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Shape and Nonrigid Motion Estimation
through Physics-Based Synthesis
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Abstract— This paper presents a physics-based framework
for 3-D shape and nonrigid motion estimation aimed at real-
time computer vision. The framework features dynamic models
that incorporate the mechanical principles of rigid and nonrigid
bedies into conventional geometric primitives. Through the effi-
cient numerical simulation of Lagrange equations of motion, the
models can synthesize physically correct behaviors in response
to applied forces and imposed constraints. We exploit the shape
and motion synthesis capabilities of our models for the purposes
of visual estimation. Applying continuous nonlinear Kalman
filtering theory, we conmstruct a recursive shape and motion
estimator that employs the Lagrange equations as a system
model. We interpret the continuous Kalman filter physically:
The system model continually synthesizes nonrigid motion in
response to generalized forces that arise from the inconsistency
between the incoming observations and the estimated model state.
The observation forces also account formally for instantaneous
uncertainties and incomplete information. A Riccati procedure
updates a covariance matrix that transforms the forces in accor-
dance with the system dynamics and prior observation history.
The transformed forces modify the translational, rotational, and
deformational state variables of the system model to reduce
inconsistency, thus producing nonstationary shape and motion
estimates from the time-varying visual data. We demonstrate the
dynamic estimator in experiments involving model fitting and
tracking of articulated and flexible objects from noisy 3-D data.

Index Terms— Analysis by synthesis, computer vision, con-
straints, deformable models, Kalman filtering, nonrigid motion
estimation, physics-based modeling.

I. INTRODUCTION

ESPITE THE large body of work on 3-D shape and

motion estimation, most robust on-line estimators are
limited to rigid objects and simple shapes. Many natural
objects, however, cannot be adequately represented in terms
of simple shape primitives. Furthermore, natural objects typ-
ically undergo motions that are highly nonrigid and subject
to various constraints. Animal bodies, for instance, produce
astonishingly complex motions, not only as a consequence
of their articulated skeletons but also because of soft tissue
deformations due to muscle actions and gravitational effects.
To cope with the tough challenges of nonrigidity, several
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researchers have pursued physics-based modeling methods that
are capable of synthesizing and/or estimating the shapes and
motions of nonrigid 3-D objects to different levels of accuracy
(26], [13], [15], [7), [19], [22], [28]. The 2-D problem has
received similar attention [17], [11], [25].

This paper presents a physics-based framework for shape
and nonrigid motion estimation. Our approach is motivated by
real-time vision applications [2]. We build on our prior work
with dynamic models that incorporate the mechanical princi-
ples of rigid and deformable bodies into conventional geomet-
ric modeling primitives [27). The parameters associated with
the geometric primitives, along with global (parameterized)
and local (free-form) geometric deformations, acquire physical
meanings and are systematically converted into generalized
coordinates. Through the application of Lagrangian mechanics
and the finite element method, we derive differential equations
of motion that govern the dynamics of the models. These equa-
tions determine the evolution of the generalized coordinates in
response to simulated forces associated with the visual data.

To deal with constrained multipart objects such as artic-
ulated anthropomorphic bodies, we introduce hard point-to-
point constraints between model parts that should not be
violated, regardless of the magnitude of the forces experienced
by the parts. Attempting to approximate such constraints
simply using stiff springs leads to numerical instability. In
our approach, the equations of motion for multipart models
include constraint forces that are computed using a stabilized
Lagrange multiplier technique.

The kinematics of our models are stylized by the geo-
metric origins of their generalized coordinates. The models
can, however, synthesize physically correct motions, given
prescribed mass distributions and elasticities. Consequently,
our framework supports the physics-based computer animation
of nonrigid objects with constraints, as we demonstrate in [20}
and [21]. Figs. 1-3 illustrate three examples of real-time non-
rigid motion synthesis. The dynamic modeling primitives are
deformable superquadrics [27] that interact with one another
and their simulated physical environments through point-
to-point constraints, gravity, collisions, and friction against
impenetrable surfaces. See [20] and [21] for further details.

The present paper exploits the constrained nonrigid motion
synthesis capabilities of our models in order to estimate
shape and motion from incomplete, noisy observations that
are available sequentially over time. Applying continuous non-
linear Kalman filtering theory [12], we construct a recursive
estimator employing the Lagrange equations of motion as
a system model. We interpret the continuous Kalman filter
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Fig. 1. Balloon pendulum animation. Balloons are suspended by inextensible
strings: (a) Initial state: (b) balloons swing and collide against cach other until
kinetic energy is dissipated.

(@

(b)

Fig. 2. Dynamic snowman: (a) Body parts are connected with point-to-point
constraints; (b) snowman locomotes through controlled bouncing on floor.

() (b)

Fig. 3. Ball-and-springboard circus stunt. Two balls interact with apivoting
springboard mounted on immobile planes: Initial state: (b) strobed motion
tracks.

physically: The system model continually synthesizes nonrigid
motion in response to generalized forces that arise from
inconsistencies between the state variables and the incoming
observations. The observation forces account formally for
instantaneous uncertainties in the data. A Riccati procedure
updates an error covariance matrix that transforms the forces
in accordance with the system dynamics and the prior ob-
servation history. The transformed forces induce changes in
the translational, rotational, and deformational state variables
of the system model, thereby reducing the inconsistency
with the observations. Thus, the system model synthesizes
nonstationary shape and motion estimates in response to the
visual data.

Kalman filtering techniques have been applied in the vision
literature to the estimation of surface depth |18}, [14], dynamic
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features [8]. and rigid motion parameters [10], [5], [6] of
objects trom image sequences. To date, these Kalman filters
have been discrete filters with the simplest possible system
models, which are usually constant velocity models. Addi-
tional restrictions such as constant error covariance matrices
may also be found in the literature [22]). These sorts of
simplifications can severely limit the ability of an estimator to
recover shape and motion parameters accurately and robustly
from realistic data, especially when confronted with articulated
or fully nonrigid motion.

By contrast, the continuous Kalman filters that we develop
in this paper incorporate sophisticated Lagrange equations
of 3-D nonrigid motion as system models (simpler dynamic
models for the estimation of rigid body motion parameters
[9]. [10] or 2-D nonrigid motion parameters [25] are also
available). To gain efficiency with minimal loss of accuracy,
we design an efficient large-scale Kalman estimator through
state decoupling. Our work establishes a direct connection
with existing dynamic vision models derived from physical
principles. We show, for example, that the dynamic tracking
scheme proposed in [17] and [26] that is applied to deformable
superquadrics in [27] amounts to a degenerate ‘‘Kalman filter”’
with a constant unit error covariance matrix.

In earlier work we explored efficient, first-order dynamic
models [27], [19]. First-order dynamics suffices in recon-
struction applications where static shape representation is
paramount. The model formulations presented in Section II
and constraint formulations presented in Section III emphasize
general, second-order dynamics. The inertial properties of
second-order models can be exploited to track moving objects
more robustly. Section 1V formulates the dynamic nonrigid
motion Kalman estimator. Section V discusses implementa-
tion issues. Section VI presents selected experimental results
demonstrating our algorithms. The experiments involve model
fitting and tracking of articulated and flexible objects from
noise-corrupted 3-D data. Section VII draws conclusions from
our work.

[1. DYNAMIC MODELS WITH GLOBAL

AND LOCAL DEFORMATIONS

This section reviews and extends the systematic technique
that we developed in [27] for transforming geometric primi-
tives and deformations into dynamic models. We extend the
formulation to solid models that include parameterized global
deformations such as tapers and bends. We again exemplify
the approach with deformable superquadric models (see also
[19]). We also review the concept of dynamic shape fitting and
motion tracking, which is a precursor to the more powerful
Kalman estimator developed in Section IV.

A. Geometry

In general, our models are 3-D solids whose intrinsic
(material) coordinates u = (u.¢.w) are defined in a domain
(2. The positions of points on the model relative to an inertial
frame of reference ® in space arc given by a vector-valued,
time-varying function z(u. ) = (1 (u.1). zo(u.t). z3(u. )7,
where T denotes transposition. Referring to Fig. 4, we set up
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Fig. 4. Geometry of deformable model.

a noninertial, model-centered reference frame ¢ and express
the position function as

z=c+Rp @

where ¢(t) is the origin of ¢ at the center of the model, and
the rotation matrix R(t) gives the orientation of ¢ relative to
®. Thus, p(u,t) gives the positions of points on the model
relative to the model frame.

We further express

p=s+d @

as the sum of a reference shape s(u,t) and a displacement
d(u,t). We define the reference shape as

8 = T(e(u; ag,a1,...); bo, b1,...). 3)

Here, a geometric primitive e, which is defined parametrically
in u and parameterized by the variables a;, is subjected to
the global deformation T, which depends on the parameters
b;. Although generally nonlinear, e and T are assumed to be
differentiable (so that we may compute the Jacobian of s),
and T may be a composite sequence of primitive deformation
functions T'(e) = T1(Ta(...Tn(e))). We concatenate the
global deformation parameters into the vector

ybo, b1, .. )T @)

Next, we express the displacement as a linear combination of
basis functions. The basis functions can be local or global;
however, finite element shape functions [16] are the natural
choice for representing local deformations

d=Sq, ®)

q, = (aﬂvalv"

where S is a shape matrix whose entries are the shape
functions and

g =(..,d, . )T (6)

is the vector of local deformation parameters. See [27] for
details.

B. Kinematics and Dynamics

Differentiating (1), the velocity of points on the model is
given by

t=¢é+ Rp+ Rp
=é+ B + Rs + RSq, @)

where @ = (...,4;,...)T is the vector of rotational parameters
of the model and B = [...3(Rp)/d6; .. .] [27). Furthermore,
3 = [0s/0q,)q, = Jg,, where J is the Jacobian of the refer-
ence shape with respect to the global deformation parameter
vector. We can therefore write the model kinematics compactly
as

z=c+ R(s+d) = £(q), ()

= = [IBRJRS]q = Lq. &)
Here

9=(q’.45.4%.a3)T (10)
with ¢, = ¢ and gy = 0 serves as the vector of generalized
coordinates of the model.

To make the kinematic model dynamic, we assume that it is
made of a simulated material that has a mass distribution p(u)
and is subject to frictional damping. We also assume that the
material may deform elastically (or, more generally, viscoelas-
tically). From Lagrangian mechanics, we obtain second-order
equations of motion that take the form

Mg+ Dg+Kgq=g,+f, (11)
(see [27] and the Appendix for derivations). The mass ma-
rix M = [ pLTLdu. The stiffness matrix K may be
obtained from a deformation strain energy (a quadratic form
(¢"Kq)/2). The Raleigh damping matrix D = oM + BK.
The generalized inertial forces g, = ~ J pLT L du include
generalized centrifugal, Coriolis, and transverse forces due
to the dynamic coupling between g4, g,, and g;. Finally,
f,= J LT f du are generalized external forces associated with
the components of ¢, where f(u,t) is the force distribution
applied to the model.

For convenience, we rewrite the second-order equations (11)
in standard dynamical system form, as the coupled set of
first-order equations

u=Fu+g 12)
with state vector u, system matrix F, and driving function g
as follows:

(4 _[-M'D -M'K
e[l =[5 4

_ [M‘l(yq +fq)].

. (13)

@
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C. Dynamic Estimation

We take a physics-based approach to visual estimation. The
visual data are converted into traction forces that act on the
dynamic model [26], [27]. We fit the model by integrating the
differential equations of motion (12) driven by these forces.

More specifically, let the observation vector z(t) denote
time-varying input data. We can relate z(t) to the model’s
state vector u(t) through the nonlinear observation equation

z=h(u)+v (14)

where v(t) represents uncorrelated measurement errors as a
zero mean white noise process with known covariance V(¢),
ie., v(t) ~ N(0.V(¢).! In dynamic estimation, the rate of
change of the estimated model state vector @ is given from
(12) by

w=Fi+g. (15)
Furthermore, according to (9), (8), and (14), the driving
function g in (13) includes the term

f,=H"V (2 - h(a)) (16)
where
g = 2w (17)
du )
u=u

Matrix H maps the three-space observation forces (z — k(1))
scaled by V™! 1o g-space generalized forces fq.2 If the data are
very noisy, the entries of V' have large values, yielding small
generalized forces, hence, nominal changes in q. If the data
are accurate, V' will have small entries, and the generalized
forces will have a significant effect on the model.

When tracking moving objects, the tracked object may
become temporarily occluded in whole or in part. The second-
order model (11) (i.e., (12) and (13)) is appropriate for dealing
with occlusion since its mass provides inertia; the generalized
coordinates continue to evolve even when the data forces
f, vanish. Since the model extrapolates in time, it stands a
better chance of regaining lock on the object when it becomes
disoccluded.

For static shape reconstruction problems (i.e., z(t) = 2), it
makes sense to simplify the motion equations by setting the
mass density to zero. Lacking inertia, the model will come to
rest as soon as all the internal and applied forces equilibrate.
Since M and g, are zero when p(u) = 0, (11) reduces to the
first-order system

Di+Kq=f (18)

q
and in (12) and (15)

u=q F=-D'K. g=D7'f, (19)

YFor example, if z consists of observations of time-varying positions
of model points at material coordinates w; on the model’s surface, the
components of h are computed using (8) evaluated at ug. If z includes velocity
estimates, then we also use (9).

2In particular, for the function k, which is associated with observations of
model positions at material coordinates 1y, then H is a matrix whose entrics
are computed using L|,_q, evaluated at n ..
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D. Example: Deformable Superquadrics

For concreteness, we consider the case of superquadric
ellipsoids with tapering and bending deformations [3], [24].
The parametric equation of a superquadric ellipsoid solid
e = (61.62.63)T is
a1C, ' C L7
aC,"! 5.°
35, !

e = agw

(20)

where —7/2 <u <7/2, —x <v<mand 0 < w < 1, and
where Sy = sgn(sin §)|sin 6|, and Cp* = sgn(cos §)| cos ¢,
respectively. Here, a > 0 is a scale parameter, 0 < a1, as,a3
< 1 are aspect ratio parameters, and €;.€2 > 0 are ‘‘square-
ness’’ parameters.

We combine linear tapering along the z axis and bending
along the x axis of the superquadric e into a single parame-
terized deformation and express the reference shape s = T'(e)
as

(£ + 1)ey + by cos( 2t 7hy)

(L2 4 1)ey

apas

8§ =

21

€3

where —1 < #;.t < 1 are the tapering parameters in the
x and y axes, respectively, b; defines the magnitude of the
bending and can be positive or negative, —1 < by < 1 defines
the location on the z axis where bending is applied, and 0 <
by < 1 defines the region of influence of bending. This method
of incorporating global deformations is not restricted to only
tapering and bending deformations. Any other deformation
that can be expressed as a differentiable function can be
incorporated into the global deformations in a similar way.
We collect the global deformation parameters in 8 into vector
4, = (ap.a1.a2.a3,€1.€2.t1.t2.b1.b2.b3)T. The Appendix
gives the expression of the Jacobian J needed to compute the
velocity (9).

We have implemented efficient deformable superquadric
shells where the material domain is restricted to a membrane
surface u = (u.v.1) and the interior mass density p(u) = 0
for 0 < w < 1. We triangulate the surface of the model
into linear elastic elements. The elements have nodes at their
vertices, and each generalized coordinate ¢; in (6) denotes a
displacement vector associated with node 7 of the model. We
derive the stiffness matrix K in (11) from a loaded membrane
deformation energy whose two parameters wo > 0 and wy > 0
control the local magnitude and variation of the deformation,
respectively. See [27] for details.

[II. CONSTRAINED NONRIGID MOTION

We now extend (11) to account for the motions of com-
posite models with interconnected deformable parts that are
constrained not to separate. Shabana [23] describes the well-
known Lagrange multiplier method for multibody systems
[29]. We form a composite generalized coordinate vector g and
force vectors g, and f, for an n-part model by concatenating
the ¢q;, 94 and fq'. associated with each part + = 1,...,n.
Similarly, the composite matrices M, D, and K for the n-part
model are block diagonal matrices with submatrices M;, D;,
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and K, respectively, for each part 5. Given a set of constraint
equations

Clg.t)=0 (22)

where C = [CT,CT, ... ,CT]T expresses k holonomic con-
straints among the 7 parts of the model, the Lagrange multi-
plier method prescribes the composite equations of motion

Mi+Dq+Kq=g,+f, - CgA (23)
where f, = —CZA are generalized constraint forces acting
among the parts. The term C; is the transpose of the constraint
Jacobian matrix, and A = (A],...,AT)T is a vector of
Lagrange multipliers that must be determined.

Equation (23) comprises fewer equations than unknowns.
To obtain the additional equations, we differentiate (22) twice
with respect to time

Clg.t)=0 24)

yielding Cqg + C1: + (Cqq)qq + 2Cq,q = 0. Rearranging
terms, we get

7=Cqq=—-Cu—(Cqd)gq — 2Cq,q. (25

Appending this equation to (23) and rearranging terms, we
arrive at the augmented equations of motion

& B[ 5y

Cq 0] 7 (26)

In principle, these equations may be integrated from initial
conditions g(0) and g(0) satisfying C(g(0),0) = 0 and
C(q(0),0) = 0.

There are two practical problems in applying (26) to model-
based visual estimation. First, the constraints must be satisfied
initially. Unfortunately, partial information and errors in the
data make it unlikely that the parameter values of the various
parts can be initialized such that the parts satisfy the constraints
(i.e., C(g,0) # 0). Second, even if the constraints may be
satisfied at a given time step of the dynamic estimation process
(ie., C(q,t) = 0), they may not be satisfied at the next time
step (i.e., C(q,t + At) # 0) because of numerical integration
errors, noise, etc. In fact, C(q,t) may grow without bounds.

To remedy these two problems, we apply a method proposed
by Baumgarte that stabilizes the constrained equations through
linear feedback control [1], {29]. The method replaces the
differential equation (24) with equations that have similar so-
lutions but are asymptotically stable in the sense of Ljapunov,
such as the damped second-order differential equations

C+2aC+p%C=0 @27

with stabilization factors o and 3. This replaces the lower
entry of the vector on the RHS of (26) with 4 — 2aC — 32C.
We choose 3 = a to obtain the critically damped solution
C(q,0)e™>* that, for a given value «, has the quickest
asymptotic decay towards constraint satisfaction C = 0. A
caveat in applying the constraint stabilization method is that
it introduces additional eigenfrequencies into the dynamical
system. Increasing « in an attempt to increase the rate of

Fig. 5.

Point-to-point constraint.

constraint satisfaction will eventually lead to numerically stiff
constrained motion equations dominated by the stabilizing
terms.

A. Fast Point-to-Point Constraint Force Computation

The Lagrange multiplier method is general but potentially
expensive for our models since the matrix in (26) can be large,
according to the number of finite elements in the discrete
model. We have devised a specialized solver for the unknown
constraint forces f, in the case of point-to-point constraints.
The specialized method requires the solution of linear systems
of size proportional to the number of constraints, which is
usually small. In this sense, it is similar to the dynamic
constraint technique of [4], but it is suitable for nonrigid parts.
We derived the method for first-order dynamic systems in [19],
and we extend it to second-order systems below.

1) Single Constraint: Fig. 5 illustrates two parts: 1 and 2.
We constrain points A and B to remain in contact and must
compute the necessary constraint forces f,(t) at point A and
—f.(t) at point B. From (11), the motion equations of the
parts are

0= M9y, + [, + fg, ~Kigy —Didy)
= M3'(9,,+ [y + I, — K2gr — Do)

(28)
(29

where the generalized constraint forces at points A and B are,
respectively

.fgCA = Lﬁfm fch = _Lgfc

and L4, Lp are computed using (9).
From (9) and (8), the constraint equation and its time
derivatives are

(30)

C=z4—zp=(c1+Rip,y) — (c2 + Ropp)
C = Laq, - Lpg,

C = Lag, + Lag, — Lpi, — Lpgs. (31)
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Replacing these expressions into the Baumgarte equation (27)
(with & = ), we obtain the linear equations

Nf.+r=0 (32)

where the 3 x 3 matrix N is

N = (L.M{'L + LgM;'LY) (33)

and the vector r is

r= LAql - LBQQ +2aC + a’C+
LM (g, +f, — Kiq, - Digq))-

LpM3'(g,, + f oy — Kogs — Dagy). (34)

2) Multiple Constraints: For multiple point-to-point con-
straints, the constraint force computation must take into ac-
count all of the constraint forces acting on the various parts of
the model. This requires the solution of a system of equations
whose size is on the order of the total number of constraints.

Suppose we specify k constraints among model parts.
Let f. be the constraint force for constraint i. We
assemble the multipart model’s constraint force vector f, =
( ch~fZ;a e ,fCTA )T and express the equation for constraint
forces f. asin (32): N, f. +r =0, where r = (+rT .1 ... ..
r{)T, and N; is a 3k x 3k matrix. The pattern of nonzero
entries in N; depends on the connectivity of the parts.
Assembling the k systems, we arrive at a composite system in

the form of (32), where N = Zle N,.

[V. KALMAN FILTER FORMULATION

In dynamic estimation, the data forces (16) take into ac-
count the current observations only. This section proposes
a more sophisticated, recursive estimator that transforms the
generalized forces through an error covariance matrix before
applying them to the model. The covariance matrix takes into
account the modeling uncertainty, along with the history of
prior observations and their uncertainties.

Our estimator is a continuous extended Kalman filter. The
basic idea behind Kalman filtering is to perform optimal least
squares estimation recursively as new measurements arrive,
making use of nonstationary models known as system models
[12]. We can exploit our dynamic nonrigid object models
within the Kalman framework by treating their differential
equations of motion as system models.

To do this, we assume that vectors w(t) and v(t) represent
uncorrelated modeling and measurement errors, respectively,
as zero mean white noise processes with known covariances,
ie., w(t) ~ N(0.Q(t)) and v(t) ~ N(0.V(t)).? In view of
(12) and (14), the nonlinear Kalman filter equations for our
dynamic model take the form

u=Fu+g +w

z=h(u)+v (35)

3Kalman filtering is optimal for lincar system and measurement models,
assuming the associated noise processes are Gaussian [12]. The Gaussian noise
assumption is unrealistic in many applications. In practicc, however, all we
can often economically measure about the characteristics of a noise process is
its autocorrelation function; hence, a Gaussian model is a convenient choice.
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where

g = { (36)
(9, = Dilfg' for the first-order model (18)). The vector g,
which generally includes generalized inertial and constraint
forces, plays the role of deterministic disturbances in the
system model. The state estimation equation for uncorrelated
system and measurement noises (i.e., E[w(t)v? (7)] = 0) is

M”(gq+fg,)}
0

#=Fi+g, + PH'V™ (z - h(a)) @GN

where H is computed using (17). The expression G(t)
PH™V ™" is known as the Kalman gain matrix. The symmetric
error covariance matrix P(t) is the solution of the matrix
Riccati equation

P=FP+PFT +Q-PH'V 'HP. (38)

Note that the term PHTV ™' (z — h(4)) in (37) may
be interpreted as a generalized force. It results from the
instantaneous disparity between the measurements z and the
estimated state of the model @. For unit covariance matrix
P(t) = I, this term reduces to the generalized data forces
(16), which play a role in dynamic estimation [27], [26].

The improvement offered by the Kalman filter dynamic
estimator can be explained intuitively. The covariance matrix
P(t) comprises a time-varying measure of the uncertainty in
the estimate @ [12]. The measure depends on current and
prior observations, system dynamics, and modeling errors.
Consequently, the Kalman gain matrix G is ‘proportional”” to
the uncertainty in the estimate and *‘inversely proportional”” to
the measurement noise. If, on the one hand, there is significant
measurement noise, and the state estimate errors are small, the
term in parentheses in (37) is due mainly to noise, and only
modest changes in the state estimates should be made. On the
other hand, small measurement noise and large uncertainty
in the state estimates suggest that the same term contains
significant new information. Therefore, the difference between
the actual and the predicted measurement will be used as a
basis for making strong corrections to the estimates.

V. IMPLEMENTATION

A. Integrating the Unconstrained Motion Equations

The equations of motion of the model are numerically well
conditioned. Our approach partitions complicated nonrigid
motions into rigid-body motions, global deformations, and
local deformations.* This partitioning improves the speed and
stability of numerical simulation algorithms. We achieve in-
teractive response by employing explicit methods to integrate
(12). The simplest method is the first-order Euler procedure
that updates the state vector over a time step from time ¢ to
t + At according to the formula

w30 = () 4 APyt +g(t)). (39)

*A represented shape is partitioned into posc, abstract form, and shape
details.
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The following details about our numerical solution are
noteworthy. First, we represent the rotation component of the
models using quaternions (see the Appendix). This simplifies
the updating of g, and §,. Second, the explicit Euler method
does not require the assembly and factorization of a finite
element stiffness matrix, as is common practice when applying
the finite element method [16]. Rather, we compute the product
Kgq very efficiently in an element-by-element fashion for
the local deformation coordinates g, [27]. Third, for added
efficiency, we may lump masses to obtain a diagonal M, and
we may assume mass-proportional damping, i.e., D = oM,
where « is the damping coefficient [16].

B. Integrating the Constrained Motion Equations

In integrating the constrained motion equations, at each time
step, we may solve (26) for ¢*) and A*) with known ¢(*) and
4", and then, we integrate § and ¢ from ¢ to ¢ + At to obtain
¢4 and ¢(*+29) respectively, using the Euler method (39).

In applying the fast point-to-point constraint algorithm, at
each time step, we assemble N and r, as was explained in
Section IlI-A, and compute the constraint forces f, by solving
(32) using LU factorization. We then augment the equations
of motion of each part with the applicable constraint forces,
and we integrate using the Euler method as before.

C. Kalman Filter Implementation

The continuous Kalman estimation equations (37) and (38)
can be integrated using standard numerical techniques, where
the simplest is Euler’s method.

The cost of computing (38) can be large because the size
of the error covariance matrix is proportional to the size of
g4, which depends on the number of finite elements used
to discretize the model. We take a common approach to
implementing practical large-scale Kalman filters: suboptimal
filter design [12]. There are several ways to simplify the
Kalman filter equations, such as decoupling state variables,
deleting state variables, simplifying filter gains, etc. Suitable
simplifications are often based on knowledge about the partic-
ular system model used in the Kalman filter equations. They
can lead to a significantly reduced computational burden with
little reduction in estimation accuracy.

We simplify the Kalman filter equations by decoupling state
variables. A natural decoupling is suggested by the structure
of the state vector w in (12), which is comprised of the
translation (g, ¢.), rotation (gy, ,), global deformation (gq,,
q.), and local deformation (g,, ¢,) state variables for the
various part models. To decouple (38), we ignore the off-
diagonal block submatrices of P that specify covariances
among these different sets of state variables. Each set can
then be updated independently. Note that the submatrix of
P associated with the local deformations is structured like
the stiffness matrix K [27], i.e., it is a sparse matrix that
may be updated on a per-element basis. Note that the error
covariance submatrices associated with the elements are full
symmetric matrices since the elemental stiffness submatrices
have the same structure, i.e., the nodal displacements within
each element are interdependent.

For additional savings, we may assume independent
modeling and measurement errors. This assumption leads to
covariance matrices @ and V, which are scalar multiples
of the identity matrix. Note that although the entries of
the measurement covariance matrix V are often known,
it is not easy to determine substantive values for the
system covariance matrix @ [12]. The latter are therefore
treated as filter tuning parameters. If the entries of @ are
inappropriate for the particular application, the filter may
diverge or converge to the wrong value [6]. This is due
to the nonlinear measurement equations (35). The entries
of @ must therefore be tuned such that the filter exhibits
the desired operating characteristics and converges to correct
estimates.

VI. EXPERIMENTS

We have carried out various shape and nonrigid motion
estimation experiments utilizing 3-D human motion and syn-
thetic data. The synthetic data sets consist of time-varying
3-D positions of points sampled from the surfaces of synthe-
sized deformable superquadrics undergoing nonrigid motion
in response to externally applied forces. The human motion
data were collected using WATSMART, which is a commercial
noncontact, 3-D motion digitizing and analysis system. Using
multiple optoelectric measurement cameras, WATSMART can
track as many as 64 infrared light-emitting diode markers at-
tached to various body parts of a moving subject. WATSMART
produces 3-D coordinates of the markers at sampling rates
of 19 to 400 Hz. At least two cameras must see a marker
before its 3-D coordinates can be calculated using a direct
linear transformation technique. Our data were collected using
four cameras and 32 markers at a 50-Hz sampling rate.

In the experiments, we couple the models to the data
points, which are indicated by dark dots in the forthcoming
figures, by searching for the node on the model that is
nearest to each datapoint’ This is a simple and robust,
albeit brute-force, method for assigning data points to
model points. Despite the method’s inefficiency compared
wiht the other methods proposed in [27] and [21], in the
following experiments, our algorithms execute at rates of
2-3 s/frame of input data on a single processor of a
Silicon Graphics 4D-340VGX workstation, including real-
time 3-D graphics. The estimator advances to the next
frame of data when the change in each of the estimated
parameters falls below 10~4. The Euler method time step
was 4.0 x 107%s, and we used a unit damping matrix
D.

We first present several quantitative experiments involving
synthetic data. We applied our Kalman estimation algorithm
to 3-D data sampled over time from free-form deforming
objects. In Fig. 6, we fit a deformable superquadric model with

SNote that the force assignment algorithm need not be executed at every
time step of the fitting process. It can be executed every [ iterations, where
1 is directly dependent on some measure of model deformation. Furthermore,
note that if the assignment of datapoints to model points varies over time,
only the normal component of surface motion may be estimated accurately,
in principle. Hence, in applications where the tangential component of surface
motion is significant (e.g., twisting deformations), the datapoint to model point
attachment should remain invariant in time.
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Fig. 6. Tracking of fully deformable object.
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123 nodes to 123 3-D datapoints. The datapoints are sampled
over 20 frames from the surface of a deformable superquadric
object that undergoes both global and local deformations in
response to a time-varying applied force. Fig. 6(a) and (b)
shows two views of the data and the initial model. The local
deformation stiffness parameters of the model were wy = 0.1
and wy = 0.5 (see [27]). The initial model was an ellipsoid
(g,=(2.7,0.1,0.2,0.7,1.0,1.0,0.0,0.0,0.0,0.0,0.2)T ). The
diagonal entries of the initial covariance matrix P(0) were set
to 1.0, whereas the off-diagonal entries used in the estimation
of local deformations were set to 0.4. We also set Q = 0.11
and V 0.11. In order to demonstrate the performance
of the model-fitting algorithm, we did not initialize the part
models at the center of gravity of the data. Fig. 6(c) shows an
intermediate step of the fitting process driven by data forces
from the first frame of the motion sequence, whereas Fig. 6(d)
and (e) shows the model fitted to the initial data with visible
tapering and bending global deformations. Fig. 6(f) shows an
intermediate frame of the model tracking the nonrigid motion
of the object, whereas Fig. 6(g) shows the final position of the
model; the local deformations are readily apparent.

To assess the performance of our estimation algorithm
quantitatively, we conducted a series of error analyses with
data points from the above experiment at 100, 75, 50, and
25% data densitics. We corrupted the data with zero-mean
independent Gaussian noise of variance 0, 1, 5, and 10. We
initialized the estimator as in the above experiment. In each
run, we compute the average error per frame in the estimated
translation, rotation, global, and local deformation, as well as
the error in the estimated nodal positions of the model using
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TABLE 1
ERROR ANALYSIS. DATA DENSITY 100%
Variance | Translation error | Rotation error | Global error | Local error | Position error
10 0.06 0.02 0.19 0.65 0.71
5 0.04 0.005 0.18 0.43 0.44
1 0.039 0.003 0.117 0.1 0.09
0 0.025 0.002 0.011 0.03 0.014
TABLE I
ERROR ANALYSIS. DATA DENSITY 75%
Variance | Translation error | Rotation error | Global error | Local error | Position error
10 0.062 0.027 0.22 0.67 0.86
5 0.05 0.007 0.19 0.48 0.49
1 0.04 0.004 0.17 0.37 0.29
{0 0.039 0.0034 0.15 0.27 0.24
TABLE 111
ERROR ANALYSIS. DATA DENSITY 50%
Variance | Translation error | Rotation error | Global error | Local error | Position error
10 0.07 0.03 0.25 0.99 1.07
5 0.06 0.015 0.19 0.66 0.62
1 0.05 0.005 0.18 0.48 0.39
0 0.045 0.0036 0.19 0.43 0.32
TABLE IV
ERROR ANALYSIS. DATA DENSITY 25%
Variance | Tr. error | Rotation error | Global error | Local error | Position error
10 0.092 0.036 0.29 1.03 1.24
5 0.09 0.023 0.25 0.7 0.95
1 0.089 0.016 0.2 0.6 0.64
0 0.068 0.013 0.17 0.57 0.53
the formula
1 n
eta= =3 \/(@. —ar)(@. —az)  (40)
i=1

where a stands for q,, g4, q,, g4, or z, the subscripts e and
T denote estimated and true values, respectively, and n is the
number of frames used in the experiment—20 in this case.

Tables I-IV show the error analysis results for the various
data percentages and noise variances.

Fig. 7 plots, over the 20 frames, the error in the estimated
nodal positions from the 75% data density, noise variance 1
experiment. Given an inaccurate initial model, the error drops
sharply as the algorithm rapidly estimates the correct nodal
positions. The modest increase in error up to frame 8 and
its subsequent decrease is due to the increasing size of the
local deformation implied by the data. The filter tunes after
eight frames (local deformations are now significant), and we
observe a subsequent decrease in the frame error.

The error analysis experiments demonstrate that the recov-
ery of translation, rotation, and global deformations is more
robust than the recovery of local deformations in the presence
of noise. The Kalman filter is insensitive to some of the noise
because it does not force the local deformations to interpolate
the datapoints. It produces reasonably accurate shape estimates
with small overall position estimation error. We observed that
the reliability of the estimated motion parameters began to fail
at data densities of around 25% and noise variances around 10.

The following experiment indicates the performance of
the method for nonGaussian noise® without one-to-one cor-
respondence between model nodes and data points. In Fig.

The estimation of accurate noise models from input data is beyond the
scope of this paper.
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Fig. 7. Position error per frame with 75% data density and noise variance
1.0.

8, we add uniform +5% perturbations, with randomly cho-
sen sign, to the positions of the 123 data points. We fit
a deformable superquadric with 81 nodes whose parameters
and initial position are the same as in the first experiment,
except for the initial ellipsoid parameters that were ¢, =
(2.8,0.1,0.2,0.8,1.0,1.0,0.0,0.0,0.0,0.0,0.2 )7, and we set
V = 6.01 to account for noise.

Fig. 8 is similar to Fig. 6. Fig. 8(a) and (b) shows two
views of the data and the initial model. Fig. 8(c) shows an
intermediate step of the fitting process driven by data forces
from the first frame of the motion sequence. Fig. 8(d) and
(e) shows the model fitted to the initial data with visible
tapering and bending global deformations. Fig. 8(f) shows an
intermediate frame of the model tracking the nonrigid motion
of the object, whereas Fig. 8(g) and (h) shows the final position
of the model.

We used our dynamic tracking algorithm in the following
two experiments involving constrained multipart models. Fig.
9 illustrates the tracking of an articulated ‘‘insect’’ consisting
of five deformable superquadric parts, each having 27 nodes
and four point-to-point constraints. We again synthesized dat-
apoints by simulating the motions of constrained deformable
superquadrics undergoing global and local deformations. We
sampled 27 datapoints from each superquadric through time
(36 frames). The nonrigid motions were imparted by three
forces: a force applied to each wing tip to make the wings flap
and a force applied to the nose to pull the “‘insect” forward
through space. The local deformation stiffness parameters
were set to wyp = 0.1 and w; = 0.5. To demonstrate the
performance of our constrained motion algorithm, we initialize
the deformable superquadrics models to ellipsoidal shapes
(¢, =(2.0,0.8,0.07,0.07,1.0,1.0,0.0,0.0,0.0,0.0,0.5)T ) as
shown in Fig. 9(a). Fig. 9(b) shows an intermediate step in
fitting the models to the datapoints associated with the first

7.
ﬁ}[

i
!

ey

©

® )
Fig. 8. Tracking of fully deformable object with noise.

Fig. 9. Tracking of an ‘“‘insect’s”’ parts.

time frame, whereas Fig. 9(c) shows the final fit to these
initial datapoints. The constraint forces help configure the five
parts correctly, as is evident from the final deformations of
the wings. Fig. 9(d) shows three time frames of the fitted
““insect’” model tracking the time-varying datapoints with the
wings open upwards, whereas Fig. 9(e) shows a frame of the
motion with the wings dipping downward.
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Fig. 11.

Tracking of raising and flexing human arm motion.

Fig. 10 illustrates a sparse datapoint version of the previous
experiment. We use the same parameter settings, but now,
there are only seven datapoints per superquadric. Again, the
constraint forces help link the five superquadrics into the
correct configuration. The shapes of the wings in Fig. 10(d)
differ from the shapes in the previous *‘insect’” experiment.
The sparse data do not provide enough constraints for the local
deformations to recover the exact shapes.

We conducted an experiment involving real 3-D data ac-
quired using the WATSMART system from arm and torso
motions of a human subject. Fig. 11 shows shape and motion
estimation results involving an articulated multipart model
composed of five deformable superquadrics connected by
four point-to-point constraints. We used 49-node deformable
superquadric models for the arms and a 36-node model for the
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torso. The input data for the estimation were collected from
the raising and flexing motion of the two arms of a human
subject. Approximately 120 data frames were used in this
experiment. The incoming data are ‘‘segmented,”’ inasmuch
as individual datapoints are associated with the correct body
parts. Fig. 11(a) shows a frontal view of the data and the initial
models. The models were automatically initialized to the center
of mass of their associated data, and their initial orientations
were computed using the matrix of central moments of the
data. The initial size along the longest axis was set by simply
calculating the distance between the furthermost data points
along the initial model-centered coordinate system [24] (we
initialized the model along the other two axes arbitrarily).
The initial Kalman filter covariance matrix was P(0) = I,
and we used Q = 0.1] and V = 4.0I. Fig. 11(b) shows an
intermediate step of the fitting process driven by stabilized
constraint forces (with ¢ = b = 6) and data forces from the
first frame of the motion sequence. Fig. 11(c) and (d) shows
frontal and top views of the models fitted to the initial data.
Fig. 11(e) and (f) shows intermediate frames of the models
tracking the nonrigid motion of the arms, whereas Fig. 11(g)
and (h) shows frontal and top views of the final position of
the models.

The WATSMART experiment demonstrates that incorporat-
ing our constraint algorithm into the Kalman filter produces
satisfactory fits to the sparse and noise corrupted data. Local
deformations were not permitted in the experiment since the
available data were very sparse, i.e., about 6 to 13 points per
deformable superquadric part.

The above experiments indicate the tradeoffs between local
and global deformations when our models must deal with
sparse data. Global deformations require relatively few dat-
apoints to abstract the rough shapes of objects. By contrast,
local deformations can provide a more accurate approximation
to the exact shape of a complex object, but their recovery
generally requires more data. The symbiosis of local and global
deformations within our dynamic models appears to offer the
best of both worlds.

VIL

This paper presented a physics-based framework for 3-D
shape modeling and nonrigid motion estimation from in-
complete, noise-corrupted, time-varying observations. Our ap-
proach applies Lagrangian mechanics to systematically convert
parameterized geometric parts, deformations, and constraints
into dynamic models. Assimilating these dynamic models
within continuous nonlinear Kalman filtering theory, we de-
rived recursive algorithms to estimate translation, rotation, and
deformation parameters of nonrigid objects. Our estimators are
much more sophisticated and powerful than previous Kalman
filter-based estimators described in the vision literature (in-
cluding our earlier dynamic estimators that may be viewed
as degenerate ‘‘Kalman filters’ with unit error covariance
matrices). The formulations in this paper were purposefully
general since the general models show promise for present
off-line and future real-time analysis tasks. Nonetheless, we
showed that it is also possible to significantly ease the com-

CONCLUSION
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putational burden of our recursive estimation algorithms with
minimal loss of accuracy through state decoupling. We are
confident that with this and other reasonable simplifications,
our framework can support fast, on-line estimation of nonrigid
motion parameters on currently available computers for real-
time vision applications.

APPENDIX
JACOBIAN MATRIX

Defining r = 3352 1p3. the Jacobian matrix J is a 3 x 11

agwas

matrix whose nonzero entries are

byb
Ji = (15,5 + Dwa G, C,® + ;—2”%
agwag

sin(r)
Jo1 = (tzsusl + 1)wa20uE’S,,‘2

J31 = ’UJCL:;SHE1

Ji2 = (815, + DaowC, C,*

J23 = (t25. + 1)agwCy 8,

b1b2bs
agwas?
J34 = angu“

J15s = t1In(|sinu|) S, apwa; C,,** C, % +
(t184°* + Dagwa; In (| cos u|)C,* C,**
— bibamIn (| sinu|)S,* sin(r)

Jas = toIn (| sin u|) S, apwas C,,%* S, +
(225" + 1)agwaz In (| cos u|)C,, ' S,

7 sin(r)

J35 = agwas In(|sin u|) S,
J16 = (8154t + 1)apwa; In(|cos v|)C,,** C,, 2
J26 = (t25," + 1)aowaz In (| sin v|)C, ' S, %2

J17 = Suel aowalCu” Cv€2
ng = Suel aowaQCu“ Svez

J19 = cos(r)
b
Jiwo=~- 163 wsin(r)
agwas
Jl 11 = —b17r sin(r)'r, (41)

where S5° = sgn(sin 6)|sin 8|¢ and Cp® = sgn(cos 0)]| cos §|¢.

CALCULATION OF ACCELERATION AND INERTIAL FORCES
The acceleration of a point z on the deformable model is
given by [23]
t=Lg+Lq (42)
where
L§=w x (w x Rp) + 2w x Rp. (43)

Here, w X (w X Rp) and 2w X Rp are the centrifugal and the

Coriolis accelerations, respectively. We obtain
p=3s+d=Jq, + Sq, (44)

and the angular velocity of the deformable model with respect
to the world coordinate system

w=Q0 (45)

where Q is a 3 x4 matrix whose definition is based on the value
of the quaternion @ = g, = [s, (v1, vo,v3)7] representing the
rotation at time ¢:

- K] —v3 v2
Q =2 —V2 v3 8 —U1 (46)
—v3 —V2 V1 8

The virtual work due to inertia on the deformable model is
computed as follows [23]:

W, = / 16zT % du = / 8¢" L™ (Lg + Lg) du

=6¢" (Mg - g,) 47
where the generalized mass matrix is
M= / uLT L du (48)
and the generalized inertial forces are
9,=— / uLT L du. (49)
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