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Abstract—Image segmentation is a key task in computer vision and image processing with important applications such as scene

understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among

others, and numerous segmentation algorithms are found in the literature. Against this backdrop, the broad success of deep learning

(DL) has prompted the development of new image segmentation approaches leveraging DL models. We provide a comprehensive

review of this recent literature, covering the spectrum of pioneering efforts in semantic and instance segmentation, including

convolutional pixel-labeling networks, encoder-decoder architectures, multiscale and pyramid-based approaches, recurrent networks,

visual attention models, and generative models in adversarial settings. We investigate the relationships, strengths, and challenges of

these DL-based segmentation models, examine the widely used datasets, compare performances, and discuss promising research

directions.

Index Terms—Image segmentation, deep learning, convolutional neural networks, encoder-decoder models, recurrent models, generative

models, semantic segmentation, instance segmentation, panoptic segmentation, medical image segmentation
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1 INTRODUCTION

IMAGE segmentation has been a fundamental problem in
computer vision since the early days of the field [1] (Chap-

ter 8). An essential component of many visual understand-
ing systems, it involves partitioning images (or video
frames) into multiple segments and objects [2] (Chapter 5)
and plays a central role in a broad range of applications [3]
(Part VI), including medical image analysis (e.g., tumor
boundary extraction and measurement of tissue volumes),
autonomous vehicles (e.g., navigable surface and pedestrian
detection), video surveillance, and augmented reality to
name a few.

Image segmentation can be formulated as the problem of
classifying pixels with semantic labels (semantic segmenta-
tion), or partitioning of individual objects (instance segmen-
tation), or both (panoptic segmentation). Semantic
segmentation performs pixel-level labeling with a set of

object categories (e.g., human, car, tree, sky) for all image pix-
els; thus, it is generally a more demanding undertaking than
whole-image classification, which predicts a single label for
the entire image. Instance segmentation extends the scope of
semantic segmentation by detecting and delineating each
object of interest in the image (e.g., individual people).

Numerous image segmentation algorithms have been
developed in the literature, from the earliest methods, such
as thresholding [4], histogram-based bundling, region-
growing [5], k-means clustering [6], watershed methods [7],
to more advanced algorithms such as active contours [8],
graph cuts [9], conditional and Markov random fields [10],
and sparsity-based [11], [12] methods. In recent years, how-
ever, deep learning (DL) models have yielded a new genera-
tion of image segmentation models with remarkable
performance improvements, often achieving the highest
accuracy rates on popular benchmarks (e.g., Fig. 1). This has
caused a paradigm shift in the field.

This survey, a revised version of [14], covers the recent lit-
erature in deep-learning-based image segmentation, includ-
ing more than 100 such segmentation methods proposed to
date. It provides a comprehensive review with insights into
different aspects of these methods, including the training
data, the choice of network architectures, loss functions,
training strategies, and their key contributions. The target lit-
erature is organized into the following categories:

1) Fully convolutional networks
2) Convolutional models with graphical models
3) Encoder-decoder based models
4) Multiscale and pyramid network based models
5) R-CNN based models (for instance segmentation)
6) Dilated convolutional models and DeepLab family
7) Recurrent neural network based models
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8) Attention-based models
9) Generative models and adversarial training
10) Convolutional models with active contour models
11) Other models
Within this taxonomy,

� we provide a comprehensive review and analysis of
deep-learning-based image segmentation algorithms;

� we overview popular image segmentation datasets,
grouped into 2D and 2.5D (RGB-D) images;

� we summarize the performances of the reviewed
segmentation methods on popular benchmarks;

� we discuss several challenges and future
research directions for deep-learning-based image
segmentation.

The remainder of this survey is organized as follows: Sec-
tion 2 overviews popular Deep Neural Network (DNN)
architectures that serve as the backbones of many modern
segmentation algorithms. Section 3 reviews the most signifi-
cant state-of-the-art deep learning based segmentation mod-
els. Section 4 overviews some of the most popular image
segmentation datasets and their characteristics. Section 5
lists popular metrics for evaluating deep-learning-based
segmentation models and tabulates model performances.
Section 6 discusses the main challenges and opportunities
of deep learning-based segmentation methods. Section 7
presents our conclusions.

2 DEEP NEURAL NETWORK ARCHITECTURES

This section provides an overview of prominent DNN archi-
tectures used by the computer vision community, including
convolutional neural networks, recurrent neural networks
and long short-term memory, encoder-decoder and autoen-
coder models, and generative adversarial networks. Due to
space limitations, several other DNN architectures that
have been proposed, among them transformers, capsule
networks, gated recurrent units, and spatial transformer
networks, will not be covered.

2.1 Convolutional Neural Networks (CNNs)

CNNs are among the most successful and widely used
architectures in the deep learning community, especially for
computer vision tasks. CNNs were initially proposed
by Fukushima [16] in his seminal paper on the
“Neocognitron”, which was based on Hubel and Wiesel’s
hierarchical receptive field model of the visual cortex. Sub-
sequently, Waibel et al. [17] introduced CNNs with weights
shared among temporal receptive fields and backpropaga-
tion training for phoneme recognition, and LeCun et al. [15]
developed a practical CNN architecture for document rec-
ognition (Fig. 2). CNNs usually include three types of
layers: i) convolutional layers, where a kernel (or filter) of
weights is convolved to extract features; ii) nonlinear layers,
which apply (usually element-wise) an activation function
to feature maps, thus enabling the network to model nonlin-
ear functions; and iii) pooling layers, which reduce spatial
resolution by replacing small neighborhoods in a feature
map with some statistical information about those neighbor-
hoods (mean, max, etc.). The neuronal units in layers are
locally connected; that is, each unit receives weighted inputs
from a small neighborhood, known as the receptive field, of
units in the previous layer. By stacking layers to form multi-
resolution pyramids, the higher-level layers learn features
from increasingly wider receptive fields. The main compu-
tational advantage of CNNs is that all the receptive fields in
a layer share weights, resulting in a significantly smaller
number of parameters than fully-connected neural net-
works. Some of the most well known CNN architectures
include AlexNet [18], VGGNet [19], and ResNet [20].

2.2 Recurrent Neural Networks (RNNs) and
the LSTM

RNNs [22] are commonly used to process sequential data,
such as speech, text, videos, and time-series. Referring to
Fig. 3, at each time step t the model collects the input xt and
the hidden state ht�1 from the previous step, and outputs a
target value ot and the next hidden state htþ1. RNNs are typ-
ically problematic for long sequences as they cannot capture
long-term dependencies in many real-world applications
and often suffer from gradient vanishing or exploding prob-
lems. However, a type of RNN known as the Long Short-
Term Memory (LSTM) [23] is designed to avoid these
issues. The LSTM architecture (Fig. 4) includes three gates
(input gate, output gate, and forget gate) that regulate the
flow of information into and out of a memory cell that stores
values over arbitrary time intervals.

2.3 Encoder-Decoder and Auto-Encoder Models

Encoder-decoders [24], [25] are a family of models that learn
to map data-points from an input domain to an output
domain via a two-stage network (Fig. 5): The encoder, per-
forming an encoding function z ¼ gðxÞ, compresses the

Fig. 1. Segmentation results of DeepLabV3 [13] on sample images.

Fig. 2. Architecture of CNNs. From [15].

Fig. 3. Architecture of a simple RNN. Courtesy of Christopher Olah [21].
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input x into a latent-space representation z, while the
decoder y ¼ fðzÞ predicts the output y from z. The latent, or
feature (vector), representation captures the semantic infor-
mation of the input useful in predicting the output. Such
models are popular for sequence-to-sequence modeling in
Natural Language Processing (NLP) applications as well as
in image-to-image translation, where the output could be
an enhanced version of the image (such as in image de-
blurring, or super-resolution) or a segmentation map. Auto-
encoders are a special case of encoder-decoder models in
which the input and output are the same.

2.4 Generative Adversarial Networks (GANs)

GANs [26] are a newer family of deep learning models. They
consist of two networks—a generator and a discriminator
(Fig. 6). In the conventional GAN, the generator network G
learns a mapping from noise z (with a prior distribution) to a
target distribution y, which is similar to the “real” samples.
The discriminator network D attempts to distinguish the
generated “fake” samples from the real ones. The GANmay
be characterized as a minimax game between G and D,
where D tries to minimize its classification error in distin-
guishing fake samples from real ones, hence maximizing a
loss function, and G tries to maximize the discriminator
network’s error, hence minimizing the loss function. GAN
variants include Convolutional-GANs [27], conditional-
GANs [28], andWasserstein-GANs [29].

3 DL-BASED IMAGE SEGMENTATION MODELS

This section is a survey of numerous learning-based seg-
mentation methods, grouped into 10 categories based on
their model architectures. Several architectural features are

common among many of these methods, such as encoders
and decoders, skip-connections, multiscale architectures,
and more recently the use of dilated convolutions. It is con-
venient to group models based on their architectural contri-
butions over prior models.

3.1 Fully Convolutional Models

Long et al. [30] proposed Fully Convolutional Networks
(FCNs), a milestone in DL-based semantic image segmenta-
tion models. An FCN (Fig. 7) includes only convolutional
layers, which enables it to output a segmentationmapwhose
size is the same as that of the input image. To handle arbi-
trarily-sized images, the authors modified existing CNN
architectures, such as VGG16 and GoogLeNet, by removing
all fully-connected layers such that the model outputs a spa-
tial segmentationmap instead of classification scores.

Through the use of skip connections (Fig. 8) in which fea-
ture maps from the final layers of the model are up-sampled
and fused with feature maps of earlier layers, the model
combines semantic information (from deep, coarse layers)
and appearance information (from shallow, fine layers) in
order to produce accurate and detailed segmentations.
Tested on PASCAL VOC, NYUDv2, and SIFT Flow, the
model achieved state-of-the-art segmentation performance.

FCNs have been applied to a variety of segmentation
problems, such as brain tumor segmentation [31], instance-
aware semantic segmentation [32], skin lesion segmenta-
tion [33], and iris segmentation [34]. While demonstrating
that DNNs can be trained to perform semantic segmenta-
tion in an end-to-end manner on variable-sized images, the
conventional FCN model has some limitations—it is too
computationally expensive for real-time inference, it does
not account for global context information in an efficient
manner, and it is not easily generalizable to 3D images. Sev-
eral researchers have attempted to overcome some of the
limitations of the FCN. For example, Liu et al. [35] proposed
ParseNet (Fig. 9), which adds global context to FCNs by
using the average feature for a layer to augment the features
at each location. The feature map for a layer is pooled over
the whole image, resulting in a context vector. The context
vector is normalized and unpooled to produce new feature
maps of the same size as the initial ones, which are then

Fig. 5. Architecture of a simple encoder-decoder model.

Fig. 6. Architecture of a GAN. Courtesy of Ian Goodfellow.

Fig. 7. The FCN learns to make pixel-accurate predictions. From [30].

Fig. 4. Architecture of a standard LSTM module. Courtesy of Olah [21].

Fig. 8. Skip connections combine coarse and fine information. From [30].
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concatenated, which amounts to an FCN whose convolu-
tional layers are replaced by the described module (Fig. 9e).

3.2 CNNs With Graphical Models

As discussed, the FCN ignores potentially useful scene-level
semantic context. To exploit more context, several
approaches incorporate into DL architectures probabilistic
graphical models, such as Conditional Random Fields
(CRFs) and Markov Random Fields (MRFs).

Due to the invariance properties that make CNNs good
for high level tasks such as classification, responses from
the later layers of deep CNNs are not sufficiently well local-
ized for accurate object segmentation. To address this draw-
back, Chen et al. [36] proposed a semantic segmentation
algorithm that combines CNNs and fully-connected CRFs
(Fig. 10). They showed that their model can localize segment
boundaries with higher accuracy than was possible with
previous methods.

Schwing and Urtasun [37] proposed a fully-connected
deep structured network for image segmentation. They
jointly trained CNNs and fully-connected CRFs for seman-
tic image segmentation, and achieved encouraging results
on the challenging PASCAL VOC 2012 dataset. Zheng et al.
[38] proposed a similar semantic segmentation approach. In
related work, Lin et al. [39] proposed an efficient semantic
segmentation model based on contextual deep CRFs. They
explored “patch-patch” context (between image regions)
and “patch-background” context to improve semantic seg-
mentation through the use of contextual information.

Liu et al. [40] proposed a semantic segmentation algo-
rithm that incorporates rich information into MRFs, includ-
ing high-order relations and mixture of label contexts.
Unlike previous efforts that optimized MRFs using iterative

algorithms, they proposed a CNN model, namely a Parsing
Network, which enables deterministic end-to-end computa-
tion in one pass.

3.3 Encoder-Decoder Based Models

Most of the popular DL-based segmentation models use
some kind of encoder-decoder architecture. We group these
models into two categories: those for general image segmen-
tation, and those for medical image segmentation.

3.3.1 General Image Segmentation

Noh et al. [41] introduced semantic segmentation based on
deconvolution (a.k.a. transposed convolution). Their model,
DeConvNet (Fig. 11), consists of two parts, an encoder using
convolutional layers adopted from the VGG 16-layer net-
work and a multilayer deconvolutional network that inputs
the feature vector and generates a map of pixel-accurate
class probabilities. The latter comprises deconvolution and
unpooling layers, which identify pixel-wise class labels and
predict segmentation masks.

Badrinarayanan et al. [25] proposed SegNet, a fully con-
volutional encoder-decoder architecture for image segmen-
tation (Fig. 12). Similar to the deconvolution network, the
core trainable segmentation engine of SegNet consists of an
encoder network, which is topologically identical to the 13
convolutional layers of the VGG16 network, and a corre-
sponding decoder network followed by a pixel-wise classifi-
cation layer. The main novelty of SegNet is in the way the
decoder upsamples its lower-resolution input feature map(s);
specifically, using pooling indices computed in the max-
pooling step of the corresponding encoder to perform non-
linear up-sampling.

A limitation of encoder-decoder basedmodels is the loss of
fine-grained image information, due to the loss of resolution
through the encoding process. HRNet [42] (Fig. 13) addresses

Fig. 10. A CNNþCRF model. From [36].

Fig. 11. Deconvolutional semantic segmentation. From [41].

Fig. 9. The ParseNet (e) uses extra global context to produce a segmen-
tation (d) smoother than that of an FCN (c). From [35].

Fig. 12. The SegNet model. From [25].

Fig. 13. The HRNet architecture. From [42].
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this shortcoming. Other than recovering high-resolution
representations as is done in DeConvNet, SegNet, and other
models, HRNet maintains high-resolution representations
through the encoding process by connecting the high-to-low
resolution convolution streams in parallel and repeatedly
exchanging the information across resolutions. There are
four stages: the 1st stage consists of high-resolution convolu-
tions, while the 2nd/3rd/4th stage repeats 2-resolution/
3-resolution/4-resolution blocks. Several recent semantic
segmentation models use HRNet as a backbone.

Several other works adopt transposed convolutions, or
encoder-decoders for image segmentation, such as Stacked
Deconvolutional Network (SDN) [43], Linknet [44], W-
Net [45], and locality-sensitive deconvolution networks for
RGB-D segmentation [46].

3.3.2 Medical and Biomedical Image Segmentation

Several models inspired by FCNs and encoder-decoder net-
works were initially developed for medical/biomedical
image segmentation, but are now also being used outside
the medical domain.

Ronneberger et al. [47] proposed the U-Net (Fig. 14) for
efficiently segmenting biological microscopy images. The
U-Net architecture comprises two parts, a contracting path
to capture context, and a symmetric expanding path that
enables precise localization. The U-Net training strategy
relies on the use of data augmentation to learn effectively
from very few annotated images. It was trained on 30 trans-
mitted light microscopy images, and it won the ISBI cell
tracking challenge 2015 by a large margin.

Various extensions of U-Net have been developed for
different kinds of images and problem domains; for exam-
ple, Zhou et al. [48] developed a nested U-Net architecture,
Zhang et al. [49] developed a road segmentation algorithm
based on U-Net, and Cicek et al. [50] proposed a U-Net
architecture for 3D images.

V-Net (Fig. 15), proposed by Milletari et al. [51] for 3D
medical image segmentation, is another well known FCN-
based model. The authors introduced a new loss function
based on the Dice coefficient, enabling the model to deal
with situations in which there is a strong imbalance
between the number of voxels in the foreground and back-
ground. The network was trained end-to-end on MRI
images of the prostate and learns to predict segmentation
for the whole volume at once. Some of the other relevant
works on medical image segmentation includes Progressive

Dense V-Net et al. for automatic segmentation of pulmonary
lobes from chest CT images, and the 3D-CNN encoder for
lesion segmentation [52].

3.4 Multiscale and Pyramid Network Based Models

Multiscale analysis, a well established idea in image proc-
essing, has been deployed in various neural network archi-
tectures. One of the most prominent models of this sort is
the Feature Pyramid Network (FPN) proposed by Lin et al.
[53], which was developed for object detection but was also
applied to segmentation. The inherent multiscale, pyrami-
dal hierarchy of deep CNNs was used to construct feature
pyramids with marginal extra cost. To merge low and high
resolution features, the FPN is composed of a bottom-up
pathway, a top-down pathway and lateral connections. The
concatenated feature maps are then processed by a 3� 3
convolution to produce the output of each stage. Finally,
each stage of the top-down pathway generates a prediction
to detect an object. For image segmentation, the authors use
two multilayer perceptrons (MLPs) to generate the masks.

Zhao et al. [54] developed the Pyramid Scene Parsing
Network (PSPN), a multiscale network to better learn the
global context representation of a scene (Fig. 16). Multiple
patterns are extracted from the input image using a residual
network (ResNet) as a feature extractor, with a dilated net-
work. These feature maps are then fed into a pyramid pool-
ing module to distinguish patterns of different scales. They
are pooled at four different scales, each one corresponding
to a pyramid level, and processed by a 1� 1 convolutional
layer to reduce their dimensions. The outputs of the pyra-
mid levels are up-sampled and concatenated with the initial
feature maps to capture both local and global context infor-
mation. Finally, a convolutional layer is used to generate
the pixel-wise predictions.

Ghiasi and Fowlkes [55] developed a multiresolution
reconstruction architecture based on a Laplacian pyramid
that uses skip connections from higher resolution feature
maps and multiplicative gating to successively refine

Fig. 14. The U-Net model. From [47]. Fig. 15. The V-Net model for 3D image segmentation. From [51].

Fig. 16. The PSPN architecture. From [54].
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segment boundaries reconstructed from lower-resolution
maps. They showed that while the apparent spatial resolu-
tion of convolutional feature maps is low, the high-dimen-
sional feature representation contains significant sub-pixel
localization information.

Other models use multiscale analysis for segmentation,
among them Dynamic Multiscale Filters Network (DM-
Net) [56], Context Contrasted Network and gated multiscale
aggregation (CCN) [57], Adaptive Pyramid Context Net-
work (APC-Net) [58], MultiScale Context Intertwining
(MSCI) [59], and salient object segmentation [60].

3.5 R-CNN Based Models

The Regional CNN (R-CNN) and its extensions have proven
successful in object detection applications. In particular, the
Faster R-CNN [61] architecture (Fig. 17) uses a region pro-
posal network (RPN) that proposes bounding box candi-
dates. The RPN extracts a Region of Interest (RoI), and an
RoIPool layer computes features from these proposals to
infer the bounding box coordinates and class of the object.
Some extensions of R-CNN have been used to address the
instance segmentation problem; i.e., the task of simulta-
neously performing object detection and semantic
segmentation.

He et al. [62] proposed Mask R-CNN (Fig. 18), which out-
performed previous benchmarks on many COCO object
instance segmentation challenges (Fig. 19), efficiently detect-
ing objects in an image while simultaneously generating a
high-quality segmentation mask for each instance. Essen-
tially, it is a Faster R-CNN with 3 output branches—the first
computes the bounding box coordinates, the second com-
putes the associated classes, and the third computes the

binary mask to segment the object. The Mask R-CNN loss
function combines the losses of the bounding box coordi-
nates, the predicted class, and the segmentation mask, and
trains all of them jointly.

The Path Aggregation Network (PANet) proposed by
Liu et al. [63] is based on the Mask R-CNN and FPN models
(Fig. 20). The feature extractor of the network uses an FPN
backbone with a new augmented bottom-up pathway
improving the propagation of lower-layer features. Each
stage of this third pathway takes as input the feature maps
of the previous stage and processes them with a 3� 3 con-
volutional layer. A lateral connection adds the output to the
same-stage feature maps of the top-down pathway and
these feed the next stage.

Dai et al. [64] developed a multitask network for instance-
aware semantic segmentation that consists of three net-
works for differentiating instances, estimating masks, and
categorizing objects. These networks form a cascaded struc-
ture and are designed to share their convolutional features.
Hu et al. [65] proposed a new partially-supervised training
paradigm together with a novel weight transfer function,
which enables training instance segmentation models on a
large set of categories, all of which have box annotations,
but only a small fraction of which have mask annotations.

Chen et al. [66] developed an instance segmentation
model, MaskLab, by refining object detection with semantic
and direction features based on Faster R-CNN. This model
produces three outputs (Fig. 21), box detection, semantic
segmentation logits for pixel-wise classification, and direc-
tion prediction logits for predicting each pixel’s direction
toward its instance center. Building on the Faster R-CNN

Fig. 17. Faster R-CNN architecture. Each image is processed by convo-
lutional layers and its features are extracted, a sliding window is used in
RPN for each location over the feature map, for each location, k (k ¼ 9)
anchor boxes are used (3 scales of 128, 256 and 512, and 3 aspect
ratios of 1:1, 1:2, 2:1) to generate a region proposal; A cls layer outputs
2k scores whether there or not there is an object for k boxes; A reg layer
outputs 4k for the coordinates (box center coordinates, width, and
height) of k boxes. From [61].

Fig. 18. Mask R-CNN architecture. From [62].

Fig. 19. Mask R-CNN instance segmentation results. From [62].

Fig. 20. The Path Aggregation Network. (a) FPN backbone. (b) Bottom-
up path augmentation. (c) Adaptive feature pooling. (d) Box branch. (e)
Fully-connected fusion. From [63].

Fig. 21. The MaskLab model. From [66].

3528 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022

Authorized licensed use limited to: UCLA Library. Downloaded on June 05,2022 at 04:20:43 UTC from IEEE Xplore.  Restrictions apply. 



object detector, the predicted boxes provide accurate locali-
zation of object instances. Within each region of interest,
MaskLab performs foreground/background segmentation
by combining semantic and direction prediction.

Tensormask, proposed by Chen et al. [67], is based on
dense sliding window instance segmentation. The authors
treat dense instance segmentation as a prediction task over
4D tensors and present a general framework that enables
novel operators on 4D tensors. They demonstrate that the
tensor approach yields large gains over baselines, with
results comparable to Mask R-CNN.

Other instance segmentation models have been devel-
oped based on R-CNN, such as those developed for mask
proposals, including R-FCN [68], DeepMask [69], Polar-
Mask [70], boundary-aware instance segmentation [71], and
CenterMask [72]. Another promising approach is to tackle
the instance segmentation problem by learning grouping
cues for bottom-up segmentation, such as deep watershed
transform [73], real-time instance segmentation [74],
and semantic instance segmentation via deep metric
learning [75].

3.6 Dilated Convolutional Models

Dilated (a.k.a. “atrous”) convolution introduces to convolu-
tional layers another parameter, the dilation rate. For exam-
ple, a 3� 3 kernel (Fig. 22) with a dilation rate of 2 will have
the same size receptive field as a 5� 5 kernel while using
only 9 parameters, thus enlarging the receptive field with
no increase in computational cost.

Dilated convolutions have been popular in the field of
real-time segmentation, and many recent publications
report the use of this technique. Some of the most important
include the DeepLab family [76], multiscale context aggre-
gation [77], Dense Upsampling Convolution and Hybrid
Dilated Convolution (DUC-HDC) [78], densely connected
Atrous Spatial Pyramid Pooling (DenseASPP) [79], and the
Efficient Network (ENet) [80].

DeepLabv1 [36] and DeepLabv2 [76], developed by Chen
et al., are among the most popular image segmentation
models. The latter has three key features (Fig. 23). First is
the use of dilated convolution to address the decreasing res-
olution in the network caused by max-pooling and striding.

Second is Atrous Spatial Pyramid Pooling (ASPP), which
probes an incoming convolutional feature layer with filters
at multiple sampling rates, thus capturing objects as well as
multiscale image context to robustly segment objects at mul-
tiple scales. Third is improved localization of object bound-
aries by combining methods from deep CNNs, such as fully
convolutional VGG-16 or ResNet 101, and probabilistic
graphical models, specifically fully-connected CRFs.

Subsequently, Chen et al. [13] proposed DeepLabv3,
which combines cascaded and parallel modules of dilated
convolutions. The parallel convolution modules are
grouped in the ASPP. A 1� 1 convolution and batch nor-
malization are added in the ASPP. All the outputs are
concatenated and processed by another 1� 1 convolution
to create the final output with logits for each pixel. Next,
Chen et al. [81] released Deeplabv3+ (Fig. 24), which uses
an encoder-decoder architecture including dilated separa-
ble convolution composed of a depthwise convolution
(spatial convolution for each channel of the input) and
pointwise convolution (1� 1 convolution with the depth-
wise convolution as input). They used the DeepLabv3
framework as the encoder. The most relevant model has a
modified Xception backbone with more layers, dilated
depthwise separable convolutions instead of max pooling
and batch normalization.

3.7 RNN Based Models

While CNNs are a natural fit for computer vision problems,
they are not the only possibility. RNNs are useful in model-
ing the short/long term dependencies among pixels to
(potentially) improve the estimation of the segmentation
map. Using RNNs, pixels may be linked together and proc-
essed sequentially to model global contexts and improve
semantic segmentation. However the natural 2D structure
of images poses a challenge.

Visin et al. [82] proposed an RNN-based model for
semantic segmentation called ReSeg (Fig. 25). This model is
mainly based on ReNet [83], which was developed for image
classification. Each ReNet layer is composed of four RNNs
that sweep the image horizontally and vertically in both direc-
tions, encoding patches/activations, and providing relevant

Fig. 22. Dilated convolution. A 3� 3 kernel at different dilation rates.

Fig. 23. The DeepLab model. From [76].

Fig. 24. The DeepLab-v3+ model. From [81].

Fig. 25. The ReSeg model (without the pre-trained VGG-16 feature
extractor). From [82].
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global information. To perform image segmentation with the
ReSeg model, ReNet layers are stacked atop pre-trained
VGG-16 convolutional layers, which extract generic local
features, and are then followed by up-sampling layers to
recover the original image resolution in the final predictions.

Byeon et al. [84] performed per-pixel segmentation and
classification of images of natural scenes using 2D LSTM
networks, which learn textures and the complex spatial
dependencies of labels in a single model that carries out
classification, segmentation, and context integration.

Liang et al. [85] proposed a semantic segmentation
model based on a graph-LSTM network (Fig. 26) in which
convolutional layers are augmented by graph-LSTM
layers built on super-pixel maps, which provide a more
global structural context. These layers generalize the
LSTM for uniform, array-structured data (i.e., row, grid,
or diagonal LSTMs) to nonuniform, graph-structured
data, where arbitrary-shaped superpixels are semantically
consistent nodes and the adjacency relations between
superpixels correspond to edges, thus forming an undi-
rected graph (Fig. 27).

Xiang and Fox [86] proposed Data Associated Recurrent
Neural Networks (DA-RNNs) for joint 3D scene mapping
and semantic labeling. DA-RNNs use a new recurrent neu-
ral network architecture for semantic labeling on RGB-D
videos. The output of the network is integrated with

mapping techniques such as Kinect-Fusion in order to inject
semantic information into the reconstructed 3D scene.

Hu et al. [87] developed a semantic segmentation algo-
rithm that combines a CNN to encode the image and an
LSTM to encode its linguistic description. To produce pixel-
wise image segmentations from language inputs, they pro-
pose an end-to-end trainable recurrent and convolutional
model that jointly learns to process visual and linguistic
information (Fig. 28). This differs from traditional semantic
segmentation over a predefined set of semantic classes; i.e.,
the phrase “two men sitting on the right bench” requires
segmenting only the two people on the right bench and no
others sitting on another bench or standing. Fig. 29 shows
an example segmentation result by the model.

A drawback of RNN-based models is that they will gen-
erally be slower than their CNN counterparts as their
sequential nature is not amenable to parallelization.

3.8 Attention-Based Models

Attention mechanisms have been persistently explored in
computer vision over the years, and it is not surprising to
find publications that apply them to semantic segmentation.

Chen et al. [88] proposed an attention mechanism that
learns to softly weight multiscale features at each pixel loca-
tion. They adapt a powerful semantic segmentation model
and jointly train it with multiscale images and the attention
model In Fig. 30, the model assigns large weights to the per-
son (green dashed circle) in the background for features
from scale 1.0 as well as on the large child (magenta dashed
circle) for features from scale 0.5. The attention mechanism
enables the model to assess the importance of features at
different positions and scales, and it outperforms average
and max pooling.

Unlike approaches in which convolutional classifiers are
trained to learn the representative semantic features of
labeled objects, Huang et al. [89] proposed a Reverse Atten-
tion Network (RAN) architecture (Fig. 31) for semantic seg-
mentation that also applies reverse attention mechanisms,
thereby training the model to capture the opposite con-
cept—features that are not associated with a target class.

Fig. 26. The graph-LSTM model for semantic segmentation. From [85].

Fig. 27. Comparison of conventional RNN models and the graph-LSTM.
From [85].

Fig. 28. The CNN+LSTM architecture for semantic segmentation from
natural language expressions. From [87].

Fig. 29. CNN+LSTM segmentation masks generated for the query
“people in blue coat”. From [87].

Fig. 30. Attention-based semantic segmentation model. From [88].
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The RAN network performs the direct and reverse-attention
learning processes simultaneously.

Li et al. [90] developed a Pyramid Attention Network for
semantic segmentation, which exploits global contextual
information for semantic segmentation. Eschewing compli-
cated dilated convolutions and decoder networks, they
combined attention mechanisms and spatial pyramids to
extract precise dense features for pixel labeling. Fu et al. [91]
proposed a dual attention network for scene segmentation
that can capture rich contextual dependencies based on the
self-attention mechanism. Specifically, they append two
types of attention modules on top of a dilated FCN that
models the semantic inter-dependencies in spatial and
channel dimensions, respectively. The position attention
module selectively aggregates the features at each position
via weighted sums.

Other applications of attention mechanisms to semantic
segmentation include OCNet [92], which employs an object
context pooling inspired by self-attention mechanism,
ResNeSt: Split-Attention Networks [93], Height-driven
Attention Networks [94], Expectation-Maximization Atten-
tion (EMANet) [95], Criss-Cross Attention Network
(CCNet) [96], end-to-end instance segmentation with recur-
rent attention [97], a point-wise spatial attention network
for scene parsing [98], and Discriminative Feature Network
(DFN) [99].

3.9 Generative Models and Adversarial Training

GANs have been applied to a wide range of tasks in com-
puter vision, not excluding image segmentation.

Luc et al. [100] proposed an adversarial training approach
for semantic segmentation in which they trained a convolu-
tional semantic segmentation network (Fig. 32), along with an
adversarial network that discriminates between ground-truth
segmentation maps and those generated by the segmentation
network. They showed that the adversarial training approach
yields improved accuracy on the Stanford Background and
PASCALVOC 2012 datasets.

Souly et al. [101] proposed semi-weakly supervised
semantic segmentation using GANs. Their model consists
of a generator network providing extra training examples to
a multiclass classifier, acting as discriminator in the GAN
framework, that assigns sample a label from the possible
label classes or marks it as a fake sample (extra class).

Hung et al. [102] developed a framework for semi-super-
vised semantic segmentation using an adversarial network.
They designed an FCN discriminator to differentiate the
predicted probability maps from the ground truth segmen-
tation distribution, considering the spatial resolution. The
loss function of this model has three terms: cross-entropy
loss on the segmentation ground truth, adversarial loss of

the discriminator network, and semi-supervised loss based
on the confidence map output of the discriminator.

Xue et al. [103] proposed an adversarial network with
multiscale L1 Loss for medical image segmentation. They
used an FCN as the segmentor to generate segmentation
label maps, and proposed a novel adversarial critic network
with a multi-scale L1 loss function to force the critic and seg-
mentor to learn both global and local features that capture
long and short range spatial relationships between pixels.

Other approaches based on adversarial training include
cell image segmentation using GANs [104], and segmenta-
tion and generation of the invisible parts of objects [105].

3.10 CNN Models With Active Contour Models

The exploration of synergies between FCNs and Active
Contour Models (ACMs) [8] has recently attracted research
interest.

One approach is to formulate new loss functions that
are inspired by ACM principles. For example, inspired by
the global energy formulation of [106], Chen et al. [107]
proposed a supervised loss layer that incorporated area
and size information of the predicted masks during train-
ing of an FCN and tackled the problem of ventricle seg-
mentation in cardiac MRI. Similarly, Gur et al. [108]
presented an unsupervised loss function based on mor-
phological active contours without edges [109] for micro-
vascular image segmentation.

A different approach initially sought to utilize the ACM
merely as a post-processor of the output of an FCN and sev-
eral efforts attempted modest co-learning by pre-training
the FCN. One example of an ACM post-processor for the
task of semantic segmentation of natural images is the work
by Le et al. [110] in which level-set ACMs are implemented
as RNNs. Deep Active Contours by Rupprecht et al. [111], is
another example. For medical image segmentation, Hatami-
zadeh et al. [112] proposed an integrated Deep Active
Lesion Segmentation (DALS) model that trains the FCN
backbone to predict the parameter functions of a novel,
locally-parameterized level-set energy functional. In
another relevant effort, Marcos et al. [113] proposed Deep
Structured Active Contours (DSAC), which combines
ACMs and pre-trained FCNs in a structured prediction
framework for building instance segmentation (albeit with
manual initialization) in aerial images. For the same appli-
cation, Cheng et al. [114] proposed the Deep Active Ray Net-
work (DarNet), which is similar to DSAC, but with a
different explicit ACM formulation based on polar coordi-
nates to prevent contour self-intersection.

A truly end-to-end backpropagation trainable, fully-inte-
grated FCN-ACM combination was recently introduced by

Fig. 31. The RAN architecture. From [89].
Fig. 32. The GAN for semantic segmentation. From [100].
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Hatamizadeh et al. [115], dubbed Trainable Deep Active
Contours (TDAC). Going beyond [112], they implemented
the locally-parameterized level-set ACM in the form of
additional convolutional layers following the layers of the
backbone FCN, exploiting Tensorflow’s automatic differen-
tiation mechanism to backpropagate training error gra-
dients throughout the entire DCAC framework. The fully-
automated model requires no intervention either during
training or segmentation, can naturally segment multiple
instances of objects of interest, and deal with arbitrary object
shape including sharp corners.

3.11 Other Models

Other popular DL architectures for image segmentation
include the following:

Context Encoding Network (EncNet) [116] uses a basic
feature extractor and feeds the feature maps into a context
encoding module. RefineNet [117] is a multipath refinement
network that explicitly exploits all the information available
along the down-sampling process to enable high-resolution
prediction using long-range residual connections. Seed-
net [118] introduced an automatic seed generation tech-
nique with deep reinforcement learning that learns to solve
the interactive segmentation problem. Object-Contextual
Representations (OCR) [42] learns object regions and the
relation between each pixel and each object region, aug-
menting the representation pixels with the object-contextual
representation. Additional models and methods include
BoxSup [119], Graph Convolutional Networks (GCN) [120],
Wide ResNet [121], Exfuse [122] (enhancing low-level
and high-level features fusion), Feedforward-Net [123],
saliency-aware models for geodesic video segmenta-
tion [124], Dual Image Segmentation (DIS) [125], Fovea-
Net [126] (perspective-aware scene parsing), Ladder
DenseNet [127], Bilateral Segmentation Network (BiSe-
Net) [128], Semantic Prediction Guidance for Scene Parsing
(SPGNet) [129], gated shape CNNs [130], Adaptive Context
Network (AC-Net) [131], Dynamic-Structured Semantic
Propagation Network (DSSPN) [132], Symbolic Graph Rea-
soning (SGR) [133], CascadeNet [134], Scale-Adaptive
Convolutions (SAC) [135], Unified Perceptual parsing
Network (UperNet) [136], segmentation by re-training and
self-training [137], densely connected neural architecture

search [138], hierarchical multiscale attention [139], Efficient
RGB-D Semantic Segmentation (ESA-Net) [140], Iterative
Pyramid Contexts [141], and Learning Dynamic Routing for
Semantic Segmentation [142].

Panoptic segmentation [143] is growing in popularity.
Efforts in this direction include Panoptic Feature Pyramid
Network (PFPN) [144], attention-guided network for pan-
optic segmentation [145], seamless scene segmentation [146],
panoptic Deeplab [147], unified panoptic segmentation net-
work [148], and efficient panoptic segmentation [149].

Fig. 33 provides a timeline of some of the most represen-
tative DL image segmentation models since 2014.

4 DATASETS

In this section we survey the image datasets most com-
monly used to train and test DL image segmentation mod-
els, grouping them into 3 categories—2D (pixel) images,
2.5D RGB-D (color+depth) images, and 3D (voxel) images—
and provide details about the characteristics of each dataset.

Data augmentation is often used to increase the number of
labeled samples, especially for small datasets such as those
in the medical imaging domain, thus improving the perfor-
mance of DL segmentation models. A set of transformations
is applied either in the data space, or feature space, or both
(i.e., both the image and the segmentation map). Typical
transformations include translation, reflection, rotation,
warping, scaling, color space shifting, cropping, and projec-
tions onto principal components. Data augmentation can
also benefit by yielding faster convergence, decreasing the
chance of over-fitting, and enhancing generalization. For
some small datasets, data augmentation has been shown to
boost model performance by more than 20 percent.

4.1 2D Image Datasets

The bulk of image segmentation research has focused on 2D
images; therefore, many 2D image segmentation datasets
are available. The following are some of the most popular:

PASCAL Visual Object Classes (VOC) [150] is a highly pop-
ular dataset in computer vision, with annotated images
available for 5 tasks—classification, segmentation, detec-
tion, action recognition, and person layout. For the segmen-
tation task, there are 21 labeled object classes and pixels are
labeled as background if they do not belong to any of these

Fig. 33. Timeline of representative DL-based image segmentation algorithms. Orange, green, and yellow blocks indicate semantic, instance, and
panoptic segmentation algorithms, respectively.
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classes. The dataset is divided into two sets, training and
validation, with 1,464 and 1,449 images, respectively, and a
private test set for the actual challenge. Fig. 34 shows an
example image and its pixel-wise label.

PASCAL Context [152] is an extension of the PASCAL
VOC 2010 detection challenge. It includes pixel-wise labels
for all the training images. It contains more than 400 classes
(including the original 20 classes plus backgrounds from
PASCAL VOC segmentation), in three categories (objects,
stuff, and hybrids). Many of the object categories of this
dataset are too sparse and; therefore, a subset of 59 classes is
usually selected for use.

Microsoft Common Objects in Context (MS COCO) [153] is a
large-scale object detection, segmentation, and captioning
dataset. COCO includes images of complex everyday
scenes, containing common objects in their natural contexts.
This dataset contains photos of 91 object types, with a total
of 2.5 million labeled instances in 328K images. Fig. 35 com-
pares MS-COCO labels with those of previous datasets for a
sample image.

Cityscapes [154] is a large database with a focus on seman-
tic understanding of urban street scenes. It contains a
diverse set of stereo video sequences recorded in street
scenes from 50 cities, with high quality pixel-level annota-
tion of 5K frames, in addition to a set of 20K weakly anno-
tated frames. It includes semantic and dense pixel
annotations of 30 classes, grouped into 8 categories—flat
surfaces, humans, vehicles, constructions, objects, nature,
sky, and void. Fig. 36 shows sample segmentation maps
from this dataset.

ADE20K / MIT Scene Parsing (SceneParse150) offers a
training and evaluation platform for scene parsing algo-
rithms. The data for this benchmark comes from the
ADE20K dataset [134], which contains more than 20K
scene-centric images exhaustively annotated with objects
and object parts. The benchmark is divided into 20K images
for training, 2K images for validation, and another batch of
images for testing. There are 150 semantic categories in this
dataset.

SiftFlow [155] includes 2,688 annotated images, from a
subset of the LabelMe database, of 8 different outdoor
scenes, among them streets, mountains, fields, beaches, and
buildings, and in one of 33 semantic classes.

Stanford Background [156] comprises outdoor images of
scenes from existing datasets, such as LabelMe, MSRC, and
PASCAL VOC. It includes 715 images with at least one fore-
ground object. The dataset is pixel-wise annotated, and can
be used for semantic scene understanding.

Berkeley Segmentation Dataset (BSD) [157] contains
12,000 hand-labeled segmentations of 1,000 Corel dataset
images from 30 human subjects. It aims to provide an
empirical basis for research on image segmentation and
boundary detection. Half of the segmentations were
obtained from presenting the subject a color image and
the other half from presenting a grayscale image. The
public benchmark based on this data consists of all of
the grayscale and color segmentations for 300 images.
The images are divided into a training set of 200 images
and a test set of 100 images.

Youtube-Objects [158] contains videos collected from You-
Tube, which include objects from ten PASCAL VOC classes
(aeroplane, bird, boat, car, cat, cow, dog, horse, motorbike,
and train). The original dataset did not contain pixel-wise
annotations (as it was originally developed for object detec-
tion, with weak annotations). However, Jain et al. [159] man-
ually annotated a subset of 126 sequences, and then
extracted a subset of frames to further generate semantic
labels. In total, there are about 10,167 annotated 480x360
pixel frames available in this dataset.

CamVid: is another scene understanding database (with a
focus on road/driving scenes) which was originally cap-
tured as five video sequences via camera mounted on the
dashboard of a car. A total of 701 frames were provided by
sampling from the sequences. These frames were manually
annotated into 32 classes.

KITTI [160] is one of the most popular datasets for
autonomous driving, containing videos of traffic scenar-
ios, recorded with a variety of sensor modalities (includ-
ing high-resolution RGB, grayscale stereo cameras, and a
3D laser scanners). The original dataset does not contain
ground truth for semantic segmentation, but researchers
have manually annotated parts of the dataset; e.g.,
Alvarez et al. [161] generated ground truth for 323 images
from the road detection challenge with 3 classes—road,
vertical, and sky.

Other datasets for image segmentation purposes
include Semantic Boundaries Dataset (SBD) [162], PASCAL
Part [163], SYNTHIA [164], and Adobe’s Portrait Segmenta-
tion [165].

4.2 2.5D Datasets

With the availability of affordable range scanners, RGB-D
images have became increasingly widespread. The follow-
ing RGB-D datasets are among the most popular:

NYU-Depth V2 [166] consists of video sequences from a
variety of indoor scenes, recorded by the RGB and depth
cameras of the Microsoft Kinect. It includes 1,449 densely
labeled RGB and depth image pairs of more than 450 scenes

Fig. 34. An example image from the PASCALVOC dataset. From [151].

Fig. 35. A sample image and segmentation map in COCO. From [153].

Fig. 36. Segmentation maps from the Cityscapes dataset. From [154].
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taken from 3 cities. Each object is labeled with a class and
instance number (e.g., cup1, cup2, cup3, etc.). It also con-
tains 407,024 unlabeled frames. Fig. 37 shows an RGB-D
sample and its label map.

SUN-3D [167] is a large RGB-D video dataset that con-
tains 415 sequences captured from 254 different spaces in 41
different buildings; 8 sequences are annotated and more
will be annotated in the future. Each annotated frame pro-
vides the semantic segmentation of the objects in the scene
as well as information about the camera pose.

SUN RGB-D [168] provides an RGB-D benchmark for
advancing the state-of-the-art of all major scene understand-
ing tasks. It is captured by four different sensors and con-
tains 10,000 RGB-D images at a scale similar to PASCAL
VOC.

ScanNet [169] is an RGB-D video dataset containing 2.5
million views in more than 1,500 scans, annotated with 3D
camera poses, surface reconstructions, and instance-level
semantic segmentations. To collect these data, an easy-to-
use and scalable RGB-D capture system was designed that
includes automated surface reconstruction, and the seman-
tic annotation was crowd-sourced. Using this data helped
achieve state-of-the-art performance on several 3D scene
understanding tasks, including 3D object classification,
semantic voxel labeling, and CAD model retrieval.

Stanford 2D-3D [170] provides a variety of mutually reg-
istered 2D, 2.5D, and 3D modalities, with instance-level
semantic and geometric annotations, acquired from 6
indoor areas. It contains over 70,000 RGB images, along
with the corresponding depths, surface normals, semantic
annotations, as well as global XYZ images, camera informa-
tion, and registered raw and semantically annotated 3D
meshes and point clouds.

Another popular 2.5D datasets is UW RGB-D Object Data-
set [171], which contains 300 common household objects
recorded using a Kinect-style sensor.

5 DL SEGMENTATION MODEL PERFORMANCE

In this section, we summarize the metrics commonly used
in evaluating the performance of segmentation models and
report the performance of DL-based segmentation models
on benchmark datasets.

5.1 Metrics for Image Segmentation Models

Ideally, an image segmentation model should be evaluated
in multiple respects, such as quantitative accuracy, visual
quality, speed (inference time), and storage requirements
(memory footprint). However, most researchers to date
have focused on metrics for quantifying model accuracy.
The following metrics are most popular:

Pixel accuracy is the ratio of properly classified pixels
divided by the total number of pixels. For K þ 1 classes

(K foreground classes and the background) pixel accu-
racy is defined as

PA ¼
PK

i¼0 piiPK
i¼0

PK
j¼0 pij

; (1)

where pij is the number of pixels of class i predicted as
belonging to class j.

Mean Pixel Accuracy (MPA) is an extension of PA, in
which the ratio of correct pixels is computed in a per-class
manner and then averaged over the total number of classes

MPA ¼ 1

K þ 1

XK

i¼0

pii
PK

j¼0 pij
: (2)

Intersection over Union (IoU), or the Jaccard Index, is
defined as the area of intersection between the predicted
segmentation map A and the ground truth map B, divided
by the area of the union between the two maps, and ranges
between 0 and 1

IoU ¼ JðA;BÞ ¼ jA \Bj
jA [Bj : (3)

Mean-IoU is defined as the average IoU over all classes.
Precision / Recall / F1 score can be defined for each class, as

well as at the aggregate level, as follows:

Precision ¼ TP

TPþ FP
; Recall ¼ TP

TPþ FN
; (4)

where TP refers to the true positive fraction, FP refers to the
false positive fraction, and FN refers to the false negative
fraction. Usually one is interested in a combined version of
precision and recall rates; the F1 score is defined as the har-
monic mean of precision and recall

F1 ¼ 2 Precision Recall

Precisionþ Recall
: (5)

Dice coefficient, commonly used inmedical image analysis,
can be defined as twice the overlap area of the predicted and
ground-truthmaps divided by the total number of pixels.

Dice ¼ 2jA \Bj
jAj þ jBj : (6)

It is very similar to the IoU (3) and when applied to binary
maps, with foreground as the positive class, the Dice coeffi-
cient is identical to the F1 score (7)

Dice ¼ 2TP

2TPþ FPþ FN
¼ F1: (7)

5.2 Quantitative Performance of DL-Based Models

In this section we tabulate the performance of several of the
previously discussed algorithms on popular segmentation
benchmarks. Although most publications report model per-
formance on standard datasets and use standard metrics,
some of them fail to do so, making across-the-board com-
parisons difficult. Furthermore, only a few publications pro-
vide additional information, such as execution time and

Fig. 37. A sample from the NYU V2 dataset. From left: RGB image, pre-
processed depth image, class labels map. From [166].
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memory footprint, in a reproducible way, which is impor-
tant to industrial applications (such as drones, self-driving
cars, robotics, etc.) that may run on embedded systems with
limited computational power and storage, thus requiring
light-weight models.

The following tables summarize the performances of sev-
eral of the prominent DL-based segmentation models on
different datasets:

Table 1 focuses on the PASCAL VOC test set. Clearly,
there has been much improvement in the accuracy of the
models since the introduction of the first DL-based image
segmentation model, the FCN.

Table 2 focuses on the Cityscape test dataset. The latest
models feature about 23 percent relative gain over the pio-
neering FCNmodel on this dataset.

Table 3 focuses on the MS COCO stuff test set. This data-
set is more challenging than PASCAL VOC, and Citye-
scapes, as the highest mIoU is approximately 40 percent.

Table 4 focuses on the ADE20k validation set. This data-
set is also more challenging than the PASCAL VOC and Cit-
yescapes datasets.

Table 5 provides the performance of prominent instance
segmentation algorithms on COCO test-dev 2017 dataset, in
terms of average precision, and their speed.

Table 6 provides the performance of prominent panoptic
segmentation algorithms on MS-COCO val dataset, in terms
of panoptic quality [143].

Finally, Table 7 summarizes the performance of several
prominent models for RGB-D segmentation on the NYUD-
v2 and SUN-RGBD datasets.

In summary, we have witnessed been significant
improvement in the performance of deep segmentation
models over the past 5–6 years, with a relative improve-
ment of 25-42 percent in mIoU on different datasets.
However, some publications suffer from lack of repro-
ducibility for multiple reasons—they report performance
on non-standard benchmarks/databases, or only on arbi-
trary subsets of the test set from a popular benchmark,
or they do not adequately describe the experimental
setup and sometimes evaluate model performance only
on a subset of object classes. Most importantly, many
publications do not provide the source-code for their
model implementations. Fortunately, with the increasing
popularity of deep learning models, the trend has been

TABLE 1
Accuracies of Segmentation Models on the

PASCALVOC Test Set

Method Backbone mIoU

FCN [30] VGG-16 62.2
CRF-RNN [38] - 72.0
CRF-RNN� [38] - 74.7
BoxSup* [119] - 75.1
Piecewise� [39] - 78.0
DPN� [40] - 77.5
DeepLab-CRF [76] ResNet-101 79.7
GCN� [120] ResNet-152 82.2
Dynamic Routing [142] - 84.0
RefineNet [117] ResNet-152 84.2
Wide ResNet [121] WideResNet-38 84.9
PSPNet [54] ResNet-101 85.4
DeeplabV3 [13] ResNet-101 85.7
PSANet [98] ResNet-101 85.7
EncNet [116] ResNet-101 85.9
DFN� [99] ResNet-101 86.2
Exfuse [122] ResNet-101 86.2
SDN* [43] DenseNet-161 86.6
DIS [125] ResNet-101 86.8
APC-Net� [58] ResNet-101 87.1
EMANet [95] ResNet-101 87.7
DeeplabV3+ [81] Xception-71 87.8
Exfuse [122] ResNeXt-131 87.9
MSCI [59] ResNet-152 88.0
EMANet [95] ResNet-152 88.2
DeeplabV3+� [81] Xception-71 89.0
EfficientNet+NAS-FPN [137] - 90.5

� Models pre-trained on other datasets (MS-COCO, ImageNet, etc.).

TABLE 2
Accuracies of Segmentation Models on the Cityscapes Dataset

Method Backbone mIoU

SegNet [25] - 57.0
FCN-8s [30] - 65.3
DPN [40] - 66.8
Dilation10 [77] - 67.1
DeeplabV2 [76] ResNet-101 70.4
RefineNet [117] ResNet-101 73.6
FoveaNet [126] ResNet-101 74.1
Ladder DenseNet [127] Ladder DenseNet-169 73.7
GCN [120] ResNet-101 76.9
DUC-HDC [78] ResNet-101 77.6
Wide ResNet [121] WideResNet-38 78.4
PSPNet [54] ResNet-101 85.4
BiSeNet [128] ResNet-101 78.9
DFN [99] ResNet-101 79.3
PSANet [98] ResNet-101 80.1
DenseASPP [79] DenseNet-161 80.6
Dynamic Routing [142] - 80.7
SPGNet [129] 2xResNet-50 81.1
DANet [91] ResNet-101 81.5
CCNet [96] ResNet-101 81.4
DeeplabV3 [13] ResNet-101 81.3
IPC [141] ResNet-101 81.8
AC-Net [131] ResNet-101 82.3
OCR [42] ResNet-101 82.4
ResNeSt200 [93] ResNeSt-200 82.7
GS-CNN [130] WideResNet 82.8
HA-Net [94] ResNext-101 83.2
HRNetV2+OCR [42] HRNetV2-W48 83.7
Hierarchical MSA [139] HRNet-OCR 85.1

TABLE 3
Accuracies of Segmentation Models on the

MS COCO Stuff Dataset

Method Backbone mIoU

RefineNet [117] ResNet-101 33.6
CCN [57] Ladder DenseNet-101 35.7
DANet [91] ResNet-50 37.9
DSSPN [132] ResNet-101 37.3
EMA-Net [95] ResNet-50 37.5
SGR [133] ResNet-101 39.1
OCR [42] ResNet-101 39.5
DANet [91] ResNet-101 39.7
EMA-Net [95] ResNet-50 39.9
AC-Net [131] ResNet-101 40.1
OCR [42] HRNetV2-W48 40.5
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positive and many research groups are moving toward
reproducible frameworks and open-sourcing their
implementations.

6 CHALLENGES AND OPPORTUNITIES

Without a doubt, image segmentation has benefited greatly
from deep learning, but several challenges lie ahead. We
will next discuss some of the promising research directions
that we believe will help in further advancing image seg-
mentation algorithms.

6.1 More Challenging Datasets

Several large-scale image datasets have been created for
semantic segmentation and instance segmentation. How-
ever, there remains a need for more challenging datasets, as
well as datasets of different kinds of images. For still
images, datasets with a large number of objects and overlap-
ping objects would be very valuable. This can enable the
training of models that handle dense object scenarios better,
as well as large overlaps among objects as is common in
real-world scenarios. With the rising popularity of 3D image
segmentation, especially in medical image analysis, there is
also a strong need for large-scale annotated 3D image data-
sets, which are more difficult to create than their lower
dimensional counterparts.

6.2 Combining DL and Earlier Segmentation Models

There is now broad agreement that the performance of DL-
based segmentation algorithms is plateauing, especially in
certain application domains such as medical image analysis.
To advance to the next level of performance, we must fur-
ther explore the combination of CNN-based image segmen-
tation models with prominent “classical” model-based
image segmentation methods. The integration of CNNs
with graphical models has been studied, but their integra-
tion with active contours, graph cuts, and other segmenta-
tion models is fairly recent and deserves further work.

6.3 Interpretable Deep Models

While DL-based models have achieved promising perfor-
mance on challenging benchmarks, there remain open ques-
tions about these models. For example, what exactly are
deep models learning? How should we interpret the fea-
tures learned by these models? What is a minimal neural
architecture that can achieve a certain segmentation accu-
racy on a given dataset? Although some techniques are
available to visualize the learned convolutional kernels of
these models, a comprehensive study of the underlying
behavior/dynamics of these models is lacking. A better

TABLE 5
Instance Segmentation Model Performance on

COCOTest-Dev 2017

Method Backbone FPS AP

YOLACT-550 [74] R-101-FPN 33.5 29.8
YOLACT-700 [74] R-101-FPN 23.8 31.2
RetinaMask [172] R-101-FPN 10.2 34.7
TensorMask [67] R-101-FPN 2.6 37.1
SharpMask [173] R-101-FPN 8.0 37.4
Mask-RCNN [62] R-101-FPN 10.6 37.9
CenterMask [72] R-101-FPN 13.2 38.3

TABLE 6
Panoptic Segmentation Model Performance on MS-COCOVal

Method Backbone PQ

Panoptic FPN [144] ResNet-50 39.0
Panoptic FPN [144] ResNet-101 40.3
AU-Net [145] ResNet-50 39.6
Panoptic-DeepLab [147] Xception-71 39.7
OANet [174] ResNet-50 39.0
OANet [174] ResNet-101 40.7
AdaptIS [175] ResNet-50 35.9
AdaptIS [175] ResNet-101 37.0
UPSNet� [148] ResNet-50 42.5
OCFusion� [176] ResNet-50 41.3
OCFusion� [176] ResNet-101 43.0
OCFusion� [176] ResNeXt-101 45.7

� Use of deformable convolution.

TABLE 7
Segmentation Model Performance on the

NYUD-v2 and SUN-RGBD

NYUD-v2 SUN-RGBD

Method m-Acc m-IoU m-Acc m-IoU

Mutex [177] - 31.5 - -
MS-CNN [178] 45.1 34.1 - -
FCN [30] 46.1 34.0 - -
Joint-Seg [179] 52.3 39.2 - -
SegNet [25] - - 44.76 31.84
Structured Net [39] 53.6 40.6 53.4 42.3
B-SegNet [180] - - 45.9 30.7
3D-GNN [181] 55.7 43.1 57.0 45.9
LSD-Net [46] 60.7 45.9 58.0 -
RefineNet [117] 58.9 46.5 58.5 45.9
D-aware CNN [182] 61.1 48.4 53.5 42.0
MTI-Net [183] 62.9 49 - -
RDFNet [184] 62.8 50.1 60.1 47.7
ESANet-R34-NBt1D [140] - 50.3 - 48.17
G-Aware Net [185] 68.7 59.6 74.9 54.5

TABLE 4
Accuracies of Segmentation Models on the

ADE20k Validation Dataset

Method Backbone mIoU

FCN [30] - 29.39
DilatedNet [77] - 32.31
CascadeNet [134] - 34.90
RefineNet [117] ResNet-152 40.7
PSPNet [54] ResNet-101 43.29
PSPNet [54] ResNet-269 44.94
EncNet [116] ResNet-101 44.64
SAC [135] ResNet-101 44.3
PSANet [98] ResNet-101 43.70
UperNet [136] ResNet-101 42.66
DSSPN [132] ResNet-101 43.68
DM-Net [56] ResNet-101 45.50
AC-Net [131] ResNet-101 45.90
ResNeSt-101 [93] ResNeSt-101 46.91
ResNeSt-200 [93] ResNeSt-200 48.36
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understanding of the theoretical aspects of these models can
enable the development of better models curated toward
various segmentation scenarios.

6.4 Weakly-Supervised and Unsupervised Learning

Weakly-supervised (a.k.a. few shot) learning [186] and unsu-
pervised learning [187] are becoming very active research
areas. These techniques promise to be specially valuable for
image segmentation, as collecting pixel-accurately labeled
training images is problematic inmany application domains,
particularly so in medical image analysis. The transfer learn-
ing approach is to train a generic image segmentation model
on a large set of labeled samples (perhaps from a public
benchmark) and then fine-tune that model on a few samples
from some specific target application. Self-supervised learn-
ing is another promising direction that is attracting much
attraction in various fields. With the help of self-supervised
learning, many details in images can be captured in order to
train segmentation models with far fewer training samples.
Models based on reinforcement learning could also be
another potential future direction, as they have scarcely
received attention for image segmentation. For example,
MOREL [188] introduced a deep reinforcement learning
approach formoving object segmentation in videos.

6.5 Real-Time Models for Various Applications

In many applications, accuracy is the most important factor;
however, there are applications in which it is also critical to
have segmentation models that can run in near real-time, or
at common camera frame rates (at least 25 frames per sec-
ond). This is useful for computer vision systems that are, for
example, deployed in autonomous vehicles. Most of the cur-
rent models are far from this frame-rate; e.g., FCN-8 takes
roughly 100 ms to process a low-resolution image. Models
based on dilated convolution help to increase the speed of
segmentation models to some extent, but there is still plenty
of room for improvement.

6.6 Memory Efficient Models

Many modern segmentation models require a significant
amount of memory even during the inference stage. So far,
much effort has been directed towards improving the accu-
racy of such models, but in order to fit them into specific
devices, such as mobile phones, the networks must be sim-
plified. This can be done either by using simpler models, or
by using model compression techniques, or even by training
a complex model and using knowledge distillation techni-
ques to compress it into a smaller, memory efficient network
that mimics the complex model.

6.7 Applications

DL-based segmentation methods have been successfully
applied to satellite images in remote sensing [189], such
as to support urban planning [190] and precision agricul-
ture [191]. Images collected by airborne platforms [192]
and drones [193] have also been segmented using DL-
based segmentation methods in order to address impor-
tant environmental problems including ones related to
climate change. The main challenges of the remote sens-
ing domain stem from the typically formidable size of the

imagery (often collected by imaging spectrometers with
hundreds or even thousands of spectral bands) and the
limited ground-truth information necessary to evaluate
the accuracy of the segmentation algorithms. Similarly,
DL-based segmentation techniques in the evaluation of
construction materials [194] face challenges related to the
massive volume of the related image data and the limited
reference information for validation purposes. Last but
not least, an important application field for DL-based seg-
mentation has been biomedical imaging [195]. Here, an
opportunity is to design standardized image databases
useful in evaluating new infectious diseases and tracking
pandemics [196].

7 CONCLUSION

We have surveyed image segmentation algorithms based on
deep learning models, which have achieved impressive per-
formance in various image segmentation tasks and bench-
marks, grouped into architectural categories such as: CNN
and FCN, RNN, R-CNN, dilated CNN, attention-based
models, generative and adversarial models, among others.
We have summarized the quantitative performance of these
models on some popular benchmarks, such as the PASCAL
VOC, MS COCO, Cityscapes, and ADE20k datasets. Finally,
we discussed some of the open challenges and promising
research directions for deep-learning-based image segmen-
tation in the coming years.
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