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Abstract—Tiling is a key program transformation to achieve
effective data reuse. But the performance of tiled programs can
vary considerably with different tile sizes. Hence the selection of
good tile sizes is crucial.

Although there has been considerable research on analytical
models for selecting tile sizes, they have not been shown to be
effective in finding optimal tile sizes across a range of programs
and target architectures. Auto-tuning is a viable alternative that
is often used in practice, and involves the execution of different
combinations of tile sizes in a systematic fashion to find the
best ones. But this is sometimes infeasible — for instance when
the program is to be run on unknown platforms (e.g., cloud
environments).

We propose a novel approach for generating code to enable
dynamic tile size selection, based on monitoring the performance
of a few loop iterations. The selection operates at run time on
the “production” run, without any a priori knowledge of the ex-
ecution environment. We discuss the theory and implementation
of a parametric tiled code generator that enables run-time tile
size tuning and describe a search strategy to determine effective
tile sizes. Experimental results demonstrate the effectivenessof
the approach.

I. I NTRODUCTION

Tiling [5]–[7], [17], [28], [33], [39], [41] is a key program
transformation to achieve high data reuse and thereby realize
high levels of performance in loop-oriented programs. The
choice of tile sizes for loops has a significant impact on the
execution time of such programs. Advances inparameterized
tiling, where tile sizes are symbolic parameters [2], [14], [15],
[18], [19], [21], [22], [29], [37], have enabled the generation of
code that can be executed with different tile sizes in different
environments. There has also been much interest in developing
analytical models to determine optimal tile sizes as a function
of architectural parameters (sizes and associativities ofcaches
and TLBs, etc.) and code characteristics [8]–[10], [12], [13],
[16], [30]–[32]. However, so far no analytical model has been
shown to be effective in finding optimal tile sizes across
a wide range of programs and target platforms. Therefore,
the current state-of-practice for effective tile size selection is
to useauto-tuning [3], [34], [36], [38], where an empirical
search for the best tile sizes (often off-line) is carried out
by running the program with different tile sizes, and the best
performing configuration observed is retained. While ATLAS
[38] is perhaps the most widely known auto-tuning framework,
many other systems have demonstrated the effective use of

auto-tuning for selection of tile sizes and other optimization
parameters such as the degree of loop unrolling [3], [20], [23],
[25], [27], [34], [35].

Although auto-tuning is effective for tile size optimization,
it requires execution of a large number of tuning runs on the
target platform prior to the actual “production” run of an appli-
cation, and thus is more suited for the development of library
packages, rather than for user code. Further, auto-tuning may
not be feasible in contexts such as cloud computing [1], where
users run their applications in a cost-effective manner in the
“cloud,” but the characteristics of the machine(s) on whichthe
program is executed may not be known to the user beforehand.
Depending on the number of other applications running on
the same machine (a factor that is often beyond the control
of application users), every run of the application may require
different tile sizes for best performance. Furthermore, different
runs of an application could be on different platforms. Auto-
tuning based on empirical search of the space of possible tile
sizes is thus infeasible in this context.

In this paper, we develop a novel approach for the genera-
tion of tiled code, so that different tile sizes are dynamically
tried out as the actual “production” code (that is parametrically
tiled) executes, and an effective set of tile sizes is determined
on the fly. In other words, there is no need to rely ona
priori empirical search and auto-tuning. Instead, the program
observes and adapts its own run-time behavior, as a function
of the (unknown) machine characteristics and system load.
We propose new code generation techniques to enable on-
the-fly variation of the tile sizes during program execution.
The developed approach can handle affine multi-statement
imperfectly nested loop nests. In addition, we present an
algorithm for dynamic adaptation of tile sizes Our approach
works by moving towards better tile sizes by monitoring the
performance of a few iterations of the loop. We demonstrate
that such a run-time adaptation is able to achieve near-optimal
performance for a number of benchmarks.

The main contributions of the paper are as follows.
⋄ The development of the theory and code generation tech-

niques to allow variation of tile sizes during the execution
of the program. To the best of our knowledge, this is the
first solution for this code generation problem.

⋄ The derivation of an adaptation strategy that dynamically
varies the tile sizes in order to identify effective ones.



The rest of the paper is organized as follows. In Section II,
we motivate the work with an example. Section III presents
the theory and code generation techniques that allow dynamic
tile size variation. In Section IV, an adaptation strategy to
achieve optimal performance using the tile size variation
scheme is described. Experimental evaluations are presented
in Section V. Related work is discussed in Section VI followed
by conclusions in Section VII.

II. M OTIVATION AND OVERVIEW OF APPROACH

We motivate the work using an example. Consider the tile
selection problem for thedsyr2k kernel shown in Figure 1,
which computesC := αABT + αBAT + βC.

f o r ( i = 0 ; i < N; i ++)
f o r ( j = 0 ; j < N; j ++)

C[ i ] [ j ] ∗= b e t a ;
f o r ( i = 0 ; i < N; i ++)

f o r ( j = 0 ; j < N; j ++)
f o r ( k = 0 ; k < M; k++) {

C[ i ] [ j ] += a lpha ∗ A[ i ] [ k ] ∗ B[ j ] [ k ] ;
C[ i ] [ j ] += a lpha ∗ B[ i ] [ k ] ∗ A[ j ] [ k ] ;

}

Fig. 1: dsyr2k Original Code
.

A parametrically tiled code variant ofdsyr2k is shown in
Figure 2.

f o r ( i t = c e i l (−1+1/ Ti ) ; i t <=f l o o r (N/ Ti −1/Ti ) ; i t ++)
f o r ( j t = c e i l (−1+1/ Tj ) ; j t <=f l o o r (N/ Tj −1/Tj ) ; j t ++)

f o r ( i =max ( ( i t∗Ti ) , 0 ) ; i<=min ( ( i t ∗Ti+Ti −1) ,N−1); i ++)
f o r ( j =max ( ( j t∗Tj ) , 0 ) ; j<=min ( ( j t ∗Tj+Tj −1) ,N−1); j ++)

C[ i ] [ j ] ∗= b e t a ;
f o r ( i t = c e i l (−1+1/ Ti ) ; i t <=f l o o r (N/ Ti −1/Ti ) ; i t ++)

f o r ( j t = c e i l (−1+1/ Tj ) ; j t <=f l o o r (N/ Tj −1/Tj ) ; j t ++)
f o r ( k t = c e i l (−1+1/Tk ) ; kt<=f l o o r (M/ Tk−1/Tk ) ; k t ++)

f o r ( i =max ( i t∗Ti , 0 ) ; i<=min ( i t ∗Ti+Ti −1, N−1); i ++)
f o r ( j =max ( j t∗Tj , 0 ) ; j<=min ( j t ∗Tj+Tj −1, N−1); j ++)

f o r ( k=max ( k t∗Tk , 0 ) ; k<=min ( k t∗Tk+Tk−1,M−1); k++)
{

C[ i ] [ j ]+= a lpha∗A[ i ] [ k ] ∗B[ j ] [ k ] ;
C[ i ] [ j ]+= a lpha∗B[ i ] [ k ] ∗A[ j ] [ k ] ;

}

Fig. 2: dsyr2k Parametrically Tiled Code
.

Table I shows the performance variation observed by em-
pirical search over tile sizes in the range between2 and 64
in powers of2 (2, 22, . . . , 26) for each of the tile dimensions.
Ti, Tj, Tk denote tile sizes for the three loop dimensions.
The programs were compiled with Intelicc 12.0, withN =
2500,M = 2500, and were run on a single core of an Intel
Xeon E5630 quad-core processor running at 2.53GHz with
32KB L1 cache.

The worst-case tile size tuple (2 × 8 × 2) results in a
slowdown of almost4× compared to the best tile sizes in
this space, highlighting the importance of tile size selection.
In scenarios where empirical auto-tuning is not feasible to
determine optimal tile sizes, we face the challenging issueof

TABLE I: Parametric Tiling Extreme Performance

Ti Tj Tk Time (in s)

Best tile sizes 64 8 64 27.75
Worst tile sizes 2 8 2 105.93

determining effective tile sizes. In this paper, we presenta
machine-independent solution to this problem.

We now illustrate the approach we develop. Figure Figure 3
shows the structure of a 2D parametrically tiled loop nest.

/ / T i l e l o o p s
f o r ( i t = l b i t ; i t <= u b i t ; i t ++)

f o r ( j t = l b j t ; j t <= u b j t ; j t ++)
/ / P o i n t l o o p s
f o r ( i = f1 ( i t , T i ) ; i <=f2 ( i t , T i ) ; i ++)

f o r ( j = f3 ( j t , Tj , i ) ; j <=f4 ( j t , Tj , i ) ; j ++)
/ / Task body
{ . . . }

Fig. 3: Parametrically Tiled 2D Code Structure

Figure 4 shows the generated code structure of the tiled
code using our approach to on-the-fly variation of tile sizes.

g l o b a l i m i n = l e x i c o g r a p h i c m i n i ;
s t a r t t i m e r ;
/ / T i l e l o o p s
f o r ( i t = l b i t ; i t <= u b i t ; i t ++) {

f o r ( j t = l b j t ; j t <= u b j t ; j t ++)
/ / P o i n t l o o p s
f o r ( i = f5 ( i t , Ti , g l o b a l i m i n ) ; i<=f2 ( i t , T i ) ; i ++)

f o r ( j = f3 ( j t , Tj , i ) ; j <=f4 ( j t , Tj , i ) ; j ++)
/ / Task body
{ . . . }

i f ( N I t e r a t i o n s o f i t )
{

end t imer ;
RecordPer fo rmance ( Ti , Tj , exect ime ) ;
T i p r ime = Fe tchNewT i leS izes ( ) ;
T j p r ime = Fe tchNewT i leS izes ( ) ;
/ / upda t e i t , l b i t , u b i t , g l b o a l i m i n
Ti=T i pr ime ;
Tj=T j pr ime ;
s t a r t t i m e r ;

}
}

Fig. 4: Code with Dynamically Varying Tile Sizes

The essential idea is that the execution time is monitored
for the current tile sizes and decisions are made to change
the tile sizes based on the observations. The main problem
is to suitably traverse the iteration space as tile sizes are
changed during the actual loop execution, ensuring that no
loop iteration is (i) omitted or (ii) executed multiple times,
and no dependence is violated. The details of the approach
are presented in the next section.

Using the dynamic adaptive approach we develop in this
paper (labeledEvolveTile), the running times obtained for the
dsyr2k example are shown in Table II, for the two cases of
starting the adaptation from the best and worst possible tile
sizes from Table I.



TABLE II: Performance with dynamic tiling

Ti Tj Tk Original (in s) EvolveTile (in s)

64 8 64 27.75 28.60
2 8 2 105.93 36.76

We observe that dynamically adapting the tile sizes speeds
up performance for the worst possible static tile size by2.9×,
while the running time for the best static tile size remains
almost unaffected (3% slowdown) with the adaptive scheme.
This illustrates the potential profitability of the approach as
well as the low overheads of the run-time tile size adaptation
mechanism.

III. F ORMULATION OF DYNAMIC TILE SIZE VARIATION

Our approach considers the class of affine imperfectly
nested loops. which we assume have been suitably pre-
processed if necessary to make rectangular tiling legal [6],
[39]. We first present an algebraic characterization for the
generation of loop bounds for non-adaptive parametric tiling,
using a notation similar to that used in prior work of
Baskaran et al. [2]. We then develop the formulation for the
modified lower and upper bounds of the tile iterators as the
tile sizes are changed.

A. Parametric Tiling

Let v1, v2, . . . , vn represent the loop iterators of a loop
nest of depthn (v1 representing the outermost loop andvn
representing the innermost loop). Letp1, p2, . . . , pk represent
symbolic parameters (such as problem sizes). The systemS

(of m inequalities) representing the iteration domain of the
program is given by

S :

n
∑

j=1

Bij .vj +

k
∑

j=1

Pij .pj + ci ≥ 0, i ∈ [1..m]

where eachBij and Pij represent the coefficients of the
corresponding loop variable and parameter, respectively,and
ci represents a constant in an inequality. Such a formulation
is possible since the loop bounds are constrained to be
affine functions of the surrounding loop iterators and program
parameters.

The m inequalities represent the lower and upper bounds
of all loop variables. Hence the systemS is in a row echelon
form, where the inequalities expressing the loop bounds of a
variablevi have coefficient0 for all variablesvj : i < j ≤ n.
In other words, by construction the bounds of a loop variable
vi are expressed as a function of its outer loop variables
(vj : 1 ≤ j < i), parameters (~p) and constants.
max(f11(~p, c), . . . f1k(~p, c)) ≤ v1 ≤ min(g11(~p, c), . . . g1l(~p, c))

max(f21(v1, ~p, c), . . . f2q(v1, ~p, c)) ≤ v2
≤ min(g21(v1, ~p, c), . . . g2r(v1, ~p, c))

. . .

max(fn1(v1, . . . vn−1, ~p, c), . . . fny(v1, . . . vn−1, ~p, c)) ≤ vn
≤ min(gn1(v1, . . . vn−1, ~p, c), . . . gnz(v1, . . . vn−1, ~p, c))

Conversely, given a system of inequalities in row echelon
form, loops generated with bounds for each loop variable
derived directly from the system (in row echelon form) scan
all valid integer points represented by the system.

The PTile approach to parameterized tiling relies on the
above property for generating code from a system of in-
equalities in row echelon form and the fact that a system
with tiling transformation (equivalent to the original system)
can be derived. Each variablevj in the domain (which in
turn represents a dimension in the domain) can be expressed
in terms of tile coordinatestj , tile sizes sj , and intra-tile
coordinatesuj as: vj = sj .tj + uj ∧ 0 ≤ uj ≤ sj − 1. The
systemS can now be (equivalently) represented as:

S′ :

n
∑

j=1

Bij .sj .tj +

n
∑

j=1

Bij .uj +

k
∑

j=1

Pij .pj + ci ≥ 0,

i ∈ [1..m] ∧ 0 ≤ uj ≤ sj − 1, j ∈ [1..n]

A new systemST is derived fromS′ such that the solutions to
S′ satisfyST . In the new systemST , the intra-tile coordinates
are eliminated through a relaxed projection:

ST :
n
∑

j=1

Bij .sj .tj +
n
∑

j=1

B+

ij .(sj − 1) +
k

∑

j=1

Pij .pj + ci ≥ 0,

i ∈ [1..m]

Two important properties ofST (details may be found in [2])
are: (1) the solutions toS′ also satisfyST and (2)ST is in
row echelon form. Hence scanningST will generate the tile
loops (loops with tile coordinates).

The constraints expressed byST together with that ex-
pressed byS′ represent the complete set of inequalities char-
acterizing the loop structure of sequential tiled code. Scanning
ST generates the tile loops as discussed above. ScanningS′

generates the intra-tile loops in terms of tile coordinates, tile
sizes, and intra-tile coordinates.

Henceforth, the tile coordinatestj are interchangeably re-
ferred to as tile iterators and intra-tile coordinatesuj as point
iterators.

B. Loop bounds for adaptive tile sizes

Consider a loop with iteratorvk in the original untiled code,
and the corresponding tile loop with iteratortk and the point
loop with iteratoruk in the tiled code. Suppose after a certain
“complete” iteration oftk, we want toswitch the tile sizesk of
tk to s′k. By a “complete” iteration we mean, the body of the
for loop with iteratortk has completed execution. We have,

vk = sk.tk + uk ∧ 0 ≤ uk ≤ sk − 1

Hence, iteration points up tosk.tk + sk − 1 of vk have been
scanned at the time ofswitch. For the remaining program we
have,

vk ≥ sk.tk + sk

The systemS of inequalities representing the remainder of
the iteration domain of the program is given by the original



set of inequalities for the iteration domain along withvk ≥
sk.tk + sk:

n
∑

j=1

Bij .vj +

k
∑

j=1

Pij .pj + ci ≥ 0, i ∈ [1..m] (1)

vk − sk.tk − sk ≥ 0 (2)

The new bounds for tile coordinates can now be computed
with vk expressed as

vk = s′k.t
′
k + u′

k ∧ 0 ≤ uk ≤ s′k − 1 (3)

wheret′k is the new tile-coordinate andu′
k, the new intra-tile

coordinate for the loop variablevk.
So, by combining (1), (2) and (3) in a single system we
connectsk to the new tile sizes′k, and eliminating point loop
iterators in this system leads to a valid lower bound ont′k to
execute the remainder of the iteration domain.

It has to be noted that, by virtue ofS being inrow echelon
form, only the bounds oftk and the bounds of tile loops inner
to tk (ti, i ∈ [k..n]) may be modified by the newS. The
bounds of loops outer tok (tj , j ∈ [1..k−1]) will not change.
As an immediate consequence, at the time ofswitch, any of
the tile sizes of the tile iterators inner tok may be changed
but tile sizes of iterators outer tok cannot be changed.

C. Code Generation

At the time ofswitching the tile sizesk of tile iteratortk to
s′k, recalculation of bounds for tile iterators and point iterators
are handled in the following way. In theswitch code, tk is
assigned the new lower bound andsk is assigned the new tile
sizes′k. Optionally, tile sizes of the loops inner tok may also
be changed.

Doing only this however may result in rescanning of some
of the scanned iteration points due to the relaxed projection
performed during the elimination of intra-tile coordinates
(described in§III-A). To avoid this, in the original system
of inequalitiesS, for each of the loop variablesvk whose
tile sizes may potentially be changed, a new inequality is
introduced:

vk ≥ global vk min

along with the original set of inequalities,

n
∑

j=1

Bij .vj +

k
∑

j=1

Pij .pj + ci ≥ 0, i ∈ [1..m]

The global vk min is a symbolic constant and is initially
set to lexicographic minimum for the loop variablevk; this
can be computed using a parametric integer linear program-
ming solver such as PIP [11]. Tiled code is generated from
this extended set of inequalities and at the time ofswitch,
global vk min is set to(sk.tk + sk). Thus, since the check
that the point iteratoruk ≥ global vk min had already
existed in the point loops, no points will be rescanned. Thus,
the generated code is guaranteed to scanall the iteration points
only once.

The tile size for the loop corresponding tovk may
be subsequently changed again when the conditionuk ≥
global vk min becomes true always. This will be the case
when the iteration points up to(sk.tk + sk − 1) which were
scanned with the old tile size are visited with the new tile size
also. In other words, when the inequality(s′k.t

′
k + t′k − 1) ≥

(global vk min − 1) holds, the tile size may be further
adapted.

D. Example

We now illustrate the above steps using an example. Con-
sider the input loop nest in Figure 5, and its tiled version as
produced by the PTile algorithm in Figure 6. The result of
the application of the above mentioned algorithms is shown
in Figure 8, along with the necessaryswitch code to adapt the
tile size at run-time.

Finally, to further illustrate the tiled execution with run-time
tile size adaptation, Figure 7 shows an illustrative tilingof the
iteration space that could result from dynamically varyingthe
tile sizes.

IV. T ILE SIZE ADAPTATION

We now discuss the use of previously described tile size
variation technique to optimize performance. For dense itera-
tion spaces, one observes that there are approximately the same
number of iteration points between any two equal intervals in
terms of iterator values of a loop. This fact can be exploited
to gauge the performance of a given tile size by measuring the
time it takes to execute a certain number of iterations of a tile
loop instead of having to wait for the loop nest to completely
finish running. Using the above parametric code generation
scheme, one can switch to more promising tile sizes as the
loop is continuing the execution.

A. Search Heuristic

Consider the loop nest shown in Figure 9 (I). The per-
formance of the loop nest is clocked and the tile sizes are
adjustedNEvolvePoints number of times. Let such points in
the program be calledEvolvePoints. It may be noted that if this
number is too low then there will be less room for adaptation.
On the other hand, if this number is set too high then the
overhead due to numerous adaptations of the tile sizes may
over-compensate the benefits accrued due to maneuvering to-
wards effective tile sizes. Section IV-B provides an estimation
on the number ofEvolvePoints to be executed in a program.
At an EvolvePoint, the performance is recorded and a heuristic
(one such is Figure 9 - II) is invoked to get the new tile sizes
to switch to.

The performance of a loop is monitored everyNIterations

iterations whereNIterations is given by loop−lengh

NEvolvePoints
.

Thus, the more theEvolvePoints there are, the intervals in
which the performance is clocked is smaller and similarly, the
lesser theEvolvePoints, the performance is metered at larger
intervals.

In order to search rectangular tile spaces (i.e. the tile spaces
where tile sizes of different dimensions may be different),



f o r ( i =0; i<=N; i ++)
f o r ( j = i ; j <=N; j ++) {

/ / T i l e body
S1 ( i , j ) ;

}

Fig. 5: Initial Code

/ / T i l e l o o p s
f o r ( i t = c e i l ((−Ti + 1 ) / Ti ) ; i t <=f l o o r (N/ Ti ) ; i t ++)

f o r ( j t = c e i l ( ( i t ∗Ti−Tj + 1 ) / Tj ) ; j t <=f l o o r (N/ Tj ) ; j t ++)
/ / P o i n t l o o p s
f o r ( i =max ( i t∗Ti , 0 ) ; i<=min ( i t ∗Ti+Ti −1, N ) ; i ++)

f o r ( j =max ( j t∗Tj , i ) ; j <=min ( j t ∗Tj+Tj −1, N ) ; j ++) {
/ / T i l e body
S1 ( i , j ) ;

}

Fig. 6: Tiled Code

Fig. 7: Run-time Tile Sizes

/ / T i l e l o o p s
g l o b a l i m i n = 0 ;
f o r ( i t = c e i l ((−Ti + 1 ) / Ti ) ; i t <=f l o o r (N/ Ti ) ; i t ++) {

g l o b a l j m i n = 0 ;
f o r ( j t = c e i l ( ( i t ∗Ti−Tj + 1 ) / Tj ) ; j t <=f l o o r (N/ Tj ) ; j t ++) {

/ / P o i n t l o o p s
f o r ( i =max ( max ( i t∗Ti , 0 ) , g l o b a l i m i n ) ;

i<=min ( i t ∗Ti+Ti −1, N) ; i ++) {
f o r ( j =max ( max ( j t∗Tj , i ) , g l o b a l j m i n ) ;

j<=min ( j t ∗Tj+Tj −1, N) ; j ++) {
/ / T i l e body
S1 ( i , j ) ;

}
}
/∗ S w i t c h code f o r T j b e g i n s ∗ /
/ / Change T j a t t h e end o f an i t e r a t i o n o f j t
i f ( s w i t c h c o n d i t i o n f o r j t == t rue ) {

g l o b a l j m i n = j t ∗Tj+Tj ;
j t = c e i l ( ( j t ∗Tj+Tj+1−Tj pr ime ) / T j p r ime ) ;
j t = j t − 1 ; / / ’ f o r ’ l oop i n c r e m e n t s i t e r a t o r
Tj = T j pr ime ; / / T j p r i m e − new t i l e s i z e f o r j t

}
/∗ ‘ S w i t c h code f o r T j ends ∗ /

}
/∗ S w i t c h code f o r T i b e g i n s ∗ /
/ / Change T i a t t h e end o f an i t e r a t i o n o f i t
i f ( s w i t c h c o n d i t i o n f o r i t == t rue ) {

g l o b a l i m i n = i t ∗Ti+Ti ;
i t = c e i l ( ( i t ∗Ti+Ti+1−Ti pr ime ) / T i p r ime ) ;
i t = i t − 1 ; / / ‘ f o r ’ l oop i n c r e m e n t s i t e r a t o r
Ti = T i pr ime ; / / T i p r i m e − new t i l e s i z e f o r i t
Tj = T j pr ime ; / / T j p r i m e − new t i l e s i z e f o r j t
}

/∗ S w i t c h code f o r T i ends ∗ /
}

Fig. 8: Tiled Adaptive Code

tile sizes of the loops are tuned from outermost to innermost
loop and again tile size of the outermost loop is tuned and so
on. This, as opposed to turning a particular loop completely
and moving onto the next, is necessary as there may exist
an interplay between tile sizes of different loop dimensions
which is due to the fact that tiles with the same amount of
data footprint may be realized with different shapes and one
leads to better locality than the other [5]. Hence, the strategy
to tune a loopNTunings times and going on to tuning the
next loop is adopted.

Algorithm shown in Figure 9 (II)-Fetch New Tile sizes
takes as input the current tile size and the performance queue
which holds performance of the tile sizes examined so far. The
search for effective tile sizes is bootstrapped by checkingthe
performance of the current tile size, half of that and doublethat
size. Notice that when the size of the performance queue is 1,
double the input tile size is returned and when the size of the
performance queue is 2,1

4

th
of the input tile sizeCurrentT

is returned because the original tile size was doubled in the
previous iteration and thus it needs to be divided by4 to get
half of the original tile size.

Once the bootstrapping is done, the tile sizebest tile size
which has performed by far the best is retrieved. The tile size
just smaller than this is called theleft neighbor and just greater
than this is called theright neighbor. If the best tile size has
no left neighbor then decreasing the tile size appears to lead
to better performance. Hence the new tile size to be examined
is half of the best found yet. On the other hand, if there is

no right neighbor then increasing the tile size seems to be the
promising way to go. Thus, the quest continues with doubling
the tile size. If the performance is decreasing in either direction
then the supposition is, the effective tile size lies between the
current best tile size and one of itsneighbors. The search
moves towards that neighbor whose performance is closer to
the best tile size performance. If the most effective tile size is
the best tile size itself then after a very fewEvolvePoints, the
neighbors will come very close to thebest tile size and the
algorithm will start returning thebest tile size in the subsequent
calls.

B. Determining the number of EvolvePoints

In order to just be able to reach the most effective tile
size (not knowna priori) for a loop, all the tile sizes in the
allowable range need to be searched, which is between the
lower bound and upper bound of that loop in the original,
untiled program. Intuitively, for larger ranges, moreEvolve-
Points are needed than for smaller ranges. Following the search
strategy described inFetch New Tile sizes algorithm, we now
derive the minimum number ofEvolvePoints NEvolvePoints

that are required to reach the effective tile size starting from
anywhere in the allowable range. This is, with the assumption
that there is only one effective tile size and is constant.
If there are more than one effective tile sizes then lesser
EvolvePoints will be sufficient than given by the derivation.
NEvolvePoints is input to the loop nest depicted in Figure 9
(I).



(I) Loop nest employing run-time tile size variation (II) Fetch New Tile sizesalgorithm

Input: Number of EvolvePoints:NEvolvePoints
Number of tunings at each level:NTunings
Tile sizes:T0, T1 . . . Tn−1

LoopLength← (ub0 − lb0 + 1)
NIterations← LoopLength

NEvolvePoints
CurrentTuningLevel← 0
TuningsAtCurrentLevel← 0
start time← clock()
for it0 = lb0 → ub0 do

for it1 = lb1 → ub1 do
. . .
for itn−1 = lbn−1 → ubn−1 do

task body
end for

end for

if ((it0 − lb0 + 1) mod NIterations = 0) then
end time← clock()
time← end time− start time
i← CurrentTuningLevel
RecordPerformance(PerfQueue, Ti, time)
T ′

i ← Fetch New Tile sizes(Ti, P erfQueue)
if T ′

i 6= Ti then
Update it0, lb0, ub0, NIterations
Increment TuningsAtCurrentLevel

else
TuningsAtCurrentLevel← NTunings

end if
if TuningsAtCurrentLevel = NTunings then

Increment CurrentTuningLevel modulo n
PerfQueue.clear()
TuningsAtCurrentLevel← 0

end if
start time← clock()

end if
end for

Input: Current tile size: CurrentT , Performance data queue:
PerfQueue

Output: New tile size:NewT
if PerfQueue.size() = 1 then

NewT ← CurrentT × 2
else ifPerfQueue.size() = 2 then

NewT ← CurrentT/4
else

BestT ile← FindBestT ileSize(PerfQueue)
LeftNeighbor ← FindLeftNeighbor(PerfQueue)
RightNeighbor ← FindRightNeighbor(PerfQueue)
if LeftNeighbor = nil then

NewT ← BestT ile/2
else ifRightNeighbor = nil then

NewT ← BestT ile× 2
else

if Perf(LeftNeighbor) > Perf(RightNeighbor) then
NewT ← (BestT ile+ LeftNeighbor)/2

else if Perf(LeftNeighbor) < Perf(RightNeighbor)
then

NewT ← (BestT ile+RightNeighbor)/2
else

NewT ← CurrentT
end if

end if
end if
return NewT

Fig. 9: (I) The loop nest employing run-time tile size variation. (II) Fetch New Tile sizes algorithm

Let the lexicographic minimum and maximum for a loop
iterator vi in the original iteration space beNi min and
Ni max respectively. The range of values the tile size for tile
iterator ti corresponding to iteratorvi may take are in the
interval [Ni min, Ni max] and length of the interval is,

Ni range = Ni max −Ni min + 1

In Fetch New Tile sizes algorithm, the tile sizes are first
varied in geometric progression and once the interval in which
the effective tile size lies is found, binary search is used to
approach the effective tile size. The bound on the number of
steps it takes for each of these phases is⌈log2(Ni range)⌉.

Thus, the upper bound on the number of tiles to be explored
for a given dimension is:

2× ⌈log2(Ni range)⌉

For a loop nest withn loops, the search is carried out
in an iterative manner and in each iteration, every loop is
tunedNTunings times. At the beginning of a tuning step,

the performance of 3 tile sizes – i.e., the current tile size,half
of that, double of that – are examined before making a decision
on moving one way or the other. The two tile sizes explored
– i.e., half of the initial tile size and double the initial size –
constitute as necessary but not necessarily useful explorations
in that these tile sizes may have already been explored in the
previous iteration of tuning of the loop. Hence, the number
of useful tile size variations in an iteration of tuning of a
loop is NTunings − 2. Accounting for this bootstrapping,
the minimum number ofEvolvePoints is

NEvolvePoints =

n
∑

i=1

⌈

2× ⌈log2(Ni range)⌉

NTunings− 2

⌉

×NTunings

(4)

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness ofEvolveTile, we characterize
the behavior of non-adaptive vs. adaptive tiling schemes for
a large space of possible input tile sizes. Specifically, we



TABLE III: Benchmarks Used in the Experiments

Description Problem size

dsyrk Symmetric rankk update N=3000
dsyr2k Symmetric rank2k update N=2500
fdtd-2d 2D Finite difference time domain method TSTEPS=2000, N=2000

adi Finite difference method for PDEs TSTEPS=1500, N=1500
jacobi-2d 2D Jacobi method TSTEPS=2500, N=2500
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Fig. 10: Running times ofdsyrk using GNUgcc
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Fig. 11: Running times ofdsyrk using Intel icc
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Fig. 12: Running times ofdsyr2k using GNUgcc
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Fig. 13: Running times ofdsyr2k using Intel icc

perform single-level tiling and compare the performance of
the EvolveTile technique for dynamic tile size adaptation with
the performance of a non-adaptive approach, implemented by
the PTile system [2]. We note that all our experiments are
done using a sequential execution of the programs.

The experiments were run using one core of an Intel Xeon
E5630 quad-core processor, running at 2.53GHz with 32KB
L1 cache. The tested configuration has 12GB of RAM and runs
Linux kernel version 2.6.18-164.el5. Programs were compiled
with GNU gcc 4.5.1, with-O3 flag, and Intelicc 12.0.0, with
-fast flag.

We used five benchmarks extracted from the PolyBench [26]
suite. They are listed in Table III, with the specific problem
sizes we have used. All the tested benchmarks have nested
loops of depth 3, andrectangular tile sizes which are powers
of 2 in the range(2, 2, 2) to (64, 64, 64), that is, a 3D tile
size tuple is(2i, 2j , 2k) with i, j, k ranging from2 to 6 are
explored.

Figure 10 to 19 show the running time for each bench-
mark for different tile size tuples. Each point on thex axis
corresponds to a tile size tuple, and the tile size tuples are
ordered lexicographically. They axis shows the execution time
for the corresponding tile size combination. ForEvolveTile
the tile size tuple is the initial seed tile sizes it begins
the execution with, and the tile sizes are adapted as the
computation proceeds.

We note that the periodic spikes observed in thePTile
running times correspond to large changes in the tile sizes.
This is an effect of the lexicographic ordering of the tile size
tuples on thex-axis; for example,(4, 64, 64) is immediately
followed by (8, 2, 2).

The overall trend of theEvolveTile performance curve
closely follows thePTile performance curve, but with a much
smaller variability, and very often with a much lower execution
time. This trend may be clearly spotted in the execution
time characterization offdtd-2d benchmark for compilergcc,



0 50 100 150 200 250
60

80

100

120

140

160

180

Tile sizes indexing from 2X2X2 to 64X64X64

E
xe

cu
tio

n 
T

im
e 

(in
 s

)

fdtd−2d

 

 

gcc − PTile
gcc − EvolveTile

Fig. 14: Running times offdtd-2d using GNUgcc
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Fig. 15: Running times offdtd-2d using Intel icc
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Fig. 16: Running times ofadi using GNUgcc
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Fig. 17: Running times ofadi using Intel icc
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Fig. 18: Running times ofjacobi-2d using GNUgcc
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Fig. 19: Running times ofjacobi-2d using Intel icc

shown in Figure 14. More specifically, the tile size combi-
nation which leads to the execution time spike inPTile also
leads to a spike (although a much smaller one) inEvolveTile.
This is because, during the search for effective tile sizes,a
certain fraction of the total computation is performed using
the seed tile size. Therefore, if the computation is startedoff
with poorly performing tile sizes, then the performance of the
first few iterations of the computation is greatly affected until
the adaptation starts changing the tile sizes.

However, when theNEvolvePoints is set to a value
greater or equal to the lower bound given by Equation (4),

most of the computation will be performed using adapted
tile sizes found through the search algorithm proposed
(Fetch New Tile sizes algorithm). In our experiments, we
have setNEvolvePoints according to this rule.

We summarize our experimental results in Table IV and
Table V, for thegcc andicc compilers respectively. We report
the best and worst execution time found in the space analyzed
(rectangular tile sizes from2 to 64), as well as the average
execution time of all the tested tile sizes.

We observe from Table IV and Table V the robustness of
our approach in particular through theAverage column. For



TABLE IV: Execution Time with GNUgcc

Scheme Best (in s) Average (in s) Worst (in s)

dsyrk PTile 44.79 59.46 113.09
EvolveTile 43.82 47.34 60.66

dsyr2k PTile 38.72 49.99 98.33
EvolveTile 38.39 40.82 50.91

fdtd-2d PTile 65.90 80.30 176.59
EvolveTile 65.31 68.62 80.91

adi PTile 117.19 136.11 214.67
EvolveTile 118.32 125.87 139.27

jacobi-2d PTile 104.22 170.27 398.57
EvolveTile 105.34 116.87 179.86

TABLE V: Execution Time with Intelicc

Scheme Best (in s) Average (in s) Worst (in s)

dsyrk PTile 15.02 50.46 155.00
EvolveTile 13.94 19.21 48.87

dsyr2k PTile 27.75 45.65 105.93
EvolveTile 28.31 31.37 47.83

fdtd-2d PTile 42.21 62.62 165.24
EvolveTile 43.50 48.65 62.86

adi PTile 103.21 126.17 185.87
EvolveTile 99.41 109.67 124.26

jacobi-2d PTile 45.15 64.19 157.35
EvolveTile 45.01 50.49 67.85

instance withgcc, the difference between the best tile sizes
and the average across the space usingPTile ranges from 16%
to 55%, while usingEvolveTile this difference narrows down
to less than 10%, and often below 5%. This in conjunction
to the fact that performance of the best tile sizes is similar
for both schemes shows that tile-size adaptation approach can
compensate with great success ineffective seed tile sizes,and
correctly adapt at run time the tile sizes towards a very good
solution. Similar observations are done when usingicc, as
shown in Table V: for all butdsyrk the difference between
the best and average numbers forEvolveTile is around 10%,
a number which is from 2 to 8 times smaller than withPTile,
while again observing a minimal difference between the best
execution time forPTile andEvolveTile.

Finally, we also report the overall best running times in
Table VI when all the tile sizes which are powers of2
in the range from2 to the benchmark problem size are
considered, for all benchmarks. This space is much larger
than the previous tile size space considered, and spans the
entire possibilities of power-of-two tile sizes. We observe only
a marginal benefit in increasing the space size, at most a
5% performance improvement. Nevertheless our observations
on the low overhead of the adaptive scheme are confirmed,
sinceEvolveTile performs at worst 5% slower thanPTile when
using directly the best tile size. Interestingly, foradi with the
icc compiler we observe thatEvolveTile performs even better
thanPTile. This is because the search algorithm inEvolveTile
is not limited to using only the tile sizes that are power of
two, as shown in Figure 9(II), and for this specific case the
best working tile size thatEvolveTile computed during the
execution was better than any power-of-two tile sizes tested

with PTile.

TABLE VI: Best Execution Time Obtained

Tested Tile sizes Scheme gcc (in s) icc (in s)

dsyrk (2, 2, 2) to PTile 43.35 12.97
(2048, 2048, 2048) EvolveTile 43.41 13.51

dsyr2k (2, 2, 2) to PTile 37.77 27.04
(2048, 2048, 2048) EvolveTile 37.81 27.84

fdtd-2d (2, 2, 2) to PTile 64.12 42.21
(1024, 1024, 1024) EvolveTile 64.08 43.29

adi (2, 2, 2) to PTile 117.19 103.21
(1024, 1024, 1024) EvolveTile 117.99 98.54

jacobi-2d (2, 2, 2) to PTile 104.22 43.82
(2048, 2048, 2048) EvolveTile 104.28 44.43

VI. RELATED WORK

Exploiting data locality is a key issue in achieving high
performance and tiling has been widely used to improve data
locality in loop nests. Since, the choice of tile sizes can greatly
influence the realized performance, a number of researchers
have addressed the problem of selecting good tile sizes based
on cache-based performance models [4], [8]–[10], [12], [13],
[24], [31], [40]. Hsu and Kremer [16] provide a comparative
study of tile size selection algorithms. Recently, Yuki et al.
[42] have explored the automatic creation of cubic tile size
models.

Several works have used search-based techniques for finding
tile sizes in an auto-tuning environment for known target
machines [3], [23], [34], [35], [38]. The ATLAS system
employs extensive empirical tuning to find the best tile sizes
for different problem sizes in the BLAS library; tuning is
done once at installation. Kisuki et al. [23] have used different
techniques such as genetic algorithms and simulated annealing
to manage the size of the search space. Tiwari et al. [35]
note: “a key challenge that faces auto-tuners, especially as we
expand the scope of their capabilities, involves scalable search
among alternative implementations.” The Active Harmony
project [34], [35] uses several different algorithms to reduce
the size of the search space such as the Nelder-Mead simplex
algorithm. However, auto-tuning is not suitable for scenarios
like cloud computing, where the characteristics of the target
platforms and the load due to other jobs cannot be known
before hand.

VII. C ONCLUSION

In this paper, we have developed an approach to dynamically
varying tile sizes as a tiled loop nest executes, to find effective
tile sizes for the execution environment. We presented the
theory behind the code generation techniques required to
enable such a dynamic variation of tile sizes. A tile-size
optimizing algorithm was also proposed that uses the tile
size adaptation capability to move towards effective tile sizes
starting from an initial set of seed tile sizes. Experimental
results on several benchmarks demonstrate that the approach
is robust and effective across a wide range of seed tile sizes.
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gular iteration spaces.ACM Trans. Program. Lang. Syst., 24(4):409–453,
2002.
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