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Abstract We present a surveillance system, compris-
ing wide field-of-view (FOV) passive cameras and
pan/tilt/zoom (PTZ) active cameras, which automati-
cally captures high-resolution videos of pedestrians as
they move through a designated area. A wide-FOV sta-
tic camera can track multiple pedestrians, while any PTZ
active camera can capture high-quality videos of one
pedestrian at a time. We formulate the multi-camera
control strategy as an online scheduling problem and
propose a solution that combines the information gath-
ered by the wide-FOV cameras with weighted round-
robin scheduling to guide the available PTZ cameras,
such that each pedestrian is observed by at least one PTZ
camera while in the designated area. A centerpiece of
our work is the development and testing of experimental
surveillance systems within a visually and behaviorally
realistic virtual environment simulator. The simulator is
valuable as our research would be more or less infeasi-
ble in the real world given the impediments to deploying
and experimenting with appropriately complex camera
sensor networks in large public spaces. In particular, we
demonstrate our surveillance system in a virtual train
station environment populated by autonomous, lifelike
virtual pedestrians, wherein easily reconfigurable vir-
tual cameras generate synthetic video feeds. The video
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streams emulate those generated by real surveillance
cameras monitoring richly populated public spaces.

1 Introduction

We regard the design of an autonomous visual sen-
sor network as a problem in resource allocation and
scheduling, where the sensors are treated as resources
necessary to complete the required sensing tasks. Imag-
ine a situation where the camera network must acquire
high-resolution videos of every pedestrian that passes
through a region of interest. The captured video should
be amenable to further biometric analysis; e.g., by gait,
gesture, or facial recognition routines. Passive cameras
alone cannot satisfy this task. Additional, active cam-
eras, also known as pan/tilt/zoom (PTZ) cameras, are
needed to capture high-quality videos of pedestrians.
As there will often be more pedestrians in the scene
than the number of available cameras, the PTZ cameras
must intelligently allocate their time among the differ-
ent pedestrians. A resource management strategy can
enable the cameras to decide autonomously how best to
allocate their time to observing the various pedestrians
in the scene. The dynamic nature of the sensing task fur-
ther complicates the decision making process; e.g., the
amount of time a pedestrian spends in the designated
area can vary dramatically among different pedestrians,
or an attempted video recording by a PTZ camera might
fail due to occlusion.

1.1 The virtual vision paradigm

Beyond the legal obstacles to monitoring people in pub-
lic spaces for experimental purposes, the cost of deploy-
ing and repeatedly reconfiguring a large-scale camera
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network in the real world can easily be prohibitive for
computer vision researchers. As was argued in [2], how-
ever, rapidly evolving computer graphics and virtual
reality technologies present viable alternatives to the
real world for developing computer vision systems.
Legal impediments and cost considerations aside, the
use of a virtual environment can also offer greater flex-
ibility during the system design and evaluation process.
Terzopoulos [3] proposed a virtual vision approach to
designing surveillance systems using a virtual train sta-
tion environment populated by fully autonomous, life-
like pedestrians that perform various activities (Fig. 1)
[4]. Within this environment, virtual cameras gener-
ate synthetic video feeds. The video streams emulate
those generated by real surveillance cameras, and low-
level image processing mimics the performance charac-
teristics of a state-of-the-art surveillance video system.
Recently, we have further developed the virtual vision
approach to surveillance in sensor networks [5].

1.2 The virtual sensor network

Within the virtual vision paradigm, we propose a sensor
network comprising wide field-of-view (FOV) passive
cameras and PTZ active cameras to automatically cap-
ture and label high-quality video for every pedestrian
that passes through a designated region. The network
described herein, a special instance of the sensor net-
work architecture proposed in [5], is capable of per-
forming common visual surveillance tasks using local
decision making at each camera node, as well as inter-
node communication, without relying on camera cali-
bration, a detailed world model, or a central controller.

Unlike our earlier work [5], we assume here that the
wide-FOV static cameras are calibrated,1 which enables
the network to estimate the 3D locations of pedestri-
ans through triangulation. However, we do not require
the PTZ active cameras to be calibrated. Rather, dur-
ing a learning phase, the PTZ cameras learn a coarse
map between the 3D locations and the gaze-direction
by observing a single pedestrian in the scene. A pre-
cise map is unnecessary since each PTZ camera is an
autonomous agent that can invoke a search behavior
to find a pedestrian using only coarse hints about the
pedestrian’s 3D position. The network uses a weighted
round-robin strategy to assign PTZ cameras to surveil
the various pedestrians. A new observation request is
inserted into the task queue for every pedestrian that
is sensed. Initially, each observation request is assigned
the same priority; however, the decision making pro-

1 This assumption is justifiable given the existence of several static
camera calibration schemes [6,7].

cess uses domain-specific heuristics, such as the distance
of the pedestrian from a camera or the heading of the
pedestrian, to continuously evaluate the priorities of
the observation requests. The PTZ cameras handle each
task in priority sequence. The surveillance system issues
a warning when an observation request cannot be met.

1.3 The virtual world simulator

Our visual sensor network is deployed and tested within
the virtual train station simulator that was developed
in [4]. The simulator incorporates a large-scale environ-
mental model (of the original Pennsylvania Station in
New York City) with a sophisticated pedestrian anima-
tion system that combines behavioral, perceptual, and
cognitive human simulation algorithms. The simulator
can efficiently synthesize well over 1,000 self-animat-
ing pedestrians performing a rich variety of activities
in the large-scale indoor urban environment. Like real
humans, the synthetic pedestrians are fully autonomous.
They perceive the virtual environment around them,
analyze environmental situations, make decisions and
behave naturally within the virtual train station. They
can enter the station, avoiding collisions when proceed-
ing though portals and congested areas, queue in lines
as necessary, purchase train tickets at the ticket booths
in the main waiting room, sit on benches when they
are tired, purchase food/drinks from vending machines
when they are hungry/thirsty, etc., and eventually pro-
ceed downstairs in the concourse area to the train tracks.
Standard computer graphics techniques enable a photo-
realistic rendering of the busy urban scene with consid-
erable geometric and photometric detail (Fig. 1).

1.4 Contributions and overview

In this paper, we introduce a sensor management scheme
that appears well suited to the challenges of design-
ing camera networks for surveillance applications capa-
ble of fully automatic operation. We also develop new
gaze-direction controllers for active PTZ cameras. Our
work demonstrates the conveniences of the virtual vi-
sion paradigm for implementing, experimenting with,
and evaluating our surveillance system.

The remainder of the paper is organized as follows:
Sect. 2 covers relevant prior work. Section 3 overviews
our system. We explain the low-level vision emulation in
Sect. 4. Section 5 describes the PTZ active camera con-
trollers and proposes a scheme for learning the map
between 3D locations and gaze directions. Section 6
introduces our scheduling strategy. We present our
results in Sect. 7 and our conclusions and future research
directions in Sect. 8.
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Fig. 1 Virtual vision.
Synthetic video feeds from
multiple virtual surveillance
cameras situated in a
large-scale virtual train
station populated by
self-animating pedestrians. a
Waiting room, b Concourses
and platforms, c Arcade

2 Related work

Previous work on multi-camera systems has dealt with
issues related to low and medium-level computer
vision, namely identification, recognition, and tracking
of moving objects [8–12]. The emphasis has been on
tracking and on model transference from one camera
to another, which is required for object identification
across multiple cameras [13]. Numerous researchers
have proposed camera network calibration to achieve
robust object identification and classification from mul-
tiple viewpoints, and automatic camera network calibra-
tion strategies have been proposed for both static and
actively controlled camera nodes [6,7].

Little attention has been paid, however, to the prob-
lem of controlling or scheduling active cameras when
there are more objects to be monitored in the scene than
there are available cameras.2 Some researchers employ
a static wide-FOV camera to control an active tilt-zoom
camera [18,19]. The cameras are assumed to be cali-
brated and the total coverage of the cameras is restricted
to the FOV of the static camera. Zhou et al. [19] track
a single person using an active camera. When multiple
people are present in the scene, the person closest to the
last tracked person is chosen. The work of Hampapur
et al. [20] is perhaps closest to ours in that it deals with
the issues of deciding how cameras should be assigned to
various people present in the scene. Costello et al. [21]
evaluate various strategies for scheduling a single active
camera to acquire biometric imagery of the people pres-
ent in the scene.

In concordance with the virtual vision paradigm
[2,3], Santuari et al. [22,23] advocate the development
and evaluation of pedestrian segmentation and track-
ing algorithms using synthetic video generated within
a virtual museum simulator containing scripted charac-
ters. They focus on low-level computer vision, whereas
our work is concerned with high-level computer vision
issues, especially multi-camera control in large-scale
camera networks.

2 The problem of online scheduling has been studied extensively
in the context of scheduling jobs on a multitasking computer [14,
15] as well as for packet routing in networks [16,17].

3 System overview

Our surveillance system is realized within the virtual
Penn Station. The network comprises calibrated wide-
FOV static cameras and uncalibrated active PTZ
cameras. A central server acquires environmental infor-
mation, such as the 3D positions of the pedestrians,
through the static cameras and employs this informa-
tion to schedule the active cameras in order to visually
examine every pedestrian in the scene (Fig. 2).

The virtual cameras acquire synthetic video and
employ machine vision routines to identify, recognize,
label, and track pedestrians. At present, we assume that
pedestrians can be reliably identified across multiple
cameras. The static cameras track the 3D locations of
pedestrians through triangulation. An offline machine
learning scheme learns the map between the gaze direc-
tion parameters (i.e., pan-tilt angles) of the PTZ cam-
eras and target 3D world locations. Each PTZ camera is
modeled as an autonomous agent capable of recording
the detailed video of the pedestrian of interest with-
out relying on continuous feedback from the central
controller. The PTZ camera uses image-based fixation
and zooming routines to follow a pedestrian reliably
(Sect. 5).

Central Server

Calibrated
Passive
Camera

1

Calibrated
Passive
Camera

n

Scene Knowledge:
Pedestrians’ Positions,
Appearance Signatures,

Entry Times

Uncalibrated
Active
Camera

1
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Active
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Fig. 2 A central controller uses the scene information collected
by calibrated, static cameras to schedule active PTZ cameras for
recording close-up videos of the pedestrians in the region of inter-
est. The PTZ cameras are autonomous agents that attempt to
achieve the tasks assigned to them by the central controller. The
dashed arc indicates the intermittent flow of instructions from the
central controller to the PTZ cameras
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Fig. 3 Pedestrian
segmentation and tracking.
The labels indicate occasional
problems: 1 Multiple
pedestrians are grouped
together due to poor
segmentation; 2 noisy
pedestrian segmentation
results in a tracking failure; 3
pedestrian segmentation and
tracking failure due to
occlusion

4 Local vision routines

As we described in [5], each camera has its own suite of
Local Vision Routines (LVRs) that support pedestrian
recognition, identification, and tracking. The LVRs are
computer vision algorithms that directly operate upon
the synthetic video generated by the virtual cameras and
the information available from the 3D virtual world.
The virtual world affords us the benefit of fine tuning
the performance of the recognition and tracking mod-
ules by taking into consideration the readily available
ground truth. Our imaging model emulates camera jit-
ter and imperfect color response; however, it does not
yet account for such imaging artifacts as depth-of-field,
motion blur, image vignetting, and interlacing. More
sophisticated rendering schemes would address this
limitation.

We employ appearance-based models to track pedes-
trians. Pedestrians are segmented to construct person-
alized color-based pedestrian signatures, which are then
robustly matched across the subsequent frames. Pedes-
trian segmentation is carried out using 3D geometric
information as well as background modeling and sub-
traction. The quality of the segmentation depends upon
the amount of noise introduced into the process, and the
noise is drawn from Gaussian distributions with appro-
priate means and variances. Color-based signatures, in
particular, have found widespread use in tracking appli-
cations [24]. Unfortunately, color-based signatures can
be sensitive to illumination changes. We mitigate the
shortcoming by operating in HSV space instead of RGB
space.

The tracking module mimics the capabilities and lim-
itations of a state-of-the-art tracking system (Figs. 3,4).
For example, it can lose track due to occlusions, poor
segmentation, or bad lighting. Tracking sometimes locks
onto the wrong pedestrian, especially if the scene con-
tains multiple pedestrians with similar visual appear-
ance; i.e., wearing similar clothes. Tracking also fails in
group settings when the pedestrian cannot be segmented

properly. Our surveillance system is designed to operate
robustly in the presence of occasional low-level failures.

For the purposes of this paper, we assume that the
scene is monitored by more than one calibrated
wide-FOV passive camera plus at least one PTZ
active camera. Multiple calibrated static cameras al-
low the system to use triangulation to compute the
location of a pedestrian in 3D, when the pedestrian is
simultaneously visible in two or more cameras. For PTZ
cameras, zooming can drastically change the appear-
ance of a pedestrian, thereby confounding conventional
appearance-based schemes, such as color histogram sig-
natures. We tackle this problem by maintaining HSV
color histograms for several camera zoom settings for
each pedestrian. Thus, a distinctive characteristic of our
pedestrian tracking routine is its ability to operate over
a range of camera zoom settings.

We employ histogram intersection to compute the
match score between two histograms [25] (Fig. 5). For
two normalized histograms H1(n) and H2(n), where n is
the number of bins, and Hi

1 and Hi
2 are the number of

samples in the ith bin, the match score is

H1 ∩ H2 =
∑

i

min
(
Hi

1, Hi
2
)
. (1)

Here, the key issue is the selection of the color space
and the number of bins or the quantization level. Cur-
rently, we use 2D hue-saturation histograms with 32 bins
in each dimension. The match score of a histogram HI
against a stored multi-zoom color signature HS is then

d(HI , HS) = 1
Nθ

∑

θ

(
HI ∩ HS,θ

)
, (2)

where Nθ is the total number of histograms stored across
multiple zoom settings and θ represents the field-of-view
setting corresponding to the stored histogram HS,θ .
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Fig. 4 Tracking pedestrians 1
and 3. Pedestrian 3 is tracked
successfully; however, a track
is lost of pedestrian 1 who
blends in with the
background. b The tracking
routine loses pedestrian 3
when she is occluded by
pedestrian 2, but it regains
track of pedestrian 3 when
pedestrian 2 moves out of the
way c

Fig. 5 Color (hue) image
pixel histograms of a tracked
pedestrian change drastically
with zooming. c The
histogram of the (boxed)
subject a when the FOV of
the camera is set to 45◦. d The
histogram of the same subject
when the camera has zoomed
in on the subject. To address
this problem, a list of
histograms is maintained over
different zoom settings

5 PTZ active camera controller

We implement each PTZ active camera as a behavior-
based autonomous agent [5]. The overall behavior of the
camera is determined by the LVR and the current task.
The camera controller is modeled as an augmented finite
state machine. At the highest level, the camera can be in
one of the following states: free, tracking, searching, and
lost (Fig. 6a). When a camera is free, it selects the next
observation request in the task pipeline. The observation
requests are of the form, “observe pedestrian i currently
at location (x, y, z) for t seconds.” When performing the
new observation request, the camera selects its widest
FOV setting and chooses an appropriate gaze direction
using the estimated 3D location of the pedestrian. Upon
the successful identification of the pedestrian in question
within the FOV, the camera uses image-driven fixation
and zooming algorithms to follow the subject.

Each camera can fixate on and zoom in on an object
of interest. The fixation and zooming routines are image
driven and do not require any 3D information such as
camera calibration or a global frame of reference. We
discovered that traditional proportional derivative (PD)
controllers generate unsteady control signals resulting
in jittery camera motion. The noisy nature of tracking
induces the PD controller to attempt to minimize the
error metric continually without success, so the cam-
era keeps servoing. Hence, we model the fixation and
zooming routines as dual-state controllers. The states
are used to activate/deactivate the PD controllers. In the
act state the PD controller tries to minimize the error

signal, whereas in the maintain state the PD controller
ignores the error signal and does nothing (Fig. 6(b)).

The fixate routine brings the region of interest (e.g.,
the bounding box of a pedestrian) into the center of the
image by tilting the camera about its local X and Y axes
(Fig. 7, top row). The zoom routine controls the FOV of
the camera such that the region of interest occupies the
desired percentage of the image. This is useful in situa-
tions where, for example, the operator desires a closer
look at a pedestrian of interest (Fig. 7, middle row).
See [5] for the details of the fixate and zoom routines.

5.1 Learning the gaze direction computation

Computing an appropriate gaze direction in order to
bring the desired pedestrian within the FOV of a camera
requires a map between 3D locations in the scene and
the associated internal gaze-direction parameters (i.e.,
the pan-tilt settings) of the camera. This map is learned
automatically by observing a pedestrian directed to move
around in the scene during an initial learning phase.
While the active PTZ cameras are tracking and follow-
ing the pedestrian, the 3D location of the pedestrian
is estimated continuously through triangulation using
the calibrated, passive FOV cameras. A lookup table
is computed for each PTZ camera that associates the
estimated 3D scene location of the target pedestrian
with the corresponding gaze angles of the camera. Spe-
cifically, for PTZ camera i, this yields tuples of the form
(xj, yj, zj, αj, β j), where j indexes over the scene locations
(x, y, z) and corresponding camera pan and tilt angles
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Fig. 6 a Top-level camera controller. b Dual-state controller for fixation and zooming

Fig. 7 Top row: A fixate
sequence. Middle: A zoom
sequence. Bottom: Camera
returns to its default settings
upon losing the pedestrian; it
is now ready for another task

(α, β). The lookup table constitutes the training dataset
used for learning a continuous map M : �3 → �2 be-
tween the locations and associated angles. We compute
M using a nearest neighbor approximation. Given any
3D input point p = (x, y, z), the system estimates the
values for αi and βi of any camera i that can observe p
as follows: let Sk be the set of k nearest neighbors to p
in {pj = (xj, yj, zj)}, where proximity is computed using
the L2 norm ‖p − pj‖. Then

αi = 1
k

∑

j: pj∈Sk

αj; βi = 1
k

∑

j: pj∈Sk

β j. (3)

This provides only a coarse map between the 3D scene
points and the camera pan-tilt angles, but the map is
accurate enough in practice to bring the pedestrian
within the field of view of the camera.

Figure 8 illustrates an example map learned using the
above scheme. Each of the plots shows a plan view of a
3D space, covering the XY-plane (Z = 0). The red dots
denote 3D points used in learning the map between the
3D world and the pan-tilt settings of the active, PTZ
camera. The optical center of this camera is indicated
by the green dot at the upper right of each plot. The red
points indicate the triangulation-estimated locations of
the visually tracked pedestrian, where the active PTZ
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Fig. 8 Map from 3D world locations to PTZ camera gaze direc-
tion. Plots of the squared error between the true and estimated a
pan α and b tilt β settings. c Euclidean distance between the true

3D location and the point where the XY-plane (Z = 0) intersects
the optical axis of the PTZ camera when its pan-tilt angles are set
to the estimated α and β

camera fixating on the pedestrian has stored an asso-
ciated pan-tilt setting. Note that the training uses no
information about the camera’s 3D location.

Each plot shows the squared error between the true
and estimated quantities, where brightness is propor-
tional to the magnitude of the error. To generate the
plots, we regularly sampled points on the XY-plane and
used the position of the camera to compute the true
pan-tilt settings for each of the sampled points (true α

and β), which constitutes the ground truth. Next, we
used the learned map to estimate the camera’s pan-tilt
settings for every sampled point (estimated α and β).
Figure 8a, b plot the squared error in degrees between
the true and estimated pan-tilt settings. Figure 8c plots
the Euclidean distance between the true 3D location
and the point where the XY-plane intersects the opti-
cal axis of the PTZ camera when the camera’s pan-tilt
angles are set to the estimated values. As expected, we
observed that the estimate exhibits smaller error in the
vicinity of the training data used to learn the map and
that it improves over a larger area when the PTZ cam-
era has had the chance to observe longer, more varied,
pedestrian tracks like the one shown in the figure.

Upon receiving a new observation request from the
scheduler, the active camera estimates the initial gaze
direction (α, β) using the learned map. The camera then
orients itself in this direction and invokes a visual search
behavior (histogram matching) to acquire the pedes-
trian in question. The distance of p from the nearest
pj in the lookup table is a good indicator of the accu-
racy of the estimated gaze direction and it enables the
tuning of the visual search behavior. If the distance
is large, the PTZ camera chooses a larger cutoff time
for the visual search behavior and selects a wider FOV
angle during the search. To minimize the reliance on the
initial learning phase, the lookup table is continuously
updated when the PTZ camera is following a pedestrian
whose 3D location is known.

6 Camera scheduling

The sensor network maintains an internal world model
that reflects the current knowledge about the world. The
model stores information about the pedestrians present
in the scene, including their arrival times and the most
current estimates of their positions and headings. The
world model is available to the scheduling routine that
assigns cameras to the various pedestrians in the scene.
Using the 3D information stored in the world model,
the cameras choose an appropriate gaze direction when
viewing a particular pedestrian. The scheduling algo-
rithm must find a compromise between two compet-
ing objectives: (1) to capture high-quality video for as
many as possible, preferably all, of the pedestrians in
the scene and (2) to observe each pedestrian for as long
or as many times as possible, since the chances of iden-
tifying a pedestrian improve with the amount of data
collected about that pedestrian. At one extreme, the
camera follows a pedestrian for their entire stay in the
scene, essentially ignoring all other pedestrians, whereas
at the other extreme, the camera briefly observes every
pedestrian in turn and repeatedly, thus spending most
of the time transitioning between different pan, tilt, and
zoom settings.

Following the reasoning presented in [1,21], the cam-
era scheduling problem shares many characteristics with
the network packet routing problem. Network packet
routing is an online scheduling problem where the
arrival times of packets are not known a priori and where
each packet must be served for a finite duration before
a deadline, when it is dropped by the router. Similarly,
in our case, the arrival times of pedestrians entering the
scene is not known a priori and a pedestrian must be
observed for some minimal amount of time by one of
the PTZ cameras before (s)he leaves the scene. That
time serves as the deadline.
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However, our problem differs from the packet rout-
ing problem in several significant ways. First, continuing
with network terminology, we have multiple “routers”
(one for every PTZ camera) instead of just one. This
aspect of our problem is better modeled using sched-
uling policies for assigning jobs to different processors.
Second, we typically must deal with additional sources
of uncertainty: (1) it is difficult to estimate when a pedes-
trian might leave the scene and (2) the time period
during which a PTZ camera should track and follow
a pedestrian to record high-quality video suitable for
further biometric analysis can vary depending on mul-
tiple factors; e.g., a pedestrian suddenly turning away
from the camera, a tracking failure, an occlusion, etc.

Consequently, camera scheduling is an online sched-
uling problem (in scheduling jargon, a PTZ camera is a
“processor” or “machine” and a pedestrian is a “job”)
for which (1) jobs are released over time, (2) have dead-
lines, (3) have different processing requirements, (4)
can be assigned to one of many processors, and (5) the
scheduler must schedule them without any knowledge of
the future. Our approach is loosely related to the Multi
Level Feedback Algorithm used for process scheduling
in the Unix and Windows NT operating systems [15].

6.1 Online scheduling paradigms

An online scheduling algorithm does not have access to
the entire input instance as it makes its decisions [26].
Thus, at each time t, the scheduler must decide which
job(s) to run at t. Here, jobs typically have release times,
and the scheduler is not aware of the existence of a job
until its release time.

An online scheduler is referred to as “clairvoyant”
when the processing times of the jobs are available to the
scheduler upon their arrival. Such schedulers are mod-
eled within an online-time paradigm. Alternatively, the
lack of job processing time information is called “non-
clairvoyance” and such schedulers are modeled using
the online-time-nclv paradigm. Since the exit times of
pedestrians are difficult to predict, our scheduler is non-
clairvoyant.

Another issue that arises in scheduling algorithms
is that of preemption; i.e., interrupting a running job
to process another job. A common scheme for imple-
menting preemption is to pause an active job and later
resume it on the same processor. Another possibility,
which only exists in the online setting and is meaningless
for offline scheduling algorithms, is to stop an existing
job and restart it from the beginning on the same or
a different processor. It is well known that if preemp-
tion is not allowed for problems in either the online-time
or online-time-nclv model, and jobs can have arbitrary

processing times, then the schedules produced by any
online scheduler will be far from optimal [15]. This is
why most online schedulers generally allow preemption,
unless all jobs have similar processing times. Preemption
incurs an overhead as job swapping (pausing/resuming
jobs, saving/restoring job states, etc.) consumes
resources.

In the camera scheduling application, for example,
job swapping involves, among other overheads, locating
the other pedestrian and initializing the tracking routine.
Preemption is especially relevant to our application, as
without it a PTZ camera can potentially track a pedes-
trian indefinitely without ever succeeding in record-
ing video suitable for further biometric analysis. We
therefore allow preemption. When there are multiple
pedestrians in the scene, a PTZ camera is assigned to
a pedestrian for some fixed maximum duration, after
which the PTZ camera can be reassigned even if the
video recording was unsuccessful.3 The pedestrian whose
video recording is terminated is treated as a new arrival
and, later, the same or a different camera can attend to
the pedestrian.

Figure 9 shows examples of the scheduling of a sin-
gle camera to observe multiple pedestrians with and
without preemption. Without preemption, the camera
observes pedestrian 1 until sufficient video is collected,
ignoring all other pedestrians (Fig. 9a). By contrast, pre-
emption prevents the camera from being monopolized
by pedestrian 1, so the camera can attend to pedestrians
2, 3, and 4 even before sufficient video of pedestrian 1
has been acquired (Fig. 9b). The camera later resumes
observing pedestrian 1; however, the pedestrian leaves
the scene before suitable video has been collected. Pre-
emption is not advantageous in all situations and it can
have unintended side effects. In Fig. 9c, pedestrian 1
was successfully observed; however, with preemption,
none of the pedestrians were observed long enough in
Fig. 9d.

For more effective preemption, we have adopted a
multi-class pedestrian (job) model (Fig. 11a, b). Every
pedestrian is assigned to a class based on how many
times the pedestrian has been observed successfully by
a PTZ camera. Each sensed pedestrian is initialized as a
member of class 0 and advances to the next higher class
after each successful observation. The class numbers
of pedestrians together with their arrival times deter-
mine their positions in the priority queue, with prior-
ity given to pedestrians in lower classes. For example,

3 An observation is deemed successful when the recorded video
is suitable for further biometric analysis. The duration of the video
depends on a number of factors, including the requirements of the
biometric analysis routine, the quality of the recorded video, etc.
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Fig. 9 Scheduling a single camera to observe multiple pedestrians
with and without preemption. a, b A camera is scheduled to ob-
serve four pedestrians. c, d A camera is scheduled to observe two
pedestrians. Triangles represent lead times, rectangles represent

processing times. Green indicates a successful recording, blue (or
‘p’) indicates a preemptive abort. Red (or ‘x’) indicates a failed
recording due to the departure of a pedestrian

Fig. 10 Scheduling a single
camera to observe three
pedestrians in
single-observation and
multiple-observations modes.
A pedestrian’s position in the
priority sequence is computed
using the FCFS policy

cameras currently observing pedestrians belonging to
classes 1, 2, 3, . . ., are immediately reassigned to class 0
pedestrians that have not yet been recorded (Fig. 11b).

Figures 10 and 11 compare the naive FCFS-based
priority calculation against the multi-class priority
computation scheme. The multi-class priority scheme is
irrelevant when each pedestrian is observed only once.
In single observation mode, each pedestrian is observed
exactly once; e.g., in Fig. 10a the camera is free after
pedestrian 3’s departure, yet the camera is not assigned
to observe pedestrian 1 who is still present. However, it
is desirable to observe a pedestrian multiple times when
possible, in order to collect more data. In Fig. 10b, the
camera is instructed to observe every pedestrian for as
many times as possible, ergo pedestrian 1 is observed
twice. When the camera finishes observing pedestrian
2, pedestrian 1 is ahead of pedestrian 3 in the priority
sequence since the arrival time of pedestrian 1 preceded
the arrival time of pedestrian 3.4 The scheduler uses the
naive FCFS priority computation, which does not differ-
entiate between pedestrians 1 and 3 based on their class
memberships: pedestrians 1 and 3 belong to Classes 1
and 0, respectively. Therefore, the camera is assigned
to observe pedestrian 1 again and pedestrian 3 goes
unnoticed.

4 In the multiple observations setting, the arrival time of a pedes-
trian is updated after each successful recording; e.g., in Fig. 11b,
the arrival time of pedestrian 1 was changed from the true arrival
time, 5, to 23 after the pedestrian was successfully recorded.

Multi-class priority calculation resolves the above
issue (Fig. 11a). After the camera has successfully
observed pedestrian 2, priority is given to pedestrian
3 (class 0) over pedestrian 1 (class 1), even though the
arrival time of pedestrian 1 precedes that of pedestrian
3. Consequently, the camera is assigned to Pedestrian 3
and the camera successfully observes all three pedestri-
ans. Furthermore, multi-class priority calculation allows
more intelligent preemption. Consider Fig. 11b: the cam-
era is observing pedestrian 1 for the second time when
pedestrian 3 enters the scene. Upon sensing the new
arrival, the camera immediately aborts observing pedes-
trian 1 (class 1) and attends to the previously unseen
pedestrian (pedestrian 3, class 0).

6.2 Problem formulation

The standard three-field notation for describing sched-
uling problems [27] is α|β|γ , where α describes the
processing environment, β encodes the job character-
istics, and γ is the performance criterion for the sched-
uling algorithm. Using this notation, we can describe our
camera scheduling problem as

P | rj, online-time-nclv, pmtn |
∑

Uj; (4)

i.e., find a schedule on m processors that minimizes
the total unit penalty when jobs j with deadlines dj are
released at time rj. The jobs require arbitrary processing
times and preemption (pmtn) is allowed. Minimizing the
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Fig. 11 A single camera is
scheduled to observe three
pedestrians in multiple
observation mode. The
pedestrians’ positions in the
priority sequence is calculated
using their arrival times and
class memberships

Fig. 12 a–d Images from wide-FOV passive cameras situated at
the four corners of the main waiting room in the train station. e
Image from a fish-eye camera mounted at the ceiling of the wait-

ing room. These static cameras are calibrated, enabling the 3D
positions of observed pedestrians to be estimated through trian-
gulation

total unit penalty is akin to maximizing the number of
jobs successfully completed prior to their deadlines. If
Cj is the completion time of a job j, then

Uj =
{

0 if Cj ≤ dj;
1 otherwise.

(5)

The complexity of problem (4) is not known. How-
ever, the simpler problem P2 | rj, pmtn | ∑

Uj,5 is at least
NP-hard [28]. Hence, our formulation of the camera
scheduling problem is likely NP-hard. Consequently, we
resort to a greedy algorithm for scheduling cameras to
observe pedestrians.

The obvious nonclairvoyant online algorithms are
Round Robin (RR) and Shortest Elapsed Time First
(SETF). RR devotes identical processing resources to
all jobs, whereas SETF devotes all resources to the job
that has been processed the least. As SETF is known
to perform poorly when jobs are not fully paralleliz-
able [29], we use weighted RR, a variant of RR. The
weighted RR scheduling scheme is used to assign jobs to
multiple processors with different load capacities. Each
processor is assigned a weight indicating its processing
capacity and more jobs are assigned to the processors
with higher weights. We model each PTZ camera as a
processor whose weights, which quantify the suitability

5 I.e., find a schedule on two processors that minimize the total
unit penalty under release time constraints rj, where release times
are known a priori and preemption is allowed.

of a camera with respect to observing a pedestrian, are
adjusted dynamically. The weights are determined by
two factors: (1) the number of adjustments the camera
needs to make in the PTZ coordinates to fixate on the
pedestrian and (2) the distance separating the pedes-
trian from the camera. In order to ensure fairness, we
use a First Come, First Served (FCFS) priority scheme to
select jobs that should be assigned to a processor (pre-
emption forces job priorities to vary over time). Addi-
tionally, FCFS is said to be optimal when the optimi-
zation criterion is to minimize the maximum flow time,
which is a measure of the quality of service defined as
Cj − rj [26].

On the one hand, a camera that requires small adjust-
ments in the PTZ coordinates to fixate on a pedestrian
usually needs less lead time (the total time required by a
PTZ camera to fixate on a pedestrian and initiate video
recording) than a camera that needs to turn more dras-
tically in order to bring the pedestrian into view. Con-
sequently, we assign a higher weight to a camera that
needs less redirection in order to observe the pedes-
trian in question. On the other hand, a camera that is
closer to a pedestrian is more suitable for observing this
pedestrian, since such an arrangement can potentially
avoid occlusions, tracking loss, and subsequent re-ini-
tialization, by reducing the chance of another pedestrian
intervening between the camera and the subject being
recorded. The camera weights with respect to a pedes-
trian are computed as
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Fig. 13 Sample close-up images captured by the PTZ active cameras

w =

⎧
⎪⎨

⎪⎩

exp
(
− (θ−θ̂ )2

2σθ
2 − (α−α̂)2

2σα
2 − (β−β̂)2

2σβ
2

)

if the camera is free;
0 if the camera is busy,

(6)

where θ̂ = (θmin + θmax)/2, α̂ = (αmin + αmax)/2, and
β̂ = (βmin + βmax)/2, and where θmin and θmax are
extremal field of view settings, αmin and αmax are extremal
rotation angles around the x-axis (up–down), and βmin

and βmax are extremal rotation angles around the y-axis
(left–right). The values of the standard deviations σθ , σα ,
and σβ associated with each attribute are chosen empir-
ically (in our experiments, we assigned σθ = σα = σβ =
5.0). Here, α and β are the gaze parameters correspond-
ing to the 3D location of the pedestrian as computed
by the triangulation process, and θ is an approximate
measure of the distance between the camera and the
pedestrian. The distance between the camera and the
pedestrian can also be approximated by declination
angle, which can be estimated from α, under a ground-
plane assumption.

A danger of using weighted round-robin scheduling is
the possibility that a majority of the jobs will be assigned
to the processor with the highest weight. We avoid this
situation by sorting the PTZ cameras according to their
weights with respect to a given pedestrian and assign-
ing the free PTZ camera with the highest weight to that
pedestrian. The FCFS policy breaks ties on the basis
of arrival times and pedestrian classes. Pedestrians in
class 0 (i.e., never observed by a PTZ camera) have the
highest priority. Among pedestrians belonging to class
0, the pedestrian that entered the scene first is selected.
Pedestrians belonging to classes 1 or higher are similarly
selected on the basis of their arrival times. The arrival
times of the pedestrians are maintained by the sensor
network and are made available to the PTZ cameras.

The amount of time a PTZ camera will observe a
pedestrian depends upon the number of pedestrians
in the scene. However, we have specified a minimum
time that a PTZ camera must spend observing a pedes-
trian. This is determined by the minimum length of video
sequence required by the biometric routines that
perform further evaluation plus the average time it takes

a PTZ camera to lock onto and zoom into a pedestrian.
To implement preemption, we specify the maximum
time that a camera can spend observing a pedestrian
when there are multiple pedestrians in the scene. The
proposed scheduling scheme strikes a balance between
the two often competing goals of following a pedestrian
for as long as possible and observing as many pedestri-
ans as possible.

7 Results

We populated the virtual train station with up to 20
autonomous pedestrians that enter, go about their busi-
ness, and leave the waiting room of their own volition.
We tested our scheduling strategy in various scenarios
using from 1 to 18 PTZ active cameras. For example,
Fig. 12 shows our prototype surveillance system utilizing
five wide-FOV static cameras situated within the waiting
room of the train station. Figure 13 shows sample close-
up images captured by four PTZ active cameras. The
system behaved as expected in all cases, correctly task-
ing the available cameras using weighted round-robin
scheduling with an FCFS priority policy.

In a typical experiment (Fig. 14a), when only one PTZ
camera is available, pedestrians 1, 2, 4, 7, 9, 10, 13, and
16 were recorded, but pedestrians 3, 5, 6, 8, 11, 12, 14, 15,
17, 18, 19, and 20 go unnoticed since they left the scene
before the camera had an opportunity to observe them.
Figure 14b, c shows the results from the same run with 2
and 4 active cameras, respectively. In the 2-camera case,
even though the performance has improved significantly
from the added camera, pedestrians 12, 17, 18, 19, and
20 still go unnoticed. With four PTZ cameras, the system
is now able to observe every pedestrian. As expected,
the chances of observing multiple pedestrians improve
as more cameras become available.

For Fig. 14d, we have populated the virtual train sta-
tion with only three autonomous pedestrians, leaving all
other parameters unchanged. Given that there are now
only three pedestrians in the scene, even a single camera
successfully observes them. Next, we ran the simulation
with 20 pedestrians (Fig. 14e). This time, however, we
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Fig. 14 Pedestrians are assigned unique identifiers based on their
entry times; e.g., pedestrian 1 always enters the scene at the same
time or before the arrival of pedestrian 2. a–c Twenty pedestrians
are present in the scene. a The scheduling policy for one cam-
era: camera 1 successfully recorded pedestrians 1, 2, 4, 7, 9, 10,
13, and 16. b–c Adding more cameras improves the chances of
observing more pedestrians. Only pedestrians 12, 17, 18, 19, and

20 go unnoticed when two cameras are available. With four cam-
eras all pedestrians are observed. d The scene is populated with
three pedestrians. e Twenty pedestrians, who tend to linger. The
chances of a set of cameras to observe the pedestrians increase
when d there are fewer pedestrians or when e pedestrians tend to
linger

Fig. 15 A comparison of weighted (W) and non-weighted (NW)
scheduling schemes. Equation (6) is used to compute cam-
era weights (i.e., relevances) with respect to a pedestrian. The
weighted scheduling strategy outperforms its non-weighted coun-
terpart as is evident from its higher success rates (a) and shorter
lead (b), processing (c), and wait (d) times. The displayed results

are averaged over several runs in each trial scenario. Trials 1–6 in-
volve five pedestrians and from 1 to 6 cameras, respectively. Trials
7–12 involve ten pedestrians and from 3 to 8 cameras, respectively.
Trials 13–18 involve 15 pedestrians and 5, 6, 9, 10, 11, and 12 cam-
eras, respectively. Trials 19–24 involve 20 pedestrians with 5, 8, 10,
13, 15, and 18 cameras, respectively

Fig. 16 Scheduling results for
Trial #19 using weighted
camera assignment. Blue lines
represent the entry and exit
times, the blue triangles
represent the lead times, the
green rectangles represent the
processing times, and the red
crossed rectangles represent
an aborted attempt at
capturing the video of a
pedestrian
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Fig. 17 A single camera is scheduled to observe 20 pedestrians.
The performance of the scheduler depends in part upon the pre-
emption cutoff time; i.e., the duration after which a camera is
reassigned to observe another pedestrian even if its current assign-
ment has not yet completed. a A small cutoff time can result in a
greater number of preemptions. Consequently, more time is spent

in transitions between pedestrians; b The average lead, processing,
and assignment times. Note the higher average lead times corre-
sponding to smaller preemption cutoff times; thereby, reducing
the overall performance. Alternatively, for large cutoff times, a
camera might continue recording a single pedestrian

changed the behavior settings of the pedestrians so they
tend to linger in the waiting room. Here too, a single
camera successfully observed each of the 20 pedestri-
ans. We conclude that even a few cameras can perform
satisfactorily when there are either few pedestrians in
the scene or when the pedestrians tend to spend consid-
erable time in the area.

In Fig. 15, we compare the scheduling scheme that
treats all cameras equally with the weighted schedul-
ing scheme that takes into account the suitability of
any camera in observing a pedestrian. As expected,
the weighted scheduling scheme outperforms its non-
weighted counterpart, exhibiting higher success rates (as
defined by fraction of pedestrians successfully recorded)
and lower average lead time, processing time (the time
spent recording the video of a pedestrian), and wait time
(the time elapsed between the entry of a pedestrian and
when the camera begins fixating on the pedestrian). The
lower average lead and processing times are a direct con-
sequence of (6) for computing the suitability of a cam-
era to recording a pedestrian. Interestingly, the average
wait times do not necessarily decrease as we increase
the number of cameras. Figure 16 shows detailed results
for the scenario with 20 pedestrians and 5 cameras.

The lack of preemption can impact the overall perfor-
mance of the scheduler. Choosing an appropriate value
for the preemption cutoff time is critical to achieving
the balance between the competing goals of observ-
ing as many pedestrians as possible and observing each
pedestrian for as long as possible. Too small a value
will result in the cameras spending most of their time
transitioning between pedestrians, whereas too large
a value will result in cameras myopically dwelling on

pedestrians (Fig. 17). We found that the average camera
assignment time is a good indicator of the preemption
cutoff time. In the current setting, the camera assign-
ment time equals lead time plus processing time, and the
preemption cutoff time should be no less than the aver-
age camera assignment time. However, if the variation
in camera assignment times is large, then the average
assignment time is a poor indicator of preemption cut-
off times. Average assignment times can be computed
on the fly using, e.g., a running average.

We compared the proposed camera scheduling algo-
rithm in the following six configurations: (1) no pre-
emption, single observation, single class (NPSOSC), (2)
no preemption, multiple observation, single class
(NPMOSC), (3) no preemption, multiple observation,
multi-class (NPMOMC), (4) preemption, single obser-
vation, single class (PSOSC), (5) preemption, multiple
observation, single class (PMOSC), and (6) preemption,
multiple observation, multi-class (PMOMC) (Fig. 18).
For these tests, 1–4 cameras were scheduled to observe
up to 20 pedestrians. The pedestrians enter the main
waiting room of the station in groups of 10. Each group
precedes the next by about 150 scheduler control cy-
cles. Each pedestrian spends anywhere from 850 to 1,500
scheduler control cycles in the waiting room. The pre-
emption cutoff time is set to 170.

Preemption appears to be useful when the camera
to pedestrian ratio is small or when there is a potential
for cameras to continually record videos of the assigned
pedestrians without success (a surprisingly common
occurrence in camera scheduling due to tracking/
occlusion issues). Scheduling without preemption has
similar, or in some cases even higher, success rates than
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Fig. 18 Comparison of
various scheduler
configurations. One to four
cameras are scheduled to
observe 10 or 20 pedestrians.
Along the X-axis, letters ‘c’
and ‘p’ refer to the number of
cameras and pedestrians,
respectively for example
‘4c,10p’ denotes the test
consisting of scheduling four
cameras to observe ten
pedestrians. The results are
averaged over five trials each
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those achieved with preemption when the camera-to-
pedestrian ratio is large (e.g., in Fig. 18a, when three or
four cameras are available to observe up to 20 pedes-
trians). The success rates for no-preemption schedul-
ing, however, drop rapidly as the number of available
cameras is reduced, and no-preemption scheduling is
outperformed by its preemption-savvy counterpart; e.g.,
when one or two cameras are scheduled to observe 10
or 20 pedestrians (Fig. 18a).

Single observation (SO) scheduling features better
success rates than the corresponding multiple observa-
tion (MO) scheduling, which can be attributed to the
longer wait times for the latter (Fig. 18b), except when
the multi-class pedestrian model is employed. Multi-
class pedestrian modeling can reduce the wait times as
it enables the scheduler to focus on the pedestrians that
have been overlooked. When using MO scheduling, the
lowest wait times are obtained by combining multi-class
pedestrian models with preemption. PMOMC sched-
uling, for example, achieves wait times comparable to
PSOSC with the added advantage of multiple observa-
tions. Our tests also confirm the intuition that multiple
observation scheduling yields better data (i.e., longer
duration video tracks) than single observation schedul-
ing (Fig. 18d). PMOMC offers the highest lead times as
a result of the highest number of preemptions combined
with high success rates (Fig. 18c).

Our results suggest that PMOMC has the best over-
all performance: high success rates, low wait times, and

longer recorded video durations. NPSOSC has better
success rates under favorable circumstances – a good
camera to pedestrian ratio and when all pedestrians have
similar processing requirements.

8 Conclusion

Future surveillance systems will comprise networks of
static and active cameras capable of providing percep-
tive coverage of extensive environments with minimal
reliance on a human operator. Such systems will require
not only robust, low-level vision routines, but also novel
sensor network methodologies. Building on our earlier
work [5], the work presented in this paper is another
step toward their realization.

In particular, we have introduced a scheduling strat-
egy for intelligently managing multiple, uncalibrated,
active PTZ cameras, supported by several static, cali-
brated cameras, in order to satisfy the challenging task
of automatically recording close-up, biometric videos
of pedestrians present in a scene. We have found the
PMOMC (preemption, multiple observation, multi-
class) scheduling scheme to be the most suitable one for
this purpose. At present, predicting pedestrian behav-
iors is at best an inexact science, so we have intention-
ally avoided scheduling policies that depend on such
predictions.
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An interesting feature of our work is that we have
demonstrated our prototype surveillance system in a
virtual train station environment populated by autono-
mous, lifelike pedestrians. This simulator facilitates our
ability to design large-scale sensor networks in virtual
reality and experiment with them on commodity per-
sonal computers. The future of such advanced simula-
tion-based approaches appears promising for the pur-
poses of low-cost design and experimentation. Since sca-
lability is an issue when dealing with numerous active
cameras spread over a large area, we hope to tackle the
scalability issue by investigating distributed scheduling
strategies.
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