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ORIGINAL ARTICLE

Fast GPU computation of the mass properties
of a general shape and its application to

buoyancy simulation

Abstract To simulate solid dynam-
ics, we must compute the mass, the
center of mass, and the products of
inertia about the axes of the body

of interest. These mass property
computations must be continuously
repeated for certain simulations with
rigid bodies or as the shape of the
body changes. We introduce a GPU-
friendly algorithm to approximate
the mass properties for an arbitrarily
shaped body. Our algorithm converts
the necessary volume integrals into
surface integrals on a projected
plane. It then maps the plane into

a framebuffer in order to perform the
surface integrals rapidly on the GPU.
To deal with non-convex shapes, we
use a depth-peeling algorithm. Our
approach is image-based; hence, it is
not restricted by the mathematical or

geometric representation of the body,
which means that it can efficiently
compute the mass properties of any
object that can be rendered on the
graphics hardware. We compare
the speed and accuracy of our al-
gorithm with an analytic algorithm,
and demonstrate it in a hydrostatic
buoyancy simulation for real-time
applications, such as interactive
games.

Keywords General-purpose com-
putation on GPUs - Mass property
computation - Physics-based an-
imation - Rigid-body dynamics -
Buoyancy simulation

1 Introduction

The fast calculation of mass properties, including the
mass, center of mass, and products of inertia, is neces-
sary for the dynamic simulation of solids. In rigid body
dynamics, the mass properties are usually assumed to be
constant during the simulation. Therefore, the computa-
tion can be performed in an initialization step and the
computed values are used in the subsequent simulation.
Hence, the computational cost to calculate mass properties
is often negligible. In certain important cases, however,
the mass properties can change during the simulation and
complex geometric shapes may require expensive mass
property computations.

Among these cases is the simulation of hydrostatic
buoyancy. Buoyancy is anatural phenomenon resulting
from the interplay between a fluid system and a floating
rigid body system. If we assume a hydrostatic pressure
condition for the fluid system, then we can simulate the
motion of the rigid body floating in the fluid by applying
a buoyant force to the center of mass of the instantaneous
submerged volume, which is known as the center of buoy-
ancy. The buoyant force itself is proportional to the instan-
taneous submerged volume. A problem here, of course, is
that the submerged volume changes continuously. Con-
sequently, the computation of its mass properties can be
a major bottleneck of the simulation.

Most of the research in computing the mass properties
of solid shapes can be applied only to specific solid rep-
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resentation schemes and, therefore, it may involve an ex-
pensive representation conversion process [11]. Gonzalez
et al. [6] combined a polynomial free-form surface repre-
sentation with the Gauss divergence theorem to efficiently
calculate the moments of the enclosed object. However,
their approach allows only piecewise polynomial surface
patches. Mirtich [13] proposed an efficient method to
compute the center of mass and higher-order moments for
polyhedral objects. The proposed algorithm is based upon
a three-step reduction of the volume integrals to succes-
sively simpler integrals. The final step of the algorithm
computes the required integrals over a face from the co-
ordinates of the projected vertices. This means that the
computation is done by algebraic operations with vertex
coordinate values. Even though this method is computa-
tionally efficient for fixed polyhedral objects, its efficiency
can suffer if the geometric structure changes frequently
as it may require an expensive reconstruction of a set of
vertices and faces. Unfortunately, the typical situation in
buoyancy simulations requires repeated updates of vertex
coordinates and even of the number of relevant vertices.
This is because the submerged volume is defined as the
intersection of a geometric object representing the fluid
system with a geometric object representing the floating
rigid body.

In this paper, we propose a GPU-friendly algorithm to
compute the mass properties determined by general ge-
ometries. Our approach is essentially image-based. Be-
cause of this, it is not restricted by the mathematical or
geometric representation of rigid bodies. Regardless of
the geometric representations employed, whether they be
polyhedral approximation, free-form surfaces, construc-
tive solid geometry, etc., if it is possible to render an object
of interest on the GPU, then our algorithm can approxi-
mate the object’s mass properties, exploiting the efficiency
of the GPU.

Recent advances in the programmability of graphics
hardware have enabled its use for general purpose compu-
tation, not restricted to rendering [16]. Various problems
in scientific computation, including fluid dynamic simula-
tion, the solution of linear systems of algebraic equations,
non-linear optimization, and volume rendering, have been
addressed by taking advantage of the parallelism and pro-
grammability of GPUs [1,7-9,14,17]. Moreover, pro-
grammable GPUs are getting faster and cheaper. Our al-
gorithm accrues these benefits by exploiting the GPU to
calculate mass properties. It first computes the mass, the
center of mass, and the products of inertia by reducing
volume integrals into surface integrals. It projects surfaces
of the rigid body onto a plane that corresponds to the
framebuffer of a rendering process. Next, it computes the
integrands on the GPU. Finally, it performs a summation
operation using a buffer reduction to obtain the desired re-
sult.

To perform the required integral operations over all the
surfaces representing the non-convex geometric object, we

use a depth-peeling algorithm to obtain each of the sur-
face patches regardless of convexity. The depth-peeling is
a fragment-level depth-sorting algorithm, which achieves
a correct rendering of transparent objects that are located
order independently [4, 12]. The objective of the method
is to find the fragments of geometry in a systematic man-
ner. We focus our attention on this method because it
can access all the fragments representing the geometry
regardless of its convexity. We modify the original depth-
peeling algorithm to obtain surface peels, which are sur-
face patches beneath the fluid in our buoyancy simulation,
as well as the intersection surface between the fluid and
the rigid body.

The remainder of the paper is organized as follows:
Sect. 2 reviews rigid body mass properties and derives
them in the form of surface integrals over the projected
plane. Section 3 introduces our GPU-friendly algorithm
for computing the mass properties determined by non-
convex geometry. Section 4 presents an error and per-
formance analysis of our approach compared to the an-
alytic method proposed by Mirtich [13]. Section 5 mod-
ifies an original depth-peeling algorithm to deal with
hydrostatic buoyancy simulation and shows an example
of interactive rigid body dynamics simulation under
buoyancy. Finally, Sect. 6 draws conclusions from our
work.

2 Rigid body mass properties
2.1 Computing mass properties with volume integrals
The mass of a rigid body is given by

m= / p(x, y,z)dV,

Vv

ey

where p(x, y, z) is the mass distribution function of the
body and V is its volume. If we assume p(x, y, z) to be
constant over the volume, the expression for the mass
simplifies to m = pV. In this paper, the mass distribution
function will be considered a constant value for simpli-
city.

The center of mass r and the inertia tensor I are given
by

; |:xi|
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2.2 Reduction to surface integrals on a projected plane

To calculate the mass properties of a rigid body efficiently,
we exploit the divergence theorem as suggested by Gon-
zalez et al. [6]. According to the divergence theorem, an
integral over the three-dimensional volume can be trans-
formed into an integral over its boundary surface as fol-
lows:

/V-de:/f-ndA,
v

1%

3)

where f is a continuously differentiable vector field de-
fined on aneighborhood of V, where n = [ny, ny, ngl
denotes the exterior normal vector of V along its bound-
ary 0V, and where dA is the infinitesimal surface area
of the boundary. When the volume is represented by
a bounding polyhedron, its boundary is the set of planar
polygons comprising its faces. If we set f = [0, 0, z],
then we obtain the volume as V = f gy 2Nz dA. Similarly,
setting f in turn to [0, 0, xz]’, [0, 0, yz]’, and [0, O, %zz]’
yields [y, x dV = [, xzn dA, [, ydV = [, yzn dA,
and [, z dV = [, $2%n dA, respectively.

Now, we slightly modify (Eq.3) by projecting the
boundary surface area element dA onto the xy plane. From
Fig. 1, we see that the relationship between the infinitesi-
mal surface area dA and the projected surface area dx dy
is dx dy = |n;| dA if the surface normal vector has unit
length.

Finally, we obtain the volume V and the center of mass
F=[ry, ry, r;]" as follows:

V:/sgn(nz)zdxdy,
)%

1
ry = v / sgn(n;)xzdxdy,
A%

1
V=Y / sgn(nz)yz dxdy,
v

4

1
r,= ﬁ/sgn(nz)zz dx dy,
v

Fig. 1. Projection of the infinites-
imal surface area element

where sgn(x) denotes the signum function which extracts
the sign of areal number x. Note that the integrals are
computed on the planar surface area, which is achieved
by projecting the surface boundary onto the xy plane.
When the surface area element dA is projected on the xy
plane, it will be singular if n, = 0. Hence, an improper
choice of f (e.g., f=1[x,0,0] to compute the volume)
can lead to a singularity at the boundary of a projected
surface, where it would require division by a very small
number. Our proposed f's, however, only require multipli-
cation by sgn(n,), thus avoiding the singularity problem at
the boundaries.
The inertia tensor I is

Ixx _Ixy _Ixz
I=p _Ixy Iyy _Iyz , (5)
=1, -1y I

where the moments and products of inertia are similarly
given as follows:

Ixx=/sgn(nz)x2zdxdy,
v
Ixy:/sgn(nz)xyzdxdy,
A%
Iyy=/sgn(nz)y2zdxdy,
v
1 2
I, = 3 sgn(n;)xz”~ dxdy,
v

1
Iy, = E/Sgn(nz)yzzdxdy,
Vv
(6)

3
av

1
I,=- / sgn(n;)z> dx dy.

3 Computing mass properties on the GPU
3.1 Shader implementation

The programmability of recent graphics hardware and the
various choices of precision and formats of framebuffers
enable us to implement mass property computations on
GPUs in an easy and flexible way. The integrands in Egs. 4
and 6 can be evaluated discretely at each pixel in a frame-
buffer by GPU programming. The process is straightfor-
ward:

1. Render the geometry with an orthographic projection
onto the xy plane.
2. Evaluate the integrands on a fragment shader.
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3. Encode the evaluated values at the output buffers.

The number of parameters that must be computed is
10 in total, including one for volume, three for the center
of mass, and six for the moments and products of inertia.
To store these parameters, we use three framebuffers, each
of which can contain four values in the red, green, blue
and alpha channel. This can be efficiently implemented
using the multiple render target capability of recent graph-
ics hardware, which enables the fragment shader to save
per-pixel data in multiple buffers.

Hence, we obtain color buffers containing the values of
integrands in Egs. 4 and 6. Furthermore, the integration of
the values over the projected plane area can be performed
by reading back fragment color values of the framebuffers
and summing them up, or by using a buffer reduction algo-
rithm as will be explained in the next section. A fragment
shader can be implemented in the OpenGL Shading Lan-
guage [15] very easily, as follows:

// homogeneous coordinate of a~point on the surface
varying vecd p;

// z component of the surface normal
varying float n_z;

void main(void)
{

float ¢ = sign(n_z) * p.z;

// (rx, ry, rz, V)
gl_FragData[0] =c * p;

// (Ixx, Ixy, Ixz, .)
gl_FragData[l] = p.x * gl_FragData[0];

// (Iyy, Iyz, Izz, .)
gl_FragData[2] =c * vecd (p.y *pP.V, P.Y *P.2Z, P.Z2 *p.2, 0);
}

Note that the fourth components of gl_Frag-
Datal[l] and gl_FragDatal[2] are not used.

A potential problem is how to generate color buffers
covering all the surface fragments of the geometric shape.
Consider the case of a sphere. The surface of a sphere can
be divided into two patches — the north and south hemi-
spheres — according to the direction of surface normals. If
we look at the sphere from the negative z viewing direc-
tion, the line of sight will intersect the sphere twice. That
is, the typical rendering pipelines will render two frag-
ments from those two surface patches on one pixel in the
framebuffer and, therefore, the resulting color buffer will
contain only one of the fragments from the two surface
patches regardless of the choice of the depth test function.
To resolve this problem, we use the depth-peeling algo-
rithm discussed in the next section.

3.2 Depth-peeling

Using the standard depth test function of the 3D graph-
ics API, we can obtain the nearest surface fragment from

the eye at each pixel. Although the second nearest or
other fragments may be required in some areas, there is
no straightforward way to obtain the nth nearest frag-
ment. One possible solution is to use a depth-peeling algo-
rithm, which is a fragment-level depth-sorting technique
[12]. Depth-peeling can be implemented as a multi-pass
algorithm. In the first rendering pass, the geometries are
rendered using a normal “less-than” depth function. This
will yield a depth buffer containing the depth values of
the nearest surface of the geometry. In the next rendering
pass, only the fragment for which depth is greater than
the depth values in the buffer from the previous pass are
rendered. Then the depth buffer will contain the depth
values of the next nearest surface of the geometry, and so
on. The process repeats until the depth values of all the
surface fragments are found. The depth-peeling technique
introduced by Everitt [4] requires a shadow buffer to peel
away the surfaces by comparing depth values. However,
since recent GPUs and APIs support “render-to-texture”
capabilities and the direct manipulation of pixel values
on fragment processors using shading languages, depth-
peeling can be implemented using programmable GPUs
and the modification of the algorithm is even easier.

For our objective of computing mass properties, we
can apply the standard depth-peeling algorithm with the
shader developed in the previous section. As a result, we
obtain n textures containing the enumerated integrands in
Egs. 4 and 6, where 7 is a total number of peels.

3.3 Two-dimensional integrals over the projected area
using buffer reduction

Using the textures obtained in the previous section, we
compute the two-dimensional integrals over the projected
surfaces in order to obtain mass properties. A straightfor-
ward way to perform the integration is to read all evaluated
integrands from framebuffers and sum them. Given cur-
rent graphic memory interfaces, however, reading back
a texture memory directly into system memory can yield
significant latency. To tackle this problem, we use buffer
reduction [2]. To summarize the buffer reduction tech-
nique, a fragment program reads two or more values from
the buffer and computes a new value using the reduc-
tion operator, which in our case is an addition operation.
These passes continue until the output is reduced to a sin-
gle value, the sum. In general, this process takes O(logn)

15] 6 [23[24]15

23 | 24 | 48 | 69

14 BB E

12

99 226
6 | 1413 ] 15|26 30 22 39 70 788
1|8 [16]18]21 - - -

38 | 59 [ 60|78
208 255

2|17

1

12[23] 16

65|18

60 | 51 | 61 | 56

19 1

17[24] 0

8X8 4X4 2X2 1X1

Fig. 2. Summation reduction procedure
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passes, where n is the number of elements to reduce. Fig-
ure 2 illustrates a reduction operation to calculate the sum.

4 Performance

In this section, we compare our algorithm in terms of ac-
curacy and speed with the analytic method developed by
Mirtich [13]. Since the analytic method used in this test
is restricted only to polyhedra, we use shapes approxi-
mated by polyhedra as test objects. Figure 3 illustrates
some of these objects. It is important to note, however,
that our algorithm can be applied to any model that can
be rendered on graphics hardware. All the tests were run
on a 2.53-GHz Pentium 4 CPU with an NVIDIA GeForce
7800 GTX GPU. Floating point textures of 32-bit were
used for framebuffers. Table 1 lists all the geometric test
objects and the number of peels for each test object.

4.1 Error analysis

We measured the relative error of the mass and the mo-
ments of inertia Iy, Iyy, and I ; at various framebuffer
resolutions. The other mass property values are very small
for our test objects, because the shapes are approximately
symmetric along the axes. Our approach computes inte-
grands for each fragment on the GPU, where we use tex-
ture memories as framebuffers. Hence, the resolutions of
the framebuffers are critical for accurate results. As shown
in Fig. 4, a resolution of 32x32 was sufficient to compute
the mass properties within a 5% error bound.

Table 1. Geometric information for the test objects

Object Vertices Faces Peels
Cube 8 12 2
Teapot 821 1628 6
Torus 1024 1922 4
Knot 1440 2880 8
Bunny 2557 5110 6
Pipe 4626 9252 6

knot

Fig. 3. Some polyhedral test objects

bunny
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resolution 128 & oype

E cube mass M cube Ixx Ccube lyy
Ccube |zz M sphere mass [ sphere Ixx
M sphere lyy O sphere |1z W teapot mass
M teapot Ixx [ teapot lyy O teapot 1zz
J— | ~_ Error(%)
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- |
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|
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Htorus mass Mtorus Ixx  torus lyy Otorus lzz
M knot mass @ knot box B knot lyy O knot lzz
W bunny mass Ebunny Ixx Clbunny lyy Ebunny lzz
M pipe mass M pipe Ixx M pipe lyy M pipe 1z

Fig. 4. Relative error comparisons

4.2 Performance analysis

We now compare the performance of our algorithm
and the analytic method. If we assume that the cost
of vertex processing on the GPU is negligible com-
pared to the cost of fragment processing, the complexity
of our algorithm is approximately O(kn?), where k is
the number of rendering passes for the depth-peeling
and n is the framebuffer resolution along its width or
height. On the other hand, the complexity of the ana-
lytic method is O(m), where m represents the number of
faces of the polyhedron. Figure 5 shows a comparison of
the computation times for the analytic method and our



Fast GPU computation of the mass properties of a general shape and its application to buoyancy simulation

861

cube g
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torus L O GPU based
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pipe E ]
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Fig.5. Computational time comparison of analytic method and
GPU-based method

GPU-based method at three different framebuffer reso-
lutions.

We observed that our GPU-based approach is compa-
rable to the analytic method in terms of computational
cost. At 64 x 64 resolution, our algorithm outperforms the
analytic method for moderately complex shapes such as
the bunny or the pipe. However it also shows the downside
of quadratic complexity for a resolution of 128 x 128 or
more. For example, it is obvious that the analytic method
is preferable to our GPU-based method for low-polygon-
count models such as a cube. The computational cost of
the analytic method for the cube is so small that we could
not distinguishably display it in the graph.

5 Case study: buoyancy simulation

The beauty of our image-based approach is that it is not re-
stricted to any particular mathematical or geometric shape
representation. It can efficiently compute the mass proper-
ties of arbitrary objects, so long as they can be rendered ef-
ficiently on graphics hardware. As an example application
of our algorithm, we will now demonstrate an interactive,
hydrostatic buoyancy simulation.

5.1 Hydrostatic buoyancy

One of the most popular simplifications of fluid motion
is the shallow water model [10], which assumes zero vis-
cosity and considers only two-dimensional motions. An
interesting fact of the shallow water model is that the pres-
sure field is characterized by the hydrostatic equilibrium
condition:

)

where g is the gravitational acceleration and 4 is the depth
of the fluid. This very simple pressure model works well

p = pgh,

Fig. 6. Buoyant force and grav-
ity acting on a partially sub-
merged rigid body

I /
\.\ B //'/
b /.
\\-_//

with the shallow water model, and it corresponds exactly
to the observation of Archimedes.

According to Archimedes’ principle, a body immersed
in a fluid experiences a vertical buoyant force equal to the
weight of the fluid that it displaces. The buoyant force acts
on the center of mass of the submerged volume. Figure 6
illustrates a rigid body partially immersed in a fluid. As-
suming a stationary fluid system, two forces are acting on
the body at this instant. The first is the force of gravity that
acts downwards at the center of gravity C, while the sec-
ond is a buoyant force which acts upwards at the center
of buoyancy B, which is the center of mass of the im-
mersed part of the rigid body (assuming that the immersed
portion consisted of fluid). The magnitude of the buoy-
ant force is proportional to the weight of the submerged
volume of fluid. The imbalance between gravity and the
buoyant force induces a torque that will rotate the body to
restore a static equilibrium.

The simulation of fluid motion is out of the scope of
our work.' Instead we focus on the rigid body motion of
an object floating on fluid due to the hydrostatic buoyant
force. To simulate hydrostatic buoyancy, we compute the
volume and the center of mass of the submerged part of the
body at every simulation time instant. If the geometries of
a fluid body and a rigid body are complicated, calculating
their intersection requires a considerable amount of com-
putation and can become a bottleneck in the simulation
process. In the following section, we tackle this problem
by modifying the depth-peeling algorithm.

5.2 Boundary surfaces of an intersection volume of
a non-convex geometry and a fluid surface

We improve the original depth-peeling technique to ac-
count for all the projected fragments of the geometry be-
low the fluid surface. For simplicity, let us assume that
the signs of the z components of the fluid surface normal
vectors do not change. Our algorithm considers surfaces
from the rigid body and the fluid surface intersecting the
geometry separately. The multi-pass rendering procedure
to handle the surfaces of a submerged volume is as follows
(note that an orthographic projection is applied to render

! Foster and Metaxas [5] demonstrate a simplified scheme for coupling
buoyant objects to the results of a Navier—Stokes fluid simulation. Carl-
son et al. [3] simulate the interplay between rigid bodies and a viscous
incompressible fluid.
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e e \/\ \ 2
pass0 pass:1 Fig.8. Intersecting the
— upward normal surface of the fluid body
g Y _, downward normal with a rigid body
/ "'-,‘ e ; ing a downward normal in rendering Pass 1. Note that
\' o ; e o amore efficient implementation results if the fragment
= shader can write a stencil bit into the output framebuffer in
pass 2 pass 3 rendering Pass 1. Finally, we evaluate the integrand for the

Fig. 7. Multi-pass rendering to obtain all surface patches

the scene with the negative z viewing direction as shown
in Fig. 7):

Pass 0: Render the surface of the fluid, storing its depth
values into a texture Ty, as a reference.

Pass 1: Render the object geometry to atexture 77. In
our fragment shader, the integrands in Eq. 4, i.e.,
sgn(n;)xz, sgn(n.)yz, sgn(n;)z?, and sgn(n,)z, are
evaluated and the output color is composed of their
values. Also, the depth values are stored in a texture
T41. During this rendering pass, the fragments whose
depth value is less than the fluid surface depth are
discarded to inhibit the operation. The texture Ty, gen-
erated in rendering Pass 0, is used to lookup the depth
value of the fluid surface. In Fig. 7, the solid black
lines correspond to the fragments.

Pass 2: Render the geometry to a texture 7. As in the
previous rendering pass, the integrands are evaluated
and their values are assigned to the output color. Here,
only the fragments whose depth value is greater than
the fluid surface depth and the depth value of T, are
accepted in order to peel away the surface patch ob-
tained in the previous rendering pass. In Fig. 7, the
dashed lines indicate peeled away fragments. A depth
texture Ty is initialized with T;; and overwritten with
the depth values of the currently processed fragments.

Pass n: Repeat the same process as in rendering Pass 2
until all the object fragments are found and evaluated.

Thus, we obtain n textures, and the texture 7,, contains the
evaluated integrands of the nth surface patch.

Now, the only remaining surface patch is the fluid sur-
face intersecting with the rigid body geometry. As illus-
trated in Fig. 8, the surface patches of rendering Pass 1
consist of upward and downward faces. The fluid surface
intersecting with the rigid body geometry can be obtained
by drawing the fluid surface only for those fragments hav-

fluid surface patch intersecting the rigid body geometry
and write the value in a texture T5,.

In summary, our algorithm requires a total of n 4+ 2 ren-
dering passes to cover all the surface patches of a partially
submerged rigid body geometry, where n represents the
maximum number of intersection points of the submerged
part of the geometry with the z axis. The first rendering
pass generates a reference depth texture from the fluid sur-
face. In the next n rendering passes, integrands are eval-
uated for each fragment of the geometry surface and the
resulting values are stored in textures 7;. The final ren-
dering pass evaluates the integrand for the fluid surface
patch that intersects the rigid body geometry and stores the
values in a texture T,.

Finally, we apply the summation reduction procedure
described in Sect. 3.3 to evaluate the integral expressions
for the volume of the immersed portion of the object and
the center of buoyancy in order to evaluate the buoyant
force and its point of application in the object.

Fig. 9. Interactive simulation of 50 rigid bodies floating in water
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Tw T, T T;

Fig. 10. Color encoded integrands of each peel for the buoyant
bunny, torus, and teapot (left)

5.3 Simulation example

Figure 9 shows a typical scene from our interactive sim-
ulations of buoyant objects. Ten spheres, 10 rectangular
boxes, 10 tori, 10 teapots, and 10 Stanford bunnies were
tested. Boxes with density higher than that of the wa-
ter were observed to sink as expected. We also modeled
a viscous drag force acting at the center of buoyancy with
magnitude proportional to the submerged volume and the
square of the body velocity. The simulation runs on the
CPU of a 2.53-GHz Pentium 4 PC employing an NVIDIA
GeForce 7800 GTX GPU. The average frame rate of the
example shown in Fig. 9 was 16 frames per second. Over
90% of the computational resources were consumed in
calculating the buoyant force.

For spherical and rectangular bodies, depth-peeling
was applied twice to compute the submerged volume
of the object geometries. For the teapot and Stanford
bunny bodies, depth-peeling was applied a maximum of
six times, but in most cases three or four peels sufficed to
cover the submerged volume. The framebuffer resolution

used in this example was 32 x 32, allowing at most 5% ap-
proximation error. The leftmost images in Fig. 10 show the
gravity force (downward blue arrow) and buoyant force
(upward yellow arrow) acting on a bunny, a torus, and
a teapot. The remaining images are color buffers that en-
code the integrands for each peel, as described in the pre-
vious section. Since the framebuffers use a floating point
texture format that cannot be illustrated properly, we have
transformed the values so that they map to a color range of
[0,1].

6 Conclusion

We have proposed a GPU-friendly algorithm for comput-
ing the mass properties of arigid body represented by
a general geometry. We formulated the mass properties as
surface integrals on a projected plane, avoiding singulari-
ties at the boundaries. We also showed that depth-peeling
techniques can be exploited to tackle non-convex geome-
tries. Our approach is essentially image-based. Conse-
quently, it can efficiently compute mass properties as long
as the geometries can be rendered using graphics hard-
ware.

We applied our algorithm to simulate rigid body mo-
tion in a real-time hydrostatic buoyancy simulation. The
mass properties of the submerged volume were efficiently
computed without an explicit reconstruction of the inter-
secting geometry between the fluid and the rigid bodies.
Our algorithm approximates mass properties fairly accu-
rately, even using low resolution framebuffers. Our in-
teractive simulation demonstrates that the proposed algo-
rithm can be applied to animate floating rigid bodies on
a stationary fluid system in a fast and plausible way.
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