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In a companion paper (7] we formulate a broadly applicable class of mathematical models for
describing the shapes of objects appearing in images. These models may be viewed as deformable
bodies composed of an abstract elastic material. They are matched to images through the action
of externally applied forces derived from image functions. Additional guiding forces may be applied
interactively by the user. Three applications have served to illustrate the utility of the models: image
based contour extraction, correspondence matching, and 3D object reconstruction. In the present
paper, we deal with the discrete solution of the dynamical equations inherent to these applications.
We focus on the direct and iterative numerical methods underlying our implemented algorithms for

matching deformable models to images.

Lagrangian Dynamics of Deformable Models

The variationial principles defined in |7 characterize the desired equilibrium configurations of the
deformable models. When the external forces change, potential energy is converted to kinetic energy,
the equilibrium is destroyed, and the models dynamically deform away from their prescribed natural
states. If kinetic energy is dissipated by damping, then the transients decay and a new equilibrium is
reached. Given the deformation potential energy functional &,(v) defined by equation (1) (equations
(1)~(4) are found in [7]), we define the Lagrangian functional

2) = 5 [ ualvel dx = 3E, (). (5

as well as the (Rayleigh) dissipation functional D(v,) = % [, 7(x)|v:|? dx, where u(x) is the mass
density, y(x) is the damping density, and the subscript ¢ denotes a time derivative.
If the initial configuration is u(x,te), the deformable model’s motion u(x,t) is such that

6 ([:lﬁ(u)+0(ut)dt>=0v i=1,...,d (6)
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This condition, that the action integral is stationary, leads to Lagrange’s general equations of motion
[8]. For our deformable model, it can be shown that they are given by
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where Ay, is the weighted iterated Laplacian operator defined by
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and ; = (s1,....Jp) is a multi-index. Associated with these equations are appropriate initial and
boundary conditions.
Discretization and Solution Methods

A general approach to discretizing the equations of motion is to represent admissible configura-
tions in the form of a linear superposition of basis functions. Discontinuities in the model’s elastic

properties are most conveniently dealt with through the use of local-support basis functions. We
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employ the finite element method [9], a systematic approach to obtaining piecewise solutions in finite
element subspaces of the admissible space ¥. The basie functions of finite element subspaces are
(typically) low-order polynomials. The number of basis functions depends on the number of finite
elements employed to tessellate the spatial domain . The tessellation can be irregular, if necessary.
Alternatively the finite difference method [9] can be used to discretize the Lagrange equations of
motion. In practice we employ aspects of both of these complementary methods; e.g., finite elements
in space and finite differences in time.

To compute the dynamics, we have employed explicit and implicit Euler methods [10] for nu-
merically integrating the second-order Lagrange equations (7). Implicit methods require the solution
of a time sequence of discrete equilibrium subproblems. The subproblem at time ¢ may generally be

expressed as a coupled set of d positive definite, symmetric systems of algebraic equations
Aﬁcu%:—-gi, E=1,...,d {9)

that must be solved for the unknown instantaneous configurations u’. The size of the linear systems
depends on the number of points in the discrete model. Although the A; can be large for higher-
dimensional models, they will be sparse due to the local support of the basis functions.

Fither direct or iterative sparse system solution methods are applicable [9, 10]. On serial
computers, direct methods will lead to linear-time complexity algorithms for the p = 1 parameter
case. In general, iterative methods are better suited for massively parallel machines, and they
become especially advantageouns when p > 1. Multigrid relaxation methods can provide nearly

optimal convergence rates for large multidimensional matching problems (1].

A Direct Method for the Case p =1

The deformable contour or “snake” model is a one-parameter model whose potential energy of
deformation is given by (2). Assuming constant mass density p(s) = p and constant dissipation
v(s) = v, the associated Lagrange dynamical equations (7) reduce to
a ‘ a°

pilyy YU 3 (wiu,) + Eye) (wou,,) = —VP(u(s,t}), u(s) = (z(s),y(9))- (10)
This equation is satisfied in (1 = (0,1) with prescribed boundary conditions on 80 = {0,1}. We
regularly tessellate {1 to obtain the nodal configuration variables u; = u(ih), where h = 1/N and N
is the number of nodes.

Given a time step At, the backward difference expressions ap(ul - 2ul"t + u!"?) and by(uf -

u!"?), where a = 1/(At)? and b = 1/24t, may be used to obtain an (semi) implicit Euler formula

1
in time. This formula can be expressed in the matrix form {9) as

Ax =g,  AY' =g, | (11)

where x* = [zh,..., 2% and vt = [yb, ...,y | are the (unknown) nodal position vectors at time
t. The vectors on the right hand side, which depend on two prior configurations, are given by
gt = (ap + by)xET 4 (ap = by)(x T = %)~ fr and gy = (ap f by)ytt + fap = b)Y T -
yt~?%) - f,, where the generalized force vector components contain partial derivatives of P: f, =
'Px(zf)'l,y(’))—l), L P yf\fl) and f, = {Py(zgwi,yg—l), ceey Py(zf\fl,yﬁvﬂl)“;.

We write A = {ap ~by)I+ K, wherelisa unit matrix and K is the stiffness matrix associated
with the internal deformation energy of the material. Tt is common practice in the finite element
method to antomatically assemble the stiffness matrix. Quadratic finite elements can be employed to
discretize the spatial derivatives in the energy functional (2) or, alternatively, the spatial derivatives

in (10) may be approximated using the standard O{h?) central finite differences.

For cyclic boundary conditions (i.e.. a closed contour), the stiffness matrix is the pentadiagonal
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symmetric matrix shown below (unspecified entries are 0}):

Co by ag anN -1 by
bo €1 by ay aN
ag by c2 by as
ay bz c3 b3 a3
K = s (12)
an-4 by-z en-2 byn-2 an-2
aN -1 an-3 bno2 en-1 byvoy
\ by an an-2 by-1 N
where ¢; = 2w (th) + 6wz(ih), bi = —wy(th) — 4wz (1h), and a; = wo(th). To insert a position

discontinuity at s = (i — 1/2)h between nodes 1 — 1 and i along the contour, we use the technique
of computational molecules [11], which dictates that the following 9 entries be modified: ¢ =
wy (th) + wa(th), cizy = wy(th — h) = wa(th — h), eiv1 = 2wi(th + h) + 5wa(th + A}, ciz =
2w, (1h — 2h) + 5wy (th — 2h), b = —wy (ih) — 2w (1h), bi_z = —wy (th — 2h) — 2uwq(th — 2k}, and
g1 = bijny = ai2 = 0. Similarly, one way of inserting a tangent discontinuity at 8 = th is
to make the modifications ¢; = 2wy{th) + 2wy (th), ¢io1 = 2wy (th — h) + Bwq(th — h), o1 =
2w, (ih + h) + 5w (th + R), by = —wy(th) — 2wy (ih), by = —wy(th ~ h) - 2wq(th — h), ;-1 = 0.

The pentadiagonal system can be solved very efficiently (O(N) time and space) by factorizing
A into lower and upper triangular matrices, then solving the two resulting sparse triangular systems
[10]. We compute the unique normalized factorization A = DLUD where D is a diagonal matrix, L
is a lower triangular matrix, and U = LT [12]. The solution x* = D~ !r to (11) is obtained by first
solving Lz = D' g, by forward substitution, then Ur = z by back substitution, and similarly for y*.
Aside from the initial factorization, additional factorizations are required only as A changes. If A
changes at each time step, it becomes advantageous to perform the factorization simultaneously with
the forward substitution. Note that the factorization and substitutions are recursive and inherently
sequential operations.

Iterative Methods for Cases p > 1

Consider the correspondence matching problem (p = 2) which involves the deformation energy (3),
where u(z,y,t) = (uy(z,y,t), u2(z,y,t)). Assuming constant mass density and dissipation, the
Lagrange dynamical equations (7) reduce in {2 to

s+ e = 2 () = () + o (waes) + 255 (wauey) + o2 (wattyy) = =V Pla(z.0:)
(12)
with appropriate boundary conditions on 9 and initial conditions at t = to, Discretization of the
horizontal and vertical disparity functions in space leads to the vectors u, and u, of nodal variables.
If, as before, an implicit Euler formula is set up by taking backward time differences, there results
a sequence of systems in the form of (11) but with u; and u, playing the role of x and y.
Although the positive definite, symmetric matrix A remains sparse and banded when p > 1,
bands will occur at substantial distances from the main diagonal. In particular, if the two-parameter
disparity model (3) or deformable shell model (4) are discretized on an M x N grid using the 13-
point (biharmonic) computational molecules (see [1j), diagonal bands are introduced at a distance
N-1,N,N-+1,and 2N away from the main diagonal. Unfortunately, factorization destroys nearly
all zero eniries within the bandwidth 2/N. The resulting O(MN?) time and space complexities of
obtaining a solution are severe for large problems.
Iterative methods with the property that no nonzero entries are introduced are advantageous
for higher-dimensional problems. The general stationary iterative method is obtained by writing
{9) in the form wl**1 = Qul®) + ¢ where G is a fixed iteration matrix and where the bracketed

superscripts denote the iteration number. There are several practical variants. A gradient relaxation
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method is defined by the iteration matrix G = I ~ aA and ¢ = ag, where o is a step size. Writing
A =D — L — U, the sum of a diagonal, a strictly lower triangular, and a strictly upper triangular
matrix (these matrices differ from those in the factorization method), the successive over-relaxation
method with relaxation parameter w is defined by G = (I - wDTIL) (L - w)I + wD™'U! and
¢c=(I-wD™'L)"twD g

To illustrate the iterative solution of the problem we set u= 0 and take a forward difference
in time to obtain a sfmple., explicit Euler formula. Equilibrium is achieved in the limit as t — oco.
The two-parameter spatial domain {1 is regularly tessellated into squares of size A, and the energy
functional (4) may be discretized using quadratic finite elements [1, 11] or the spatial derivatives in
(13) may be discretized using central differences. The resulting gradient relaxation process is

g E = ) 4 (at/7) (@0 (u®)) + Puy (w102 ),

2%

(14)
k+1 k ; k k k
Uy EJ )= uzﬁ,j’ -+ (At/ﬂ(‘l’z,j(ug )) + Py, (w1 f‘j),uzf,j))),
where @;,j(u) = —wy ,"J-(uH,l'j —u."j) -+ ury ;_lyj(u;,j —11,‘_1‘]') — Wy i,j(uc‘,j—%—l —‘ll,"j) ~+ Wy i,j—-l(ui,j -

i jo1)+ (1/R2) {wz oy (0 = 2wimn,5+0ima,5) — 2w2 pa (et = 20 0ot ) T w2 e g (Wi,
gy gt ug) T 2w oy on (W Wity T g1 Uiy, y-1) = 2w o1 (Wign g T Wy T Vierg-1
u,j-1) — 2wz ierg (Wi = Wim1gr Wiy T Wiog,y) + 2wa g j(Wigr, 41 — Wig41 — W1, T ui ;) +
Wi b o (Wi — 20, o1+ i go2) = 2wz 4 (Wit = B0y 05 o1) T wa e (06542~ B0 )}
in 3. Other expressions are obtained at discontinuities, which inhibit computational molecules [11].

Implementation Notes

By expressing (7) as coupled first-order equations in Hamilton’s canonical form [8], we have suc-
cessfully applied standard numerical methods of varying sophistication, other than Euler’s method.
These include a fourth-order Runge-Kutta method, and Adams-Moulton predictor-corrector meth-
ods [10]. The latter offer the advantage of adaptable time-step control, making them particularly
robust. '

To date, we have implemented four different algorithms for the “snake” matching problem [4],
based on successive over-relaxation (author and A. Witkin), two-level multigrid relaxation (J. Platt
and author), recursive IIR filtering (M. Kass), and matrix factorization (author). The direct meth-
ods, factorization and filtering, are more efficient than the relaxation methods, especially when the
rigidity of the deformable contour is high.

The author has implemented iterative algorithms for matching higher-dimensional deformable
‘models to images. The gradient relaxation method described above is used in signal matching as well
as stereo and motion matching code [5]. A successive over-relaxation method is used in a program
for matching the 3D deformable shell model (4) to images , and the direct method can be used to
solve the spine equations (6. J. Platt has implemented general-purpose multigrid relaxation code
which promises to be useful here. Block relaxation (9], a technique combining iteration and matrix
factorization, may also offer efficient solutions for p > 1.
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