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Introduction: cc1

Short-Vector SIMD

» Perform identical computation on small chunks of data
> Operations are independent
> Vector size: from 2 to 64
» Packing operations to form a vector (shuffle, extract, ...)

» Low latency, multiple SIMD units per CPU
» Maximal Speedup equals the vector size

» Ubiquitous feature on modern processors
x86 — SSE, AVX

Power — VMX / VSX

ARM — NEON

Cell SPU

v

vvyy
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Introduction: cc1

A Brief on Stencil Computations

v

Typically: iterative update of a structured (fixed) grid

v

Compute a point from neighbor points values
» Same grid / multiple grids

» Numerous application domains use stencils
> Finite difference methods for solving PDEs
> Image processing
» Computational electromagnetics, CFD, numerical relativity, ...

v

Domain-Specific Languages for Stencils (Fenics, RNPL, ...)
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Vectorization of Stencils: cc11

Stencil Example

(a) 5 point stencil C code

'
for (t = 0; t < TMAX; ++t) i
for (i = 1; i < N-1; ++i) !
for (j = 1; j < M-1; ++j) i
alilljl = b[i+1][3] + ;

!

!

!

!

1

!

b[i][j-1]1 + b[i 1[3]1 + b[i][Jj+1] +
b[i-11[31;
I u I 3

(b) Arrays a, b, and stencil detail
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Vectorization of Stencils: cc11

Vectorization of Stencil Computation

» Two “main” types of stencils

» Jacobi-like: the output does not depend on the input
> Seidel-like: in-place update

v

Loop transformations expose tiling possibilities, and at least one
inner-most parallel loop

v

Auto-vectorization successful (ICC, GCC)...

v

...But SIMD speedup is far from optimal!
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Vectorization of Stencils:

cc1

Performance Consideration

for (t = 0; t < T; ++t) { for (t = 0; t < T; ++t) {
for (i = 0; 1 < N; ++i) for (i = 0; 1 < N; ++i)
for (3 = 1; j < N+1; ++3) for (3 = 0; j < N; ++3j)
S1:  C[i][J] = A[i][3] + A[i][3-1]; $3:  C[i][j] = A[i][3] + BIi)[3];
for (i = 0; 1 < N; ++i) for (i = 0; 1 < N; ++i)
for (3 = 1; j < N+1; ++3) for (3 = 0; j < N; ++3)
S2:  A[i][3] = CIli)[3] + CIli1[]-11; S4 A[i1[4] = C[i1[]] + BIiI1[Jl;
} 1
AMD Phenom 1.2 GFlop/q AMD Phenom 1.9 GFlop/s
Performance: Core2 3.5 GFlop/g Performance: Core2 6.0 GFlop/s
Core i7 4.1 GFlop/g Core i7 6.7 GFlop/s

(a) Stencil code

(b) Non-Stencil code

Stencil code (a) has much lower performance than the non-stencil code (b)
despite accessing 50% fewer data elements
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Stream Alignment Conflict: cc1

Stream Alignment Conflict

for (i = 0; i < H; i++)
VECTOR REGISTERS for (3 =073 <W -1; jth)

A[i][j] = B[i][j] + B[i][3+1]; 86 ASSEMBLY
=
xmm2 MEMORY CONTENTS
a |a -
wus [ [2]n] oo \

» Load and shuffle:
» Load [I,J,K,L] and [M,N,O,P]
» Shuffle to create [J, K, L, M]
» Multiple unaligned loads
> Load [I,J,K,L] and [J,K, L, M]
> Not possible on architectures with alignment constraints
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Data Layout Transformation: cc1

Overview of the Solution

» Stream Alignment Conflict: adjacent elements in memory maps to
adjacent vector slots

» Key idea: break this property, to have both operands in identical vector
slot

» Achieved through Data Layout Transformation

> No shuffle needed
> No extra unaligned load
» But not trivial to achieve!
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Data Layout Transformation: cc1

Data Layout Transformation Example

o 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1

2 3 0 1 2 3
| | [s[=[e]v]=]x]

(a) Original Layout
N
i

(b) Dimension Lifted (c) Transposed

—

|

2 3 0 1 2 3 0 1 2

(d) Transformed Layout

for (i = 1; 1 < 24; ++1)
(A[1-1] + A[i] + A[i+1]) / 3;

vs]
[
Il
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Data Layout Transformation: cc1

Handling Boundaries

Compute
Boundaries
of Array Z
Shuffle
+ Boundaries
f A Y
+ . Steady State
RALILIES ey ¥ o
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Data Layout Transformation: cc1

Higher-dimensional Stencils

(a) Original Layout

n3
w3|c3le3
s3|

n0(nl|n2
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Compiler Framework: cc11

Overview of Code Generation Algorithm

@ Detect arrays/statements that suffers from SAC
@ Perform Dimension-Lift-and-Transpose of those arrays

© Generate Vector code for the inner-loop

» Ghost cell copy-in and copy-out code
» Boundary code
> Steady state code
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Compiler Framework: cc11

Detection of Stream Alignment Conflict

v

Standard compiler framework operating on array subscript functions

v

Main idea: detect cross-iteration reuse

v

Robust to stream offset via iteration shifting

> Minimize the reuse distance
» Some alignment conflicts are artificial and fixed with stream realignment

v

Requires the window of the stencil to be constant
> The window size is used to compute the amount of ghost cells
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Experimental Results: cc1

Experimental Setup

» Experiments run on 3 architectures (x86):

> Intel Core2 Quad (Kentsfield): SAC resolved with low-performance shuffles
> AMD Phenom (K10): SAC resolved with average-performance shuffles
> Intel Core i7 (Nehalem): SAC resolved with fast redundant loads

» Data is L1-resident
» assume tiling was performed beforehand if necessary

» Tested compiler: Intel ICC 11.1
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Experimental Results: cc1

Three Code Variants Evaluated

@ Ref: reference code

> Straightforward C implementation
» Always auto-vectorized by the compiler

@ DLT: basic layout transformed
» Straightforward C implementation with DLT arrays
» Always auto-vectorized by the compiler

@ DLTi: intrinsics + layout transformed
» C implementation with DLT arrays and SSE vector intrinsics
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Experimental Results:

cc1

Single Precision Results

Single Precision DLT Results
L1 Cache Resident
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Experimental Results: cc11

Double Precision Results

Double Precision DLT Results
L1 Cache Resident
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Experimental Results: cc1

Summary of Experiments

» Performance improvement matches the shuffle/unaligned load costs

» Tested higher-dimensional stencils show less improvement:

» more intra-stencil dependences
> higher cache pressure

» Manual check of the ASM showed no shuffle, no redundant load
instructions
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Conclusion:

cc1

Conclusion

OSU/CMU/LSU

Stream Alignment Conflict is the performance bottleneck for
auto-vectorized stencils

Impact varies with micro-architecture characteristics, but is always
significant

A data layout transformation can solve this problem

Strong performance improvement observed
» Manual vectorization still beats automatic vectorization

20
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