 1 reports the performance measures of different models with
varying choices of loss (TV and KLTV), showing that our model is competitive.

Semi-supervised Multi-task Learning: In the semi-supervised setting, we applied
our new APPAU-Net model. Along with TV loss, we used cross-entropy with
TV (XETV) loss and the proposed KLTV loss. 10% labeled and 90% unla-
beled training data were used for every dataset. Table 2 shows that for all four
datasets the APPAU-Net model with the new KLTV loss consistently outper-
formed the APPAU-Net model with TV and XETYV losses in both overlap and
distance measures, and suggests that the model with KLTV loss generalizes bet-
ter in multi-task learning. While both TV and XETYV losses tend to lose some
accuracy because of the additional classification task, KLTV still achieves good
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Table 2. Performance evaluation of the APPAU-Net model for semi-supervised multi-
tasking in different data settings.

Dataset | Model Classification Segmentation

Acc PR |RE DS JI SSIM | F1 HD SN SP PR RE
MCX APPAU-Net-TV 0.571/0.690/0.290|0.956 |0.916/0.815|0.8144.514 |0.800|0.988|0.953|0.800
APPAU-Net-XETV |0.514 |0.620{0.280/0.929 |0.868|0.788|0.778|4.554 |0.903|0.856|0.684|0.903
APPAU-Net-KLTV |0.543 |0.680{0.200/0.974/0.950(0.880|0.898|3.914|0.857|0.944|0.944|0.857
JCX APPAU-Net-TV 0.758/0.000|0.860|0.972 |0.945|0.864 |0.9633.755 |0.996|0.831/0.929|0.996
APPAU-Net-XETV |0.758|0.000|0.860|0.975 |0.952|0.878|0.966|3.489 |0.995|0.857|0.939/0.994
APPAU-Net-KLTV |0.7580.000|0.8600.976|0.9530.885|0.966|3.351|0.975/0.904|0.958 |0.975
SCX APPAU-Net-TV 0.477 /0.580{0.300/0.883 |0.790/0.713|0.877/6.601 |0.999|0.1620.782|0.992
APPAU-Net-XETV |0.553|0.670{0.290|0.889 (0.800(0.720|0.882|6.372 |0.997|0.205|0.791|0.997
APPAU-Net-KLTV | 0.508 [0.530(0.4900.921|0.8530.746 |0.910|4.368|0.992|0.434|0.841|0.992
CCX APPAU-Net-TV 0.776|0.800/0.780|0.874 |0.777/0.682|0.845|5.375 |0.936|0.576|0.770/0.959
APPAU-Net-XETV |0.732 [0.81 [0.70 [0.923 |0.8620.768|0.890|4.692 |0.974/0.632|0.823|0.954
APPAU-Net-KLTV |0.750 |0.770|0.750|0.926 |0.863|0.780|0.903|4.669|0.979|0.645|0.8380.953

accuracy, comparable to fully-supervised segmentation models in Table1l and
LF-segnet [2]. Figure 3 shows the segmented lungs by different models, confirm-
ing the superior performance of our APPAU-Net with KLTV loss compared to
the TV loss.

4 Conclusions

Generative modeling provides unique advantages for learning from small labeled
datasets. With adversarial training, we can perform multi-task learning to con-
currently accomplish multiple objectives. We proposed and demonstrated in
different settings the performance of a novel semi-supervised multi-task learn-
ing model for joint classification and segmentation from a limited number of
labeled chest X-ray images. Our experimental results confirm that our APPAU-
Net model even against the single-task learning of fully supervised models.
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