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Abstract—Significant advances in compiler optimization have find the best sequence(s) of high-level loop transformation
been made in recent years, enabling many transformations such to optimize performance on a given architecture. Existing
as tiling, fusion, parallelization and vectorization on imperfectly static models are limited to highly simplified execution ratsd

nested loops. Nevertheless, the problem of finding the best f th hi Th lex interplav bet I th
combination of loop transformations remains a major challenge. of the machine. 1he very complex interplay between a e

Polyhedral models for compiler optimization have demonstrated hardware resources (e.g., different cores with multipleleof
strong potential for enhancing program performance, in par- private/shared cache and TLBs, instruction pipelinegj\ware

ticular for compute-intensive applications. But existing static pre-fetchers, SIMD units etc.) makes it extremely diffictalt
cost models to optimize polyhedral transformations have signif- construct a static model that can accurately predict theceff

icant limitations, and iterative compilation has become a very ti f . t of | ¢ f fi W il
promising alternative to these models to find the most effective Iveness of a given set ot loop transiormations. WWorse, st

transformations. But since the number of polyhedral optimization SOMe optimization strategies may have conflicting objestiv
alternatives can be enormous, it is often impractical to iterate for example, maximizing thread-level parallelism may bihi
over a significant fraction of the entire space of polyhedrally SIMD-level parallelism, and may also result in degradatibn
transformed variants. Recent research has focused on iterath 54 locality and increased memory footprint.

over this search space either with manually-constructed heuristg In th t for hiah d tabl f
or with automatic but very expensive search algorithms (e.g., n the quest for higher and more portable periormance,

genetic algorithms) that can eventually find good points in the the compiler community has explored research based on
polyhedral space. iterative compilation and machine learning ttme the com-

In this paper, we propose the use of machine learning to ad- piler optimization flags or pass sequende find the best
dress the problem of selecting the best polyhedral optimizations. (ordered) set for a given combination of benchmarks andtarg

We show that these models can quickly find high-performance hitect Alth h significant f - g
program variants in the polyhedral space, without resorting to architectures. ough significant periormance improea

extensive empirical search. We introduce models that take as have been demonstrated [26], [1], [17], [28], the perforoean
input a characterization of a program based on its dynamic obtained has generally been limited by the optimizations
behavior, and predict the performance of aggressive high-level selected for automatic tuning, and by the degrees of freedom
polyhedral transformations that includes tiling, parallelization 4\ ailable for exploration. We identify two main limitatisn

and vectorization. We allow for a minimal empirical search on of iterative compilation efforts so far. First. most conend
the target machine, discovering on average 83% of the search- P : ' Nep

space-optimal combinations in at most 5 runs. Our end-to-end lack a power.full high—level optimization f'_'am.eWO"ki to d@fﬂ‘
framework is validated using numerous benchmarks on two gressive optimizations such as parallelization or vezédion

multi-core platforms. as implemented in production compilers may simply fail to
restructure the code enough to expose good parallel orvecto
loops. Second, the support for loop tiling (also called loop
A significant amount of the computation time in scientifiblocking) in production compilers is quite limited: uswyall
and engineering applications is usually spent in loops,ingak able to tile only some perfectly nested loops, without arer pr
high-level loop transformations critical to achieving niger- transformation capabilities to help expose tiling oppoities,
formance for a variety of programs. The best loop optim@ati and almost no support for tuning the tile sizes. This is acaiit
sequence is often not only program-specific, but also depemerformance issue as tiling is often the key loop transféiona
on the target hardware. Pouchet et al. illustrated this Iy achieve good data locality and parallelization [41].
showing the critical impact of tuning polyhedral optimiizais The polyhedral optimization frameworkas been demon-
for obtaining the best performance for a variety of numéricatrated as a powerful alternative to abstract-syntaxtiesed
programs on different target processors [31], [30], [32]. loop transformations. The polyhedral framework enables th
Although significant advances have been made in develapedeling of an arbitrarily complex sequence of loop trans-
ing advanced compiler optimization and code transformatidormations in a single optimization step. The downside of
frameworks, it remains an extremely challenging problem this expressiveness is the extreme difficulty of selecting a

I. INTRODUCTION



effectiveset of affine transformation coefficients that result [1. OPTIMIZATION SPACE
in good performance, combining tiling, coarse and fine grain
parallelization, together with fusion, distribution, énthange,
skewing, permutation and shifting [18], [30], [32].

Previous work on iterative compilation based on this mod
showed that there is opportunity for very large performan?
improvement over native compilers [31], [30], significantl
better than using standard compilation flag tuning or p
selection and ordering. However, directly tuning the petytal
transformation in its original abstract representatiomais

High-level loop transformations are crucial to effectjvel
map a computation onto the target hardware. Effective map-
ing typically requires the partitioning of the computatio
Elto disjoint parts to be executed on different cores, are th

Fansformation of those partitions into streams to be ebestu
on each SIMD unit. In addition, the data flow used by the
ats,gmputation may need to be reorganized to better exploit the
cache memory hierarchy and improve communication cost.
IyAddressing these challenges for compute-intensive pro-
infinite. Despite progress i.n understgnding the structﬁﬂais ge%r:; gp?;mti)zeaetri]or?ig?nnesvtvrc?rtlidst:vsglaprset\r/(iac?t?sthstifdg;ehpmy
space anq how t(.) pound its size, this problem remains har% own how tiling, parallelization, vectorization or datadlity
tractable in its original form. o enhancement can be efficiently addressed in an affine trans-
'Past and cgrrent work in polyhedral compilation has COR5mation framework [21], [34], [14], [24], [36]. Any loop
tributed algorlthms an_d tools to expose _mode_l-drlve_zn Abransformation can be represented in the polyhedral repres
proaches for various high-level transformations, inaigdi tation, and composing arbitrarily complex sequences of loo
« loop fusion and distribution, to partition the program intaransformations is seamlessly handled by the frameworls Th

independent loop nests; expressiveness and ease in composing and applying transfor
« loop tiling, to partition (a sequence of) loop nests intenations are the strengths of the polyhedral model. However,
blocks of computations; the space of possible optimizations is dramatically eeldsg
« thread-level parallelism extraction; imposing challenges on the selection algorithms. In cebtra
« SIMD-level parallelism extraction. to previous iterative approaches requiring the evaluatioump

Bondhugula et al. proposed the first integrated heuristic ftf hundreds of possible transformations [30], [32], we tigve
parallelization, fusion and tiling in the polyhedral modé], here a scheme that requires at most 5 candidate choices to be

[5], subsuming all the above optimizations into a singl&valuated. _ _

tunable cost-model. Individual objectives such as the eegr We also observe that high-level transformations are by far

of fusion or the application of tiling can implicitly be tude Not sufficient to achieve the best performance for a pro-

by minor ad-hoc modifications of Bondhugula's cost modelgram. Numerous low-level optimizations are required, and
We now summarize the contributions of the present papglﬂlp makers such as Intel have_; developed extremely efficient

We address the problem of effectively balancing the tradgloSed-source compilers for their processors. Unforelpate

off between all the aforementioned high-level optimizasio have to consider such compilers as black-boxes, because of

to achieve the best performance. As a direct benefit of diff¢ difficulty in precisely determining which optimizat®ns
problem formalizationwe integrate the power of iterativeMPlemented and when. Our approach considers the back-
compilation schemes with the expressiveness and effictgnc§d compiler as part of the target machine, and we focus
high-level polyhedral transformation®ur technique relies on €Xclusively on driving the optimization process via higivé|
a training phase where numerous possibilities to drive igle-h SOUrce-to-source polyhedral transformations. _
level optimizer are tested, using a source-to-source ol We next present the set of optimizations that we consider.
compiler on top of a standard production compiler. We show
how the problem of selecting the best optimization criterfa: Polyhedral Model
can be effectively learned using feedback from the dynamicSequences of (possibly imperfectly nested) loops amenable
behavior of various possible high-level transformatioBy. to polyhedral optimization are calledtatic control parts
correlating hardware performance counters to the sucdesg®CoP) [14], [18], roughly defined as a set of (possibly
a polyhedral optimization sequencge are able to build a imperfectly nested) consecutive statements such thabad |
model that predicts very effective polyhedral optimizaté®- bounds and conditionals are affine functions of the surrimgnd
guences for an unseen progra@ur results show it is possibleloop iterators and global variables (constants that areonwk
to achieve close to the search-space-optimal performaypceas compile time but invariant in the loop nest). Relaxation
testing no more than 5 program versions. To the best of these constraints to arbitrary side-effect free progrdvas
our knowledge, this is the first effort that demonstrates verecently been proposed [3], and our optimization scheme is
effective discovery of complex high-level loop transfotioas  fully compatible with this extended polyhedral model.
using machine learning models. Polyhedral program optimization involves the analysis of
In Section Il, we first present details on the optimizatiothe input program to extract itpolyhedral representatign
space we consider, before presenting the machine learninguding dependence information and array access pattern
approach in Section Ill. Experimental results are preskent&hese are defined at the granularity of the statement instanc
in Section IV. We discuss related work in Section V. that is, an executed occurrence of a syntactic statement.



A program transformation is represented by an affifecality is not the performance bottleneck. Second,dize of
multidimensional schedule. This schedule specifies therordhe tiles could have a dramatic impact on the performance of
in which each statement instance is executed. A schedthe generated code. To obtain good performance with tiling,
captures in a single step what may typically correspond tioe data footprint of an atomic tile should typically reside
a sequence of several textbook loop transformations [18]. the L1 cache. The problem of selecting the optimal tile
Arbitrary compositions of affine loop transformations (g.gsize is known to be very hard and empirical search is often
skewing, interchange, multi-level distribution, fusigreeling used for high-performance codes [40], [42], [37]. To linfiet
and shifting) are embedded in a single affine schedule for teearch space while preserving significant expressivemess,
program. Every static control program has a multidimeralionallow the specification of a limited number of tile sizes to be
affine schedule [14], and tiling can be applied by extendingpnsidered foeach tiled loopIn our experiments, we use only
the iteration domain of the statements with additionalltlegp two possible sizes for a tile dimension: either 1 (i.e., fiadi
dimensions, in conjunction with suitable modifications loé t along this loop level) or 32. The total number of possilahti
schedule [18]. is a function of the depth of the loop nest to be tiled: for

Finally, syntactic code is regenerated from the polyhedriastance, for a doubly-nested loop we test rectangulas tife
representation on which the optimization has been applied. size 1x 1 (no tiling), 1x 32, 32x 1 and 32« 32.
use the state-of-the art code generatoro©iG [2] to perform 2) Loop Fusion/Distribution:In the framework used in the
this task. present paper, there is an equivalence between (i) mayimall

o ) fusing statements, (i) maximizing the number of tilablego
B. Polyhedral Optimizations Considered levels, (iii) maximizing locality and (iv) minimizing comum

High-level optimization primitives, such as tiling or phra nications. In its seminal formulation, Bondhugula progbse
lelization, often require a complex sequence of enabling loto find a transformation that maximizes the number of fused
transformations to be applied while preserving the seroantistatements on the whole program using an Integer Linear
As an example, tiling a loop nest may require skewing, fusioRrogram encoding of the problem [4]. However, maximally
peeling and shifting of loop iterations before it can be @bl fusing statements may prevent parallelization and vexderi
A limitation of previous approaches, whether polyhedration, and the trade-off between improving locality despite
based [25], [31] or syntactic-based [8], was the challenige @ducing parallelization possibilities is not capturedc@ndly,
assessing the impact of the main optimization primitives;es fusion may interfere with hardware prefetching. Also, afte
the enabling sequence also had to be considered. This Ilédsion, too many data spaces may contend for use of the same
most previous work to be limited in applicability: the enalgl cache, reducing the effective cache capacity for each-state
transformations were not considered in an integrated dashi ment. Conflict misses are also likely to increase. Obviqusly
so that transformations such as tiling and coarse-graiaed psystematically distributing all loops is generally not atee
allelization could not be applied in the most effective fash solution as it may be detrimental to locality.

OoNn humerous programs. The best approach clearly depends on the target archiggectur

We address this issue by decoupling the problem of seleatd the performance variability of an optimizing transfarm
ing a polyhedral optimization into two steps: (1) select a s&on across different architectures creates a burden iisidey
quence of high-level primitives in the sgfusion/distribution, portable optimization schemes. We consider in this papeeth
tiling, parallelization, vectorization, unroll-and-janh, this high-level fusion schemes for the program: (bFuse, where
selection being based on machine learning and feedbauk do not fuse at all; (2BmartFuse, where we only fuse
from hardware performance counters, and (2) for the selectegether statements that carry data reuse; andvéXFuse,
high-level primitives, usestatic cost modeléo compute the where we try to maximally fuse statements. These three cases
appropriate enabling transformations that implement iherg are easily implemented in the polyhedral framework, simply
sequence of high-level primitives. We thus keep the express by restricting the cost function of the Tiling Hyperplane
ness and applicability of the polyhedral model, while fangs method to operate only on a given (possibly empty) set of
the selection decision only on the main transformations. statements.

1) Loop Tiling: Tiling is a crucial loop transformation Interaction with tiling: The scope of application of tiling
for parallelism and locality. It partitions the computatio directly depends on the fusion scheme applied on the pragram
into blocks that can be executed atomically. When tiling i®nly statements under a common outer loop may be grouped
chosen to be applied on a program, we rely on the Tiling a single tile. Maximal fusion results in tiles performing
Hyperplane method [5] to compute a sequence of enablingpre computations, while smart fusion may result in more
loop transformations to make tiling legal on the generabeg| tiles to be executed but with fewer operations in them. The
nests. cache pressure is thus directly driven by the fusion anaigtili

Two important performance factors must be considered fecheme.
the profitability of tiling. Tiling may be detrimental as it 3) Thread-level parallelizationThread-level parallelism is
may introduce complex loop structure and the computatiomt always beneficial, e.g., with small kernels that exeteite
overhead may not be compensated by the locality improviéerations or when it prevents vectorization.
ment. This is particularly the case for computations whetad When a loop nest is tiled, it is always possible to execute



the tiles either in parallel or in a pipeline-parallel fasti For implements the fusion choice, (b) maximizes the number
untiled loops, we rely on a cost model that pushes dependence of parallel loops, (c) maximizes the number of tilable

to the inner loop levels, naturally exposing outer paradieps. dimensions [4] on each individual partition;
To drive thread-level parallelization we expose two option 3) Modify the schedule according to the vectorization cost
(1) Parallel where we use OpenMP and inser@ agna onp model, if Vector is set, to expose inner parallel loops;

paral I el for above the outer-most parallel loop of each loop 4) Tile all tilable loop nests, if any, ifile is set. The tile
nest; and (2NoParallel where no pragma is inserted and no sizes to be used are encodedTin

transformation is performed. . Other transformations do not require further modification
~ 4) SIMD-level parallelization: Our approach to Vvector- ot the program schedule. Depending on their activatiof jn
ization leverages recent analytical modeling results by Tlihey are applied as post-pass on the generated prograneyas th

funovic et al. [36]. We take advantage of the polyhedra),y require syntactic modifications to the code (e.g., fiiisg
representation to restructure imperfectly nested program pragmas or unrolling the code).

expose vectorizable inner loops. The most important part ofz) Candidate Search SpaceThe final search space we

the transformation to enable vectorization comes from g, qqe depends on the program. For instance, not all pro-
selggtlon of which parallel loop is moved o th? lnnermo%[rams exhibit coarse-grain parallelism or are tilable. ¢ases
posmo_n._ T_he cost model sele_cts a synchronization-frep Iowhere a primitive has no effect on the final program because
that MiNMIZes th_e memory siride of the data a(_:cc_assed by tWlosemantic considerations, multiple valuesToflead to the
contiguous iterations of the loop [36]' Note, Fh|s.|ntemga same candidate code version. The search space, considering
may not always lead to the optimal vectorization, or m §Iy values of T leading to distinct transformed programs,

;lrrlplytpe US\?\JeSS fora mtachlnetyvh|ch does not SEpportthSI nges from 91 to 432 in our experiments, out of 864 possible
instruction. We expose two options: (Mector, where the combinations that can be encodedTin

schedule is modified to expose good (ie, stride one memory
accesses) vectorizable innermost loops, which are markad w
ivdep and vector always pragmas to facilitate compiler

auto-vectorization; and (2NoVector, where no additional  gjnce we have removed the problem of computing enabling
transformations are performed to enable vectorization.  transformations, we can focus the search on the primitives
5) Loop unroll-and-jam:Loop unrolling is known to help with the highest impact as described in Section Il. When
expose instruction-level parallelism. Tuning the unrglifac- considering a space of semantics-preserving polyhedral op
tor can influence register pressure, in a manner that is ¢8Mptjmijzations, even the most aggressive bounding can lead to
and machine-dependent. We expose three options that gffons of possible polyhedral optimizations [30]. We asred
applied on all innermost loops of the program: (gunroll; 5 tremendous reduction in the search space size when com-
(2) UnrollBy4; and (3)UnrollBy8. pared to these methods, but we have hundreds of sequences to
C. Putting it all Together consider. In this paper, we propose to formulate the selecti_
of the best sequence as a learning problem, and use off-line

1) Generating the Final TransformationA sequence of _ . . . .
. L2 . . training to build predictors that compute the best sequ@shce
high-level primitives is encoded as a fixed-length vector qf, nihg ur'a pred pu que)

bits, referred to ag. To each distinct value of corresponds o polyhedral primitives to apply to a new program.
a distinct combination of the above primitives. Technigall
on/off primitives (i.e., Tile/NoTile, Parallel/NoParallel, etc.)
are encoded using a single bit. Non-binary primitives such We focus in this work on theynamicbehavior of programs,
as the unroll factor or the tile sizes are encoded usingb§ means of hardware performance counters. Using those
“thermometer” scale. As an illustration, to model unralida abstracts away the specifics of the machine, and overcoraes th
jam factors we use two binary variablgsy). The pair(0,0) lack of precision of static performance models. Also, msdel
denotes no unroll-and-jam, an unroll factor of 4 is denotagsing performance counter characteristics of programs hav
by (0,1) and unroll factor of 8 by(1,1). Different tile sizes been shown to out-perform models that use only static featur
are encoded in a similar fashion. In our experiments, we ordy program [8].
model the tile size on the first three dimensions (leading to 9a given input program is represented by a feature vector of
possibilities), and use a constant size TofThus for programs performance counters collected by running the full program
where the tiles have a lower dimensionality, some bitSin gn the machine. We use the PAPI library [27] to gather
have no impact on the transformation. information about memory management, vectorization and
To generate the polyhedral transformation correspondinggrocessor activity. In particular, for all cache levels ard
a specific value off, we proceed as follows. levels we collect the total number of accesses and misses,
1) Partition the set of statements according to the fusithe total number of stall cycles, the total number of vector
choice (one iNNoFuse, SmartFuse or MaxFuse); instructions, and the total number of issued instructiagxs.
2) Apply the Tiling Hyperplane method [5] locally on eactcounter values are normalized using the total number of
partition to obtain a schedule for the program that (apstructions of the program.

Ill. SELECTING EFFECTIVE TRANSFORMATIONS

A. Characterization of Input Programs



B. Speedup Prediction Model different machine learning algorithms — regression and SVM

A general formulation of the optimization problem is tdSupport Vector Machine), using Weka [6].
construct a search function that takes as input features offhe Regression based model demonstrates the relationship
a program being optimized and generates as output onebetween dependent and independent variables, and we can
more optimization sequences predicted to perform well é¢t$€ this model to expect dependent variables according to
that program. Previous work [13], [8] has proposed to mod#le change of given independent variables. We used linear
the optimization problem by characterizing a program usiriggression to fit the predictive model to dependent variable
performance counters. We use a prediction model originaiyhich is speedup of programs, and independent variables
proposed by Cavazost al. [12], [7], but slightly adapted Which are performance counters and the polyhedral optimiza
to support polyhedral primitives instead. We refer to it as #n sequence. Regression model often makes assumptions
speedup predictor model about the data-generating process, and this is often ufsful

This model takes as an input a tuggle T) whereF is the prediction even though the assumption is not correct. Hewev
feature vector of all hardware counters collected wheningn regression model may not be optimal because of this and
the original program; andl is one of the possible sequence opossibly mislead results when we use incorrect assumptions
polyhedral primitives. Its output is a prediction of the sgap SVM is a supervised machine learning technique, used for
T should achieve, relative to the performance of the originabth classification and regression, and it can apply linear
code. Figure 1 illustrates the speedup prediction modeal. Rechniques to non-linear problems. First, SVM transformais d
a given input program, first the feature vector of perforngandnto a linear space by using kernel functions, and uses arline
counters are collected. Then, the model is ask to predict ttlassifier to separate data with a hyperplane. SVM not only
expected speedup of a primitive sequericeBy predicting finds a hyperplane to separate data, but also finds the best
the performance of each possible sequence, it is possiblenymerplane, so called maximum margin hyperplane, showing
rank them according to their expected speedup and select tifne largest separation from the set of hyperplanes.
sequence(s) with the highest speedup.

C. Model Generation and Evaluation

New Program We train a specific model for each target architecture, as the

specifics of a machine (e.g., cache miss cost, number of,cores
etc.) significantly influence what transformations are cfie
for it. In addition, to evaluate the quality of linear regsim

Extract performance versus SVM, we train one specific model for each.
Counters A model is trained as follows. For a given progrdin
the training set, (1) compute its execution tifBeand collect
l, LI [ ] its performance counters; (2) for all possible sequences of
L [ ] All possible polyhedral primitivesT;, apply the transformation t® and
. sequences for ~ €xecute the transformed program on the target machine, this
— : the program gives an execution timgy,, and the associated speedsip=

Performance counters (F)

(11 ] E/Ex; (3) train the model with the entrfF, Ti) = Sy.. This is

: T repeated for all programs in the training set. This is iHatsd
Primitive sequence (T) in Figure 2.

Each of our models must predict optimizations to apply to
unseen programs that were not used in training the model.
To do this, we need to feed as input to our models a
characterization of the unseen program. We then ask the
model to predict the speedup of each possible transformetio
sequencesl; in our optimization space, given the unseen
program characteristics. We order the predicted speedups t
ll determine which sequence is predicted best, and apply it to

Speedup prediction model

the unseen program.
Note in the experiments presented below, we use the stan-

Predicted speedup for dardLeave One Out Cross-Validatigmmocedure for evaluating
each sequence our models. That is, the two models (SVM or LR) are trained
on N—1 benchmarks, and evaluated on the benchmark that
Fig. 1. Speedup prediction model has been left out. This procedure is repeated individualty f

each benchmark to be evaluated: each evaluation is done on a
We implemented the speedup prediction model by using tyapogram that was never seen by the model during the training.



apply each of them and execute both transformed programs
on the machine; we then keep the one that in practice

i performs best. This implies iteratively testing two caradél
transformations. Similarly, we end up testing on the maehin
five candidate transformations with the 5-shot models.

Extract performance Compile and run each IV. EXPERIMENTAL RESULTS
counters possible transformation .
A. Experimental Setup
l l We provide experimental results on two multi-core sys-
1 tems:Nehalem, a 2-socket 4-cores Intel Xeon 5620 (16 H/W

B ' o threads), andk900, a 4-socket 6-cores Intel Xeon E7450 (24

" ‘ | Allprimitives LAy threads). Both systems have 16 GB of memory and run
3 .| /7| are computed . X K
/ Linux. The back-end compiler used for the baseline and all

N | ’ ALt candidate polyhedral optimizations is Intel ICC with optio

Performance counters (F) — -fast, version 11.1 foNehalem and version 11.0 foR900.
/N/ Our benchmark suite is PolyBench v2 [20], composed of
28 different kernels and applications containing statinotic
Speedup to parts. The datasets are the reference one [20], and most
Baseline benchmarks are L3-resident in our testing framework.

\—'—l
Primitive ‘
sequence (T)

B. Comparison of LR, SVM and Random

We show in Table I-lIl the performance of the three dif-
Logistic Regression/ SVM ferent models we have evaluated. For each benchmark, we
report the performance improvement over the original code,

‘l, when compiled withi cc -fast, for the 1-shot, 2-shot and

5-shot approaches. In particular we repar for Linear
f)f:gi‘:ilzm Model RegressionsvM for Support Vector MachineR for Random
(averaging 100 experiments) andOpt the fraction of the

optimal performance improvement achieved by the best of
LR and SVM. Regarding the search space, we repopt
the best improvement achieved by a candidate optimization
in our search space. We also report in the colupoty the
performance improvement achieved when using a polyhedral

The models presented above output a single optimizatistatic cost model to select the transformation [4]. In our
sequence for an unseen program. For the rest of the paper,ngmenclature, it correspondsfaxFuse andParallel andTile,
refer to this approach as the 1-shot model. using a default tile size of 32 in each tiled dimension. We als

It is worth considering an empirical evaluation of severaompare against a tuning of 12 flag optimization sequenaes fo
candidate transformations, as the predictor may not predi€C (one of- 2, - @8, -f ast, with and without- par al | el
correctly the actual best sequence for the program. A typica turn on and off automatic parallelization, and with and
source for misprediction comes from the back-end compilexithout - no- vec to turn on and off vectorization). We report
depending on the inpusource code, it may performs spe-the improvement achieved by the best flag sequence applied
cific optimizations based on pattern-matching, for inséancon the original code in thecC column.
As an illustration, we observed in our experiments that for Analysis: First, we observe that polyhedral optimization
the benchmarkkmm (computing two matrix multiplications tuning significantly outperforms ICC flag tuning, fromx2
tmp= A.B; out put=tmpC), the best performance when usingo 3.5x better performance is achieved on average. And for
Intel ICC 11.0 is achieved wheno tiling is applied by our all benchmarks and all architectures, there exists at least
framework, despite high cache miss ratios. We suspectghihe polyhedral sequence which outperforms ICC. We also
because ICC performs specific optimizations on this pdeicuobserve that the polyhedral static cost model we use for
computation (matrix-multiply), since in this setup tili&sjnm comparison is significantly outperformed by our approach.
to make it L1-resident decreases the performance. HowevEhjs static model has proved its effectiveness for programs
another program with similar hardware counter features mayth significant data reuse, as dorrelation andcovariance for
be processed entirely differently by ICC, and as shown by oustance. Nevertheless, for numerous programs tiling cand/
experiments even the same program is handled differently parallelization is detrimental to performance, aga@summy
ICC 11.0 and ICC 11.1 on two different machines. or dynprog. The performance drop mainly comes from the

We propose to evaluate also 2-shot and 5-shot models. Fery complex loop structure that is generated with polyhedr
the 2-shot model, we keep the two predicted best sequendiig, which in turn inhibits numerous scalar optimizaton

Fig. 2. Overview of the training phase

D. One-shot and Multi-shot Evaluation



TABLE |
PERFORMANCEIMPROVEMENTS FORINTEL XEON E5620 BASELINE: ICC 11.1 FAST)

1-shot 2-shot 5-shot
[ Benchmark [ Opt Poly IcC | LR SVM R %O0pt_ [ LR SVM R %O0pt_ [ LR SVM R %0pt_|
2mm 13.8< 4.07x 1.00x | 13.8x 13.8x 2.67x 100% | 13.8x 13.8x 3.87x 100% | 13.8x 13.8x 5.28« 100%
3mm 11.9< 217« 1.00x | 2.46x 0.81x  1.54x  20.67% | 2.46x 2.33x  2.53x  20.67% | 2.46x 2.33x 3.71x  20.67%
adi 3.73x  3.66x 1.86x | 3.22x 3.22x 1.30x 86.33% | 3.22x 3.22x 2.32x 86.33% | 3.22x 3.22x 2.82x 86.33%
atax 2.40x  2.00x 1.31x | 0.85x 2.39x  1.14x 99.58% | 0.85x  2.39x  1.30x 99.58% | 1.41x  2.40x  1.70x 100%
bicg 1.61x  0.75x  1.27x | 0.59x 0.58x 0.49x 36.65% | 0.59x 0.58x 0.81x 36.65% | 0.59x 1.61x  1.00x 100%
cholesky 1.00< 0.88x  1.00x | 0.41x 0.97x 0.55x 97.98% | 0.41x 0.97x 0.80x 97.98% | 0.41x 0.97x 0.94x  97.98%

correlation 21.1x  2.88x  3.24x 8.98x 10.7x  4.30x  50.81% | 8.98x 10.7x  6.43x 50.81% | 11.8x 17.8x 10.2x  84.71%
covariance 21.5x 13.0x 3.25x 21.5x 21.5x 5.29x 100% | 21.5x 21.5x 5.90x 100% | 21.5x 21.5x 9.72x 100%

doitgen 12.5x  4.15x 1.00x 1.06% 3.67x 2.15x 29.34% | 1.06x 3.85x 3.23x 30.78% | 3.39x 3.95x 5.09x 31.60%
durbin 1.00x  1.00x 1.00x | 0.99x  1.00x  0.99x 100% | 0.99x  1.00x  1.00x 100% | 0.99x  1.00x  1.00x 100%
dynprog 1.01x 0.32x 1.01x | 0.61x 0.72x 0.70x  71.72% | 0.61x 0.91x 0.84x 91.92% | 0.61x 0.91x 0.93x 91.92%
fdtd-2d 246x  0.56x  2.12x | 0.63x 0.77x 0.70x  31.30% | 0.63x  0.77x  1.15x  31.30% | 0.77x  2.46x  1.37x 100%

fdtd-apml 7.98x 5.78x 1.00x 4.89x 7.36% 2.56x 92.23% | 4.89x 7.36x 3.83x 92.23% | 6.35x 7.36x 5.13x 92.23%
gauss-filter 1.83x 1.75x 1.00% 0.57x 1.13x 0.69x 61.75% | 0.57x 1.13x 0.94x 61.75% | 1.03x 1.13x 1.18x 61.75%
gemm 13.7x 2.74x 1.05x 2.94x 1.49x 1.54x 21.43% | 2.94x 2.63x 2.59x 21.43% | 2.94x 8.49x 5.43x 61.97%
gemver 1.95x 1.84x 1.44x 0.97x 0.97x 0.69x 49.74% | 0.97x 0.97x 0.85x 49.74% | 0.97x 1.95x 1.41x 100%
gesummv 2.44x 0.91x 2.42x 1.71x 1.94x 1.34x 79.51% | 1.71x 1.94x 1.72x 79.51% | 1.94x 1.94x 2.05x 79.51%
gramschm 10.9x 3.86x 1.01x 3.40x 1.00x 2.96x 31.05% | 3.94x 1.00x 3.98x 36.30% | 3.94x 1.01x 6.61x 36.30%

lu 167x  1.16x  101x | 163« 115¢ 079 97.60% | 1.63x 1.15< 1.12x  97.60% | 1.63x 153«  140x  97.60%
ludcmp 1.03<  096x 101x | 1.01x 1.01x 1.02x 99.03% | 1.01x 1.01x 1.02x 99.03% | 1.02x 1.01x 1.02x  99.03%
mut 148<  117x 100« | 078 103 053« 69.59% | 0.78< 1.03x 079 69.59% | 0.83x 1.03x  0.98x  69.59%
reg_detect | 1.07x 052«  1.00x | 0.29x 029« 0.67x 27.10% | 029« 0.29x 0.82« 27.10% | 0.62x 0.45< 0.97x  57.94%
seidel 9.71x  081x  1.00x | 083« 083 3.39%  855% | 0.83x 098< 405«  855% | 0.98x 7.60< 6.96x  78.27%
symm 100«  1.00x 1.00< | 1.00x 1.00x 1.00x  100% | 1.00x 1.00x< 1.00x  100% | 1.00x 1.00x 1.00x  100%
syr2k 757 0.25x 7.5« | 5.87x  7.14x  2.65x  94.32% | 587«  7.14x 451x  9432% | 587x 7.14x 663«  94.32%
syrk 917«  0.78<  884x | 3.76x 138 1.99x 41.00% | 3.76x 2.52x 290<  41.00% | 4.62x 9.0lx 523  98.26%
trisolv 390« 140k 150« | 3.69« 3.69x  1.07x 94.62% | 3.69x  3.60x 148  94.62% | 3.69x 3.69« 218  94.62%
trmm 127x  0.33x  1.00< | 0.14x  0.14x 043« 11.02% | 0.14x  0.14x  0.87x  11.02% | 0.14x 120x  1.04x  94.49%
[Average | 6.4x  2.13x  198< | 3.16x  327x  161x 6430% | 3.16x 343x 224< _ 6538% | 3.50x 468« 332  83.18% |

the compiler side. Our technique is able to compensate i®r this discover significant performance improvements, however
effect, by using simpler (in terms of code structure) potida¢ almost systematically lower than using LR or SVM. Further-
optimizations when it is the most profitable. more, because of the uneven distribution of good points in

The 1-shot model can be seen as a non-iterative compilati®§ SPace, Random may fail to draw a good transformation
scheme: the unseen program is analyzed once to gatherSRguence while the SVM and LR procedures are deterministic.
hardwa_re _per_formance counfcer valu_es, and the mpdel OUtPét.SAccuracy of the Prediction
the optimization to be applied. This model provides satis-

factory improvements in the majority of cases, however for The model we build foLR and SVM predicts the speedup

about 1/3 of the benchmarks applying the sequence predicjéos] asnpcimfcl(;u?q(zgzeccj;althoep“Tcl)zigfnn g:oxﬁi’cr?wifnw:)hj dpf):a-
best will decrease the performance. We believe this mo [ Prog

el . . L .
: - . applied. To estimate the accuracy of the prediction, we show
can be improved. We conducted additional experiments t |gpure 3-4 the performance preélicted h; and sYM for all
includes tuning the learning algorithm parameters (efe, tcandidate optimizations, sorted w.r.t. the actual perforoe
Gaussian parametgrand the soft margin paramet€@rfor the £ th " b i f ’f "'t tive b r? K
SVM), with improvements observed, but there was no sing?e € oplimizations, o four representative benchmarks.
configuration that was performing best on all two machineg

Figure 3 compares the prediction for the same benchmark
At this stage, tuning the learning algorithm parametersigpe mm on both tested architectures. First, we observe the rela-
ically for each machine remains an alternative. Clusteri

tively low density of best points, represented at the fantrigf
the benchmarks may also significantly simplify the learni

r?ﬁ e plain curveActual. This emphasizes the search problem is
problem, preliminary experiments indicate this is a prongs ot trivial, and plain random techniques have a low proltoil
direction.

in average to discover the optimal points. Regarding the
. ] prediction, we observe in both cases for SVM numerous spikes

The 2-shot model provides only a small improvement ovej predicted best points. A careful observation shows dslig
the 1-shot, in contrast the 5-shot model can reach closeto ifference in the speedup predicted for all spikes, leading
better performance than the 1-shot. On average, SVM pesforfe highest spike for E5620 to correspond to one of the optima
better than LR and Random on all machines when consideriggst point; while for E7450 the 4 highest spikes do not achiev
the 5-shot model. The 5-shot SVM model reaches on averaggye than 2.38 improvement. This pattern is representative
85%-89% of the space optimal performance improvemerj; several benchmarks: the models predicts a fraction of the
This emphasizes the relevance of allowing for a limitegdagrch space to be potentially optimal, represented byethos
empirical search step, in order to significantly improve thgsikes. We have observed that in most cases a nearly optimal
final performance gain. point is in the five first, however there are cases suajaass-

We also observe that a pure random search on averagefilerr for which only the &' spike achieves the optimal speedup,



TABLE I
PERFORMANCEIMPROVEMENTS FORINTEL XEON E7450 BASELINE: ICC 11.0 FAST)

1-shot 2-shot 5-shot
[ Benchmark [ Opt Poly ICC | LR SVM R %O0pt_| LR SVM R %O0pt_ [ LR SVM R %O0pt_|
2mm 13.1x  3.67x 1.00x | 1.67x 238« 2.77x 21.00% | 1.67x 2.38x 5.13x 38.89% | 12.96< 1254 9.32x 98.26%
3mm 12.1x 217 1.00x | 217x  1.32x  1.36x  17.89% | 2.17x  11.7x  2.93x  96.62% | 2.88x 11.7x  5.37x  96.62%
adi 3.28<  2.65< 1.33x | 2.37x 042x 1.37x 7226% | 2.37x 0.42x 212x 72.26% | 2.37x 0.46x  2.87x  72.26%
atax 1.96x  1.80x 1.00x | 1.20x 0.22x  0.67x  61.22% | 1.20x 0.22x  1.14x  61.22% | 1.20x 0.22x  1.54x  61.22%
bicg 1.66x  1.01x 1.00x | 1.54x 1.06x 0.84x 92.77% | 1.54x 1.06x 1.08x 92.77% | 1.66x 1.06x  1.40x 100%
cholesky 1.00< 0.98< 1.16x | 0.61x 0.98x 0.76x  98.99% | 0.61x 0.98< 0.79x  98.99% | 0.62x 0.98<  0.93x  98.99%

correlation 36.6x  36.6x 12.3x 36.6x 20.2x 12.1x 100% | 36.6x  33.6x 13.3x 100% 36.6x 33.6x  22.2x 100%
covariance 36.9x 11.0x 9.87x 24.5x 24.5x 8.50x 66.30% | 24.5x 24.5x 16.5x 66.30% 36.2x 34.2x 25.7x 98.18%

doitgen 18.3x  5.21x  1.00x 6.91x  1.61x 2.37x 37.78% | 6.91x 5.64x 2.94x 37.78% 6.91x 5.64x  5.35x  37.78%
durbin 1.00<  1.00x  1.00x 0.99x  1.00x 1.00x 100% | 0.99x  1.00x  1.00x 100% 1.00x 1.00x  1.00x 100%
dynprog 1.00x  0.41x  1.00x 0.64<  0.96x 0.75<  96.97% | 0.64x 0.96x 0.84x  96.97% 0.64x 0.96x  0.92x  96.97%
fdtd-2d 3.06x  1.71x  2.95x 1.71x  1.71x 1.16x  55.88% | 1.71x  2.06x 1.43x  67.32% 1.71x 3.06x  1.94x 100%

fdtd-apml 6.25x 3.01x 1.00x 3.85x 3.30x 1.88x 61.60% | 3.85x 4.41x 3.02x 70.56% 3.85x 4.41x 4.02x 70.56%
gauss-filter 1.06x 0.94x 1.00x 0.35x 0.35x 0.55x 33.01% | 0.35x 0.35x 0.65x 33.01% 0.35x 0.35x 0.71x 33.01%

gemm 11.6x 3.90% 1.00x 3.43% 2.78x 1.39x 29.54% | 3.43x 2.78x 3.68x 31.70% 3.43x 11.0x 6.27x 95.00%
gemver 2.68x 2.29x 1.14x 2.18x 2.59x 1.08x 96.64% | 2.18x 2.59x 1.81x 96.64% 2.67x 2.64% 2.26x 99.63%
gesummv 1.45<  0.68x  1.44x | 1.24x 0.84x 1.02x 85.52% | 1.24x 0.84x 1.21x 85.52% 1.24x 0.92x  1.27x  85.52%
gramsch 4.34x 2.91x 2.61x 0.83x 0.83x 1.60x 19.12% | 0.83x 0.83x 1.84x 19.12% 1.09x 1.09x 2.74x 25.11%
lu 7.24x 3.15x 1.15x 0.43x 0.43x 1.70x 5.93% | 0.43x 0.96x 2.63x 13.25% 0.96x 1.84x 4.19x 25.41%
ludemp 1.00x 099  1.00x | 0.99x 0.99x 0.99x 99.00% | 0.99x 0.99x 1.00x  99.00% 0.99x 1.00x  1.00x 100%
mvt 1.75<  1.70x  1.00x | 1.73x  1.73x  0.97x 98.86% | 1.73x  1.73x  1.02x  98.86% 1.73x 1.73x  1.63x  98.86%
reg_detect 1.11x  0.80x  1.05x | 0.12x  0.05x  0.42x 37.84% | 0.31x 1.02x 0.73x  91.89% 0.31x 1.06x  1.02x  95.50%
seidel 9.92x  1.54x  1.00x | 9.45x 9.45x 252« 95.26% | 9.45x 9.45x  3.62x  95.26% 9.45x 9.45x  5.84x  95.26%
symm 1.02x 1.00x 1.02x 0.83x 0.83x 0.93x 81.37% | 0.83x 0.83x 0.95x 81.37% 0.83x 0.83x 1.00x 81.37%
syr2k 22.7x 22.7x 22.7x 22.7x 22.7x 6.91x 100% | 22.7x 22.7x 8.87x 100% 22.7x 22.7x 18.4x 100%
syrk 19.7<  9.10x  19.6x | 7.85x  2.14x  2.94x  39.77% | 7.85x  3.18x  7.04x  39.77% 7.85x 19.6x  8.58x  99.09%
trisolv 197« 0.98x  1.00x | 1.26x 1.26x 0.85x 63.85% | 1.26x 1.26x 1.24x  62.94% 1.26% 1.42< 1.38x  72.08%
trmm 1.16x 0.65x% 1.03x 0.40x 0.04x 0.57x 34.48% | 0.40x 0.04x 0.84x 34.48% 0.40x 0.99x 1.00x 86.11%
[ Average [ 8.04<  4.48<  338x | 4.91x 377  2.14<  64.42% | 492<x 491x 319  70.80% | 5.82x 6.60x  4.99x  82.95% |
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Fig. 3. 2mm Prediction for Xeon E5620 (left) and Xeon E7450 (right)

as shown in Figure 4. other. In addition, the back-end compiler is part of the peob

In general, LR prediction follows the prediction of svm,and may trigger different optimization heuristics for eiént
but with a smoother behavior. This is particularly shown iArchitectures, and we observed the compiler optimizatima fl
Figure 5. For such situation, LR simply fails to differentia 1S €xtremely hard to predict and can easily be disturbed
enough between all the variants in the search space, and¥s@ high-level transformation. Learning a model for each
unable to isolate the best sequences: the obtained spesgiup &'chitecture is a valid alternative to circumvent thoseiess

at 118x with LR, while it reaches 1B4x with SVM. Discussions:We also investigated using a 10-shot SVM
We also confirmed the need to create models for each aramiedel, which takes the ten predicted best sequences and
tecture to be considered. Different shapes of the perfocmarevaluate all of them. This 10-shot model improves the per-
distribution indicate that the quantity of good performingormance by reaching an average 95% of the search space
transformation sequences vary from one architecture to thetimal performance improvement. It also helped improving



gaussiter-ful has been shown to regularly outperform the most aggressive

3r | l Rl

v v — compilation settings of commercial compilers, and it haerof

LR

been comparable to hand-optimized library functions [39],
[16], [33], [38].

Deciding the enabling or disabling of loop unrolling was
done by Monsifroeet al. [26] using decision tree learning, and
was one of the early efforts on using machine learning to tune
a high-level transformation. Kulkarni et al. [23] introdt a
system that used databases to store previously tested code,
thereby reducing running time. They also disabled some
optimizations that did not seem to improve the running tirhe o
the kernel. These techniques are very expensive and therefo
only effective when programs are extremely small, such as

Performance Imp.

° w1 a0 =z aw a0 those used in embedded domains. Cooper et al. [10] used
Optimization (sorted by actual performance) genetic algorithms to address the compilation phase-ioigler
Fig. 4. Gauss-Filter Prediction for Xeon E5620 problem. They were concerned with finding “good” compiler

optimization sequences that reduced code size. Theiritpahn
was successful in reducing code size by as much as 40%.
v ‘ cometaton ] However, their technique is application-specific — a geneti
<y — algorithm had toretrain for each program to decide the best
- optimization sequence for that program.
o - An innovative approach to iterative compilation was pro-
posed by Parello et al. [29] where they used performance
sl B counters at each stage to propose new optimization secience
The proposed sequences were evaluated and the measured
performance counters with them were used to choose new
optimizations to try. Even though this was a very systematic
approach, the time required for this method was almost akver
- weeks for each benchmark. Our technique does not need to
generate performance counters during each iteration,rbut i
1 ) 1 1 1 1 1 . stead produces a single model to predict the best optiraizati
0 50 100A . 1-50 200 250 300 350 400 450 Sequences for a program
Optimization (sorted by actual performance) Cavazos et al. address the problem of predicting good
Fig. 5. Correlation Prediction for Xeon E5620 compiler optimizations by using performance counters to
automatically generate compiler heuristics [8]. That wads
limited to the traditional optimization space of the Pathi$c

h ; fth bl tic benchmark compiler. Despite the numerous transformations consitjere
€ performance of the more problemalic bénchmarks such,g complexity is not cmparable to the restructuring transf

doitgen or gemm and reached the space optimal performangg. ;s o tomatically generated by the polyhedral franniewo

for those. ) . ) ) Chen et al. developed the CHILL infrastructure [9], a
As a future work, we will also investigate clustering thR

Performance Imp.
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bench ks i | i iolifv the | polyhedral loop transformation and code generation frame-
enchmarks into several categories to simplify the legni o Tiyari et al. [35] coupled the Active Harmony search

process and improve the overall prediction quality on eagﬁgine to automatically tune some high-level transforomati
cluster. However preliminary results indicates an emtierbarameters, such as tile sizes. In this paper we target guite
clustering corresponds to isolating the benchmarks on Mhiﬁifferent search space, going tuning the individual patanse
tiing in our framework prevents ICC from performing they o yansformation: we balance the trade-off between séver

sam§b$ptin}izstioqs as withm;]t itl; thkeretzjy emp.rllasizing tIEB%ssiny contradictory objectives, such as parallelimgtdata
sensibility of the clustering to the back-end compiler ieas. locality enhancement and vectorization, demonstrating ou

If such pattern is confirmed, it opens the research problem r%fsults on a variety of benchmarks and machines
how to characterizethe compiler optimization features, and to Pouchet et al. performed empirical search to directly find

integrate the result into the performance models. the coefficients of the affine scheduling matrix in a polyhe-
dral framework. [31]. While the results showed significant
improvements on small kernels, the empirical search needed
In recent years, considerable research has addressdiv@eraip to a thousand runs for larger benchmarks [30]. In this
compilation and its benefits have been reported in sevelal pwork, we have abstracted the scheduling matrix behind high-
lications [22], [10], [11], [15], [19], [1]. Iterative conifation level polyhedral primitives and the associated cost mofiels

V. RELATED WORK



selecting the enabling transformations, reducing theckeaon the target machine, we achieve an average speeduf>of 6
space to only a few hundred possibilities in place of thever the Intel ICC compiler, which corresponds to an average
billions of possible schedules. This enabled us achieve 0h83% of the best possible performance among all points in

average 85% of the search-space-optimal performance inthe entire search space,

more than 5 runs.

VI. CONCLUSION
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improve the portability of the optimization process acrass
variety of architectures. Iterative compilation and maehi
learning techniques have been demonstrated as power{
mechanisms to automatically compute good compiler flags,
improving the speed of the generated program and automati-
cally adapting to the target architecture. 2

However, in the multi-core era with increasingly complex
hardware, very advanced high-level transformation mecha-
nisms are required to efficiently map the program on the targ
machine. Complex sequences of loop transformations are
needed to implement tiling, parallelization and vectdiaa
all together. While all these optimizations have been studie
independently, in practice they must be combined to op#miz
performance.

A modern loop nest optimizer faces the challenge of some:

[4]

times contradictory cost models, simply because there is no
single solution that may maximize parallelism, vectoimat
data locality and still achieve the best performance. Ver A
little work has been done to date in using learning mod-
els for selecting high-level transformations, to drive ago
nest optimizer that operates on a very rich and complem
search space. Our work is the first to propose the use of
learning models to compute effective loop transformations
in the polyhedral modelencompassing tiling, parallelization,
vectorization and data locality improvement via high-leve g
primitives. To determine the best loop transformations dor
program, we decompose the problem into (1) searching f%]
the best sequence of high-level polyhedral primitives.(e.g
tiling, vectorization, etc.); and (2) using static cost ralsdto
compute the final sequence of elementary loop transformstid'0l
that implement those primitives.

In this work, we leverage the power of the polyhedral
transformation framework to automatically build very cdep [11]
sequences of transformations, enabling tiling and pdizdle
tion transformations on a wide range of numerical codeg?]
To select an effective optimization in this space, we have
implemented a speedup predictor model that correlatesitiie r
time characteristics of a program (modeled with perfornean¢i3]
counters) with the speedup expected from a given polyhedral
optimization (modeled with a sequence of high-level primi-
tives). We evaluated our approach using two machine legrnin
algorithms, linear regression and support vector mactone, (14
a variety of benchmarks and two multi-core machines. For
the test suite, the best points in our optimization searetep [15]
yield an average 8 speedup (with peaks of up to 3% over
ICC on an Intel Xeon E7450. Using the predictive machine
learning models, testing at most five candidate optimipatio
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