Dynamic Selection of Tile Sizes

Sanket Tavarageéri Louis-Ncgl Pouchet J. Ramanujah Atanas Rountév P. Sadayappan

!Dept. of Computer Science and Engineering 2Dept. of Electrical & Computer Engineering
The Ohio State University Louisiana State University
2015 Neil Ave, Columbus, OH, USA Baton Rouge, LA, USA
Email: {tavarage, pouchet, rountev, sagi@rcse.ohio-state.edu Email: jxr@ece.lsu.edu

Abstract—Tiling is a key program transformation to achieve auto-tuning for selection of tile sizes and other optimioat
effective (jata reuse. But_ the per.form.ance of tiled programs @& parameters such as the degree of loop unrolling [3], [2CH],[2
vary considerably with different tile sizes. Hence the selection of [25], [27], [34], [35].

good tile sizes is crucial. e . . . S
Although there has been considerable research on analytical Although auto-tuning is effective for tile size optimizati

models for selecting tile sizes, they have not been shown to belt réquires execution of a large number of tuning runs on the
effective in finding optimal tile sizes across a range of programs target platform prior to the actual “production” run of arpdip
and target architectures. Auto-tuning is a viable alternative tha cation, and thus is more suited for the development of librar
Combimations of tie Sizes In a systematc fachion o fing the P2CKa0eS: rather than for user code. Further, auto-tuning m
best ones. But this is sometimes infeasible — for instance whennOt be feaS|bI§ n C°'.'“e’.“s suph as cloud cor_nputlng (1], \izvher
the program is to be run on unknown platforms (e.g., cloud USErs run their applications in a cost-effective manneha t
environments). “cloud,” but the characteristics of the machine(s) on witlod

We propose a novel approach for generating code to enable program is executed may not be known to the user beforehand.
dynamic tile size selection, based on monitoring the performance Depending on the number of other applications running on

of a few loop iterations. The selection operates at run time ON w0 ¢ame machine (a factor that is often beyond the control
the “production” run, without any a priori knowledge of the ex-

ecution environment. We discuss the theory and implementation Of application users), every run of the application may nequ
of a parametric tiled code generator that enables run-time tile different tile sizes for best performance. Furthermorgedint
size tuning and describe a search strategy to determine effecév runs of an application could be on different platforms. Auto
tile sizes. Experimental results demonstrate the effectiveness tuning based on empirical search of the space of possikle til
the approach. sizes is thus infeasible in this context.

In this paper, we develop a novel approach for the genera-
tion of tiled code, so that different tile sizes are dynariyca

Tiling [5]-7], [17], [28], [33], [39], [41] is a key program tried out as the actual “production” code (that is pararatty
transformation to achieve high data reuse and therebyzeesaliiled) executes, and an effective set of tile sizes is detezth
high levels of performance in loop-oriented programs. Than the fly. In other words, there is no need to rely an
choice of tile sizes for loops has a significant impact on th@iori empirical search and auto-tuning. Instead, the program
execution time of such programs. Advancespanameterized observes and adapts its own run-time behavior, as a function
tiling, where tile sizes are symbolic parameters [2], [14], [158f the (unknown) machine characteristics and system load.
[18], [19], [21], [22], [29], [37], have enabled the gendoatof We propose new code generation techniques to enable on-
code that can be executed with different tile sizes in differ the-fly variation of the tile sizes during program execution
environments. There has also been much interest in demglopi he developed approach can handle affine multi-statement
analytical models to determine optimal tile sizes as a fonct imperfectly nested loop nests. In addition, we present an
of architectural parameters (sizes and associativitiesoies algorithm for dynamic adaptation of tile sizes Our approach
and TLBs, etc.) and code characteristics [8]-[10], [12B][1 works by moving towards better tile sizes by monitoring the
[16], [30]-[32]. However, so far no analytical model has meeperformance of a few iterations of the loop. We demonstrate
shown to be effective in finding optimal tile sizes acrosthat such a run-time adaptation is able to achieve neamapti
a wide range of programs and target platforms. Therefofggrformance for a number of benchmarks.
the current state-of-practice for effective tile size sttm is The main contributions of the paper are as follows.
to useauto-tuning [3], [34], [36], [38], where an empirical ¢ The development of the theory and code generation tech-
search for the best tile sizes (often off-line) is carried ou niques to allow variation of tile sizes during the execution
by running the program with different tile sizes, and thetbes of the program. To the best of our knowledge, this is the
performing configuration observed is retained. While ATLAS first solution for this code generation problem.
[38] is perhaps the most widely known auto-tuning framework The derivation of an adaptation strategy that dynamically
many other systems have demonstrated the effective use ofaries the tile sizes in order to identify effective ones.

I. INTRODUCTION

The rest of the paper is organized as follows. In Section II,
we motivate the work with an example. Section Il presents
the theory and code generation techniques that allow dynami
tile size variation. In Section IV, an adaptation strategy t
achieve optimal performance using the tile size variation
scheme is described. Experimental evaluations are pessent
in Section V. Related work is discussed in Section VI folldwe

by conclusions in Section VII.

II. MOTIVATION AND OVERVIEW OF APPROACH

TABLE I: Parametric Tiling Extreme Performance

|| Ti | Tj | Tk | Time (ins)
Best tile sizes || 64 8 | 64 27.75
Worst tile sizes 2 8 2 105.93

determining effective tile sizes. In this paper, we presant
machine-independent solution to this problem.
We now illustrate the approach we develop. Figure Figure 3

We motivate the work using an example. Consider the tifhows the structure of a 2D parametrically tiled loop nest.

selection problem for thelsyr2k kernel shown in Figure 1,
which compute” := aABT + aBA” + jC.

for (i = 0; i < N; i++)
for (j = 0; j <Nj; j++)
Clil[j] == beta;
for (i = 0; i < N; i++)
for (j = 0; j <N; j++)
for (k = 0; k< M; k++) {
C[i][j] += alpha « A[i][k] =* B[j][k];
) Clil[j] += alpha « B[i][k] = A[j][Kk];

Fig. 1: dsyr2k Original Code

A parametrically tiled code variant afsyr2k is shown in
Figure 2.

for (it=ceil(—1+1/Ti); it<=floor (N/Ti—21/Ti); it++)
for (jt=ceil(—1+1/Tj); jt<=floor (N/Tj—1/Tj); jt++)
for (i=max((it«Ti),0); i<=min((it*Ti+Ti —1),N—1);i++)
for (j=max((jt«Tj),0);j<=min((jtxTj+Tj —1),N—1);j++)
Cli][j] »=beta;
for (it=ceil(—1+1/Ti); it<=floor (N/Ti—21/Ti); it++)
for (jt=ceil(—1+1/Tj); jt<=floor (N/Tj—1/Tj); jt++)
for (kt=ceil(—1+1/Tk); kt<=floor (M/Tk—1/Tk); kt++)
for (i=max(it«Ti, 0); i<=min(itxTi+Ti—1, N—1); i++)
for (j=max(jt«Tj, 0); j<=min(jt*Tj+Tj—1, N—1); j++)
for (k=max(kt«Tk,0); k<=min(kt*Tk+Tk—1,M—1); k++)
{

Clill[j]l+=alphaxA[i][k] *B[]]

[k];
Clil[jl+=alphaxB[i][K] *A[j1[k];

Fig. 2: dsyr2k Parametrically Tiled Code

/Il Tile loops
for (it=Ib_it; it <= ub_it; it++)
for (jt=Ilb_jt; jt <= ub_jt; jt++)
// Point loops
for (i=f1(it, Ti);i<=f2(it, Ti);i++)
for (j=f3(jt, Tj, i);j<=fa(jt, Tj, i);j++)
/1 Task body
{ ...}

Fig. 3: Parametrically Tiled 2D Code Structure

Figure 4 shows the generated code structure of the tiled
code using our approach to on-the-fly variation of tile sizes

global_i_min=lexicographicmin_i;
start_timer;

Il Tile loops

for (it=Ib_it; it <= ub_it; it++) {

for (jt=lb_jt; jt <= ub_jt; jt++)
/1 Point loops
for (i=f5(it, Ti, global_i_min);i<=f2(it, Ti);i++)
for (j=f3(jt, Tj, i);j<=f4(jt, Tj, i);j++)
/1 Task body

{ ...
if (Nlterations of it)
{
end_timer;

RecordPerformance (Ti, Tj, exetime);
Ti_prime = FetchNewTileSizes ();
Tj_prime = FetchNewTileSizes ();

/] update it, Ib_it, ub_it, glboal_i_min
Ti=Ti_prime;

Tj=Tj_prime;

start_timer;

Fig. 4. Code with Dynamically Varying Tile Sizes

Table | shows the performance variation observed by em-The essential idea is that the execution time is monitored

pirical search over tile sizes in the range betw&eand 64

for the current tile sizes and decisions are made to change

in powers of2 (2,22, ...,2°) for each of the tile dimensions. the tile sizes based on the observations. The main problem
Ti, Tj, Tk denote tile sizes for the three loop dimensionss to suitably traverse the iteration space as tile sizes are

The programs were compiled with Intedc 12.0, with N =

changed during the actual loop execution, ensuring that no

2500, M = 2500, and were run on a single core of an Inteloop iteration is (i) omitted or (ii) executed multiple time
Xeon E5630 quad-core processor running at 2.53GHz widmd no dependence is violated. The details of the approach

32KB L1 cache.
The worst-case tile size tuple (x 8 x 2) results in a

are presented in the next section.
Using the dynamic adaptive approach we develop in this

slowdown of almostdx compared to the best tile sizes inpaper (labeledEvolveTile), the running times obtained for the
this space, highlighting the importance of tile size sétect dsyr2k example are shown in Table Il, for the two cases of
In scenarios where empirical auto-tuning is not feasible &iarting the adaptation from the best and worst possilde til
determine optimal tile sizes, we face the challenging issue sizes from Table I.

TABLE II: Performance with dynamic tiling Conversely, given a system of inequalities in row echelon
Ti | T | Tk | Original (in's) | EvolveTile (in) form, Ioops generated with boun_ds for each loop variable
o1 81 64 e 550 derlveq Q|rectly frolm the system (in row echelon form) scan

> T 81 2 10593 36.76 all valid integer points represented by the system.

The PTile approach to parameterized tiling relies on the
above property for generating code from a system of in-
egualities in row echelon form and the fact that a system

h tiling transformation (equivalent to the original $§m1)

We observe that dynamically adapting the tile sizes spe
up performance for the worst possible static tile size2l§y, can be derived. Each variable in the domain (which in

wlh|le tthe rgnn;ng tlmel fo(rj the beich st:]anc (;ulet_sme rﬁmamﬁjrn represents a dimension in the domain) can be expressed
amos: unatiecte 3t slowdown) with the adaptive schemey, 4o me of tile coordinates;, tile sizess;, and intra-tile
This illustrates the potential profitability of the apprbaas coordinatesu. as v — 5.4 + 1w A0 < w, < s- — 1. The

J e/ A AR J — 7 = “J] .

well as the low overheads of the run-time tile size adamati%ystems can now be (equivalently) represented as:

mechanism.
n n k
I1l. FORMULATION OF DYNAMIC TILE SIZE VARIATION g - ZBij~3j-tj + ZBij-uj + Zpij.pj +e; >0
Our approach considers the class of affine imperfectly j=1 j=1 j=1
nested loops. which we assume have been suitably pre- iel.m] AN 0<u;<s;—1, je[l.n]

processed if necessary to make rectangular tiling legal [6) . ,)
[39]. We first present an algebraic characterization for tHeN€W systemSr is derived fromS” such that the solutions to

generation of loop bounds for non-adaptive parametringijli SatisfySz. In the new systensr, the int.ra-'tile coordinates
using a notation similar to that used in prior work oft"® eliminated through a relaxed projection:

Baskaran et al. [2]. We then develop the formulation for the n n . k

:ir:gcg‘lzzds L;);/;/eéhzrrllcgeud?per bounds of the tile iterators as th#- : ; Bij.s5.t; + ; Bij.(sj -1+ ; Pi;.pj +¢ >0,

A. Parametric Tiling i € [L.m]
Let vy,v9,...,v, represent the loop iterators of a loopTwo important properties ofr (details may be found in [2])

nest of depthn (v, representing the outermost loop ang are: (1) the solutions t&’ also satisfySy and (2) .St is in
representing the innermost loop). Lgt, po, ..., pi represent row echelon form. Hence scannirfgy will generate the tile
symbolic parameters (such as problem sizes). The systentoops (loops with tile coordinates).

(of m inequalities) representing the iteration domain of the The constraints expressed I8 together with that ex-

program is given by pressed byS’ represent the complete set of inequalities char-
n & acterizing the loop structure of sequential tiled code nG®y
S ZBij-Uj + Zpij_pj e >0, i€1l.m] St generates the tile loops as discussed above. Scarsfling

generates the intra-tile loops in terms of tile coordinatids
sizes, and intra-tile coordinates.

‘(’:V:rfrfgi (e;ﬁg?r?ijlo?)ndvg ;{ag?ep;ensde”ta:grene‘igfﬁ:g'senéitig;;he Henceforth, the tile coordinates are interchangeably re-

b g loop X J parar » Fesp ' ferred to as tile iterators and intra-tile coordinatgsas point
¢; represents a constant in an inequality. Such a formmathgrators
is possible since the loop bounds are constrained to bé '
affine functions of the surrounding loop iterators and paogr B, Loop bounds for adaptive tile sizes
pa_:_ar\]rgetezﬁé Lalities represent the lower and upper boundsConsider a loop with iteratar;, in the original untiled code,
of all Ing va?iables Heﬁce the svsteshis in arowpgchelon and the corresponding tile loop with iteratr and the point

P o yste {oop with iteratoru, in the tiled code. Suppose after a certain

form, where the inequalities expressing the loop bounds o ‘gomplete” iteration oft,, we want toswitch the tile sizes;, of
variablev; have coefficient) for all variablesv; : i < j < n. '

. . 1. to 5. By a “complete” iteration we mean, the body of the
In other words, by construction the bounds of a loop varlabié k- BY 8 b . y
. ; . 1or loop with iteratort; has completed execution. We have,

v; are expressed as a function of its outer loop variables
(vj : 1 < j <), parametersg) and constants. Vp = Spote Fup A0 < uy < sp—1
max(fll(ﬁ: 0)7 oo flk(ﬁ: C)) <wv < min(gll(ﬁv C): .- 'gll(ﬁz C))

maz(fa1(v1, P, ¢), ... foq(v1,p,¢)) < v2

S min(921(vlaﬁ7 6)7 . 'g2’f(/ulvﬁ7 C))

j=1 j=1

Hence, iteration points up tey.tx + s — 1 of v, have been
scanned at the time @itch. For the remaining program we
have,

. . Vg 2 Sk-ti + Sk
maz(fn1(V1,. . Vn-1,0,C)y .. fry(V1,...Vn—1,0,¢)) < vp
< min(gn1 (v1, .- Vn-1,0,¢)y . gnz(V1, ... Vn_1,D,C)) The systemS of inequalities representing the remainder of

the iteration domain of the program is given by the original

set of inequalities for the iteration domain along with > The tile size for the loop corresponding to, may
Skt + Sk: be subsequently changed again when the conditipn>
n k global_vi,_min becomes true always. This will be the case
ZBij-'Uj + Z Pij.p; + ¢ >0, ie[l.m] (1) Wwhen the iteration points up tos-tr + sk — 1) which were
scanned with the old tile size are visited with the new tileesi
also. In other words, when the inequality,.t +t;, — 1) >
(global_vi_min — 1) holds, the tile size may be further
The new bounds for tile coordinates can now be computedapted.
with v, expressed as

j=1 j=1
Vg — Sp.tr — s >0 (2)

D. Example

We now illustrate the above steps using an example. Con-
wheret, is the new tile-coordinate and,, the new intra-tile Sider the input loop nest in Figure 5, and its tiled version as
coordinate for the loop variable,. produced by the PTile algorithm in Figure 6. The result of
So, by combining (1), (2) and (3) in a single system w#e application of the above mentioned algorithms is shown
connects;, to the new tile sizes,, and eliminating point loop in Figure 8, along with the necessaswitch code to adapt the
iterators in this system leads to a valid lower boundtfprio tile size at run-time.
execute the remainder of the iteration domain. Finally, to further illustrate the tiled execution with rtime
It has to be noted that, by virtue &f being inrow echelon tile size adaptation, Figure 7 shows an illustrative tilofghe
form, only the bounds of;, and the bounds of tile loops inneriteration space that could result from dynamically varyihg
to t (t;,4 € [k..n]) may be modified by the new$. The tile sizes.
bounds of loops outer tb (¢;, j € [1..k—1]) will not change.
As an immediate consequence, at the timeswifich, any of
the tile sizes of the tile iterators inner fomay be changed We now discuss the use of previously described tile size
but tile sizes of iterators outer to cannot be changed. variation technique to optimize performance. For densa-te
tion spaces, one observes that there are approximatelgthe s
number of iteration points between any two equal intervals i
At the time ofswitching the tile sizes;, of tile iteratort; to terms of iterator values of a loop. This fact can be exploited
s}, recalculation of bounds for tile iterators and point itera to gauge the performance of a given tile size by measuring the
are handled in the following way. In thawitch code, t; is time it takes to execute a certain number of iterations ofea ti
assigned the new lower bound andis assigned the new tile loop instead of having to wait for the loop nest to completely
size s,. Optionally, tile sizes of the loops inner tomay also finish running. Using the above parametric code generation
be changed. scheme, one can switch to more promising tile sizes as the
Doing only this however may result in rescanning of someop is continuing the execution.
of the scanned iteration points due to the relaxed projectio
performed during the elimination of intra-tile coordinateA Search Heuristic
(described in§lll-A). To avoid this, in the original system Consider the loop nest shown in Figure 9 (l). The per-
of inequalities.S, for each of the loop variables;, whose formance of the loop nest is clocked and the tile sizes are
tile sizes may potentially be changed, a new inequality igljustedN EvolvePoints number of times. Let such points in
introduced: the program be calleBvolvePoints. It may be noted that if this
number is too low then there will be less room for adaptation.
v > global_vi,_min On the other hand, if this number is set too high then the
overhead due to numerous adaptations of the tile sizes may
over-compensate the benefits accrued due to maneuvering to-

v = Sty Ful A0 <wy < s —1 3)

IV. TILE SIZE ADAPTATION

C. Code Generation

along with the original set of inequalities,

n u . wards effective tile sizes. Section IV-B provides an estioma
> Bijwj+Y Pypj+ei>0, iel.m] on the number oEvolvePoints to be executed in a program.
i=1 j=1 At an EvolvePoint, the performance is recorded and a heuristic

The global_vi,_min is a symbolic constant and is initially (one such is Figure 9 - ll) is invoked to get the new tile sizes
set to lexicographic minimum for the loop variablg; this to switch to.
can be computed using a parametric integer linear program-The performance of a loop is monitored evé¥yterations
ming solver such as PIP [11]. Tiled code is generated froiterations whereN Iterations is given by sio—tensh
this extended set of inequalities and at the timeseftch, Thus, the more thd=volvePoints there are, the intervals in
global_vi_min is set to(sy.tx + sk). Thus, since the check which the performance is clocked is smaller and similaHg, t
that the point iteratoruy, > global_vi_min had already lesser theEvolvePoints, the performance is metered at larger
existed in the point loops, no points will be rescanned. Thustervals.
the generated code is guaranteed to sththe iteration points In order to search rectangular tile spaces (i.e. the tileepa

only once. where tile sizes of different dimensions may be different),

Il Tile loops

for (i=0;i<aN;i++) global_i_min = 0;
for (j=i;j<N;j++) { for (it=ceil((—Ti+1)/Ti); it<=floor (N/Ti);it++) {
/I Tile body global_j_min = 0;
S1(i,j); for (jt=ceil ((it«Ti—Tj+1)/Tj); jt<=floor(N/Tj);jt++) {
/1 Point loops

for (i=max(max(it«Ti, 0), globali_min);
i<=min(it«Ti+Ti—1, N);i++) {

Fig. 5: Initial Code for (j=max(max(jt«Tj, i), global_j_min);
- j<=min (jt«Tj+Tj —1, N);j++) {
/I Tile loops /I Tile body
for (it=ceil((—=Ti+1)/Ti); it<=floor(N/Ti); it++) s1(i,j);

for (jt=ceil ((it«Ti—Tj+1)/Tj); jt<=floor (N/Tj); jt++)

Il Point loops }
for (i=max(it«Ti, 0); i<=min(it«Ti+Ti—1, N); i++) /% Switch code for Tj begins x/
for (j=max(jt«Tj, i); j<=min(jt«Tj+Tj—1, N); j++) { // Change Tj at the end of an iteration of jt
/I Tile body if (switch_condition_for_jt == true) {
S1(i.j); global j_min= jt+Tj+Tj;

jt = ceil ((jt*Tj+Tj+1—-Tj_prime)/ Tj_prime);
jt jt — 1; // 'for’ loop increments iterator
Tj Tj_prime;// Tj_prime — new tile size for jt

Fig. 6: Tiled Code

y I+ *Switch code for Tj ends x/

/% Switch code for Ti begins x*/

/Il Change Ti at the end of an iteration of it

if (switch_condition_for_it == true) {
global_i_min= it«Ti+Ti;
it ceil ((it«xTi+Ti+1—Ti_prime)/Ti_prime);
it it — 1;// ‘for’ loop increments iterator
Ti Ti_prime; // Ti_prime — new tile size for it
Tj Tj_prime; // Tj_prime — new tile size for jt

/+ Switch code for Ti ends x/

Fig. 7: Run-time Tile Sizes

Fig. 8: Tiled Adaptive Code

tile sizes of the loops are tuned from outermost to innermasd right neighbor then increasing the tile size seems to be the

loop and again tile size of the outermost loop is tuned and poomising way to go. Thus, the quest continues with doubling

on. This, as opposed to turning a particular loop completetiye tile size. If the performance is decreasing in eithexalion

and moving onto the next, is necessary as there may exlsn the supposition is, the effective tile size lies betwte

an interplay between tile sizes of different loop dimensiorcurrent best tile size and one of itsneighbors. The search

which is due to the fact that tiles with the same amount ofioves towards that neighbor whose performance is closer to

data footprint may be realized with different shapes and otfee best tile size performance. If the most effective tile size is

leads to better locality than the other [5]. Hence, the efyat the best tile size itself then after a very feviEvolvePoints, the

to tune a loopNTunings times and going on to tuning theneighbors will come very close to thébest tile size and the

next loop is adopted. algorithm will start returning theest tile size in the subsequent
Algorithm shown in Figure 9 (Il)-Fetch_New_Tile sizes calls.

takes as input the current tile size and the performanceejueu

which holds performance of the tile sizes examined so fae. TB- Determining the number of EvolvePoints

search for effective tile sizes is bootstrapped by checkiiey |n order to just be able to reach the most effective tile

performance of the current tile size, half of that and dotide: size (not knowna priori) for a |00p, all the tile sizes in the

size. Notice that when the size of the performance queue isgllowable range need to be searched, which is between the

double the input tile size is returned and when the size of thver bound and upper bound of that loop in the original,

performance queue is %,th of the input tile sizeCurrentT untiled program. Intuitively, for larger ranges, magsolve-

is returned because the original tile size was doubled in thgints are needed than for smaller ranges. Following the search

previous iteration and thus it needs to be divideddbtp get strategy described iRetch_New_Tile sizes algorithm, we now

half of the original tile size. derive the minimum number dvolvePoints N EvolvePoints
Once the bootstrapping is done, the tile sbest tile size that are required to reach the effective tile size starthognf

which has performed by far the best is retrieved. The tile sianywhere in the allowable range. This is, with the assumptio

just smaller than this is called theft neighbor and just greater that there is only one effective tile size and is constant.

than this is called theight neighbor. If the best tile size has If there are more than one effective tile sizes then lesser

no left neighbor then decreasing the tile size appears to ledflolvePoints will be sufficient than given by the derivation.

to better performance. Hence the new tile size to be examin®dvvolve Points is input to the loop nest depicted in Figure 9

is half of the best found yet. On the other hand, if there {$).

(I) Loop nest employing run-time tile size variation

(I) Fetch_New_Tile_sizesalgorithm

Input: Number of EvolvePointsN Evolve Points
Number of tunings at each leveNTunings
Tile sizes:To,T1 ... Th-1

LoopLength <+ (ubo — lbg + 1)
Nlterations < 7%2?5;5552“
CurrentTuning evei —0
TuningsAtCurrentLevel < 0
start_time <« clock()

for ito = lbg — ubg do

Input: Current tile size: CurrentT, Performance data queue:
Per fQueue
Output: New tile size:NewT
if PerfQueue.size() =1 then
NewT < CurrentT x 2

for it1 = by — ubt do
. else if Peerueue.size}) = 2 then

E NewT < CurrentT /4
for itn_1 = lbp_1 — ubn_1 do else
task_body BestTile <+ FindBestTileSize(Per fQueue)
engnfgrfor LeftNeighbor < FindLeftNeighbor(Per fQueue)

RightNeighbor < FindRightNeighbor(Per fQueue)
o) if LeftNeighbor = nil then

if ((ito — lbo + 1) mod NIterations = 0) then NewT < BestTile/2
end_time < C;OCk()) else if Right Neighbor = nil then
time < end_time — start_time NewT < BestTile x 2

i < CurrentTuningLevel else
R/ecordPerformancg(Pefoueue, T3, time) if Perf(LeftNeighbor) > Per f(RightNeighbor) then
T; A Fetch_New_Tile_sizes(T;, Per fQueue) NewT « (BestTile + LeftNeighbor) /2
if T35 # T; then else if Perf(LeftNeighbor) < Perf(RightNeighbor)
Update ito, lbo, ubo, N Iterations then
Increment TuningsAtCurrentLevel NewT < (BestTile + RightNeighbor)/2

else else
TuningsAtCurrentLevel < NTunings NewT < CurrentT
end if end if
if TuningsAtCurrentLevel = NTunings then end if
Increment CurrentTuningLevel modulo n end if

Per fQueue.clear()
TuningsAtCurrentLevel < 0
end if
start_time < clock()
end if
end for

return NewT

Fig. 9: (I) The loop nest employing run-time tile size vainat (Il) Fetch New_Tile_sizes algorithm

Let the lexicographic minimum and maximum for a looghe performance of 3 tile sizes — i.e., the current tile Sedf
iterator v; in the original iteration space bé&V; ..., and of that, double of that — are examined before making a detisio
N;_maz respectively. The range of values the tile size for tilen moving one way or the other. The two tile sizes explored
iterator ¢; corresponding to iterator; may take are in the — i.e., half of the initial tile size and double the initiakzei—
interval [N;_min, Ni_mae) and length of the interval is, constitute as necessary but not necessarily useful exiglosa
in that these tile sizes may have already been explored in the
previous iteration of tuning of the loop. Hence, the number
of useful tile size variations in an iteration of tuning of a

In Fetch_New_Tile_sizes algorithm, the tile sizes are first|oop is NTunings — 2. Accounting for this bootstrapping,
varied in geometric progression and once the interval ircthithe minimum number oEvolvePoints is

the effective tile size lies is found, binary search is used t
approach the effective tile size. The bound on the number of N
[2 X [logs (Ni_range)]

Ni_range = Ni_mam - Ni_min +1

steps it takes for each of these phaseHdg,(N; range)]- N Evolve Points — Z
Thus, the upper bound on the number of tiles to be explored p NTunings — 2

for a given dimension is: (4)

2 x [logy (Ni_range)]

For a loop nest withn loops, the search is carried out To evaluate the effectiveness BfolveTile, we characterize
in an iterative manner and in each iteration, every loop the behavior of non-adaptive vs. adaptive tiling schemes fo
tuned NTunings times. At the beginning of a tuning step,a large space of possible input tile sizes. Specifically, we

—‘ X NTunings

V. EXPERIMENTAL RESULTS

TABLE Ill: Benchmarks Used in the Experiments

| Description | Problem size
dsyrk Symmetric rankk update N=3000
dsyr2k Symmetric rank2k update N=2500
fdtd-2d 2D Finite difference time domain method TSTEPS=2000, N=2000
adi Finite difference method for PDEs TSTEPS=1500, N=1500
jacobi-2d 2D Jacobi method TSTEPS=2500, N=2500

Execution Time (ins)

-=-gcc — PTile
—gcc — EvolveTile -

Execution Time (in s)

-=-icc — PTile
—icc = EvolveTile

Tile sizes index“i"ng from 2X2X2 to 64X64X64

Fig. 10: Running times oflsyrk using GNUgcc

Tile sizes indexmiJng from 2X2

X2 t0 64X64X64

Fig. 11: Running times ofisyrk using Intelicc

-=-gcc — PTile
—gcc — EvolveTile -

Execution Time (in s)

-=-icc — PTile
—icc - EvolveTile

Execution Time (in s)

]
I

Tile sizes index“i"ng from 2X2X2 to 64X64X64 Tile sizes indexmiJng from 2X2X2 to 64X64X64

Fig. 12: Running times ofisyr2k using GNUgcc Fig. 13: Running times oflsyr2k using Intelicc

perform single-level tiling and compare the performance of Figure 10 to 19 show the running time for each bench-
the EvolveTile technique for dynamic tile size adaptation withmark for different tile size tuples. Each point on theaxis
the performance of a non-adaptive approach, implementeddmnyresponds to a tile size tuple, and the tile size tuples are
the PTile system [2]. We note that all our experiments arerdered lexicographically. Theaxis shows the execution time
done using a sequential execution of the programs. for the corresponding tile size combination. HevolveTile
The experiments were run using one core of an Intel Xedhe tile size tuple is the initial seed tile sizes it begins
E5630 quad-core processor, running at 2.53GHz with 32KBe execution with, and the tile sizes are adapted as the
L1 cache. The tested configuration has 12GB of RAM and ruaemputation proceeds.
Linux kernel version 2.6.18-164.el5. Programs were coetbil We note that the periodic spikes observed in ®iEle
with GNU gcc 4.5.1, with- @3 flag, and Inteicc 12.0.0, with running times correspond to large changes in the tile sizes.
-fast flag. This is an effect of the lexicographic ordering of the tileesi
We used five benchmarks extracted from the PolyBench [26iples on thez-axis; for example 4, 64,64) is immediately
suite. They are listed in Table IIl, with the specific problenfollowed by (8, 2, 2).
sizes we have used. All the tested benchmarks have nestetlhe overall trend of theEvolveTile performance curve
loops of depth 3, andectangular tile sizes which are powers closely follows thePTile performance curve, but with a much
of 2 in the range(2,2,2) to (64,64,64), that is, a 3D tile smaller variability, and very often with a much lower execnt
size tuple is(2?,27,2F) with i, j, k ranging from2 to 6 are time. This trend may be clearly spotted in the execution
explored. time characterization dfitd-2d benchmark for compilegcc,

-=-gcc — PTile
~—gcc — EvolveTilg

Execution Time (in's)

Tile sizes indexing from 2X2X2 to 64X64X64

Fig. 14: Running times ofdtd-2d using GNUgcc

-=-icc = PTile
ol —icc — EvolveTile

Execution Time (in s)

Tile sizes indexing from 2X2X2 to 64X64X64

Fig. 15: Running times ofdtd-2d using Intelicc

i --gcc — PTile ---icc - PTile

i —gcc - EvolveTile —~icc — EvolveTile)
w » 1
£ E 4
o 1 o
E E 1
= | . |
c <
K] =N i
5 5
27 b o
Q Q 7
x >
i | J

Tile sizes indexﬁhg from 2X2X2 to 64X64X64 Tile sizes index“iqng from 2X2X2 to 64X64X64
Fig. 16: Running times o&di using GNUgcc Fig. 17: Running times o&di using Intelicc
Piys ---gcc - PTile ! ‘ --icc - PTile

b ~gcc — EvolveTile 7 —~icc — EvolveTile
w »w
£ c
= B S B
= E |
. 4 =l i
c jt
i) o
5 5
(SR 7 (5] T
] Q
x >
i i

Tile sizes indexing from 2X2X2 to 64X64X64 Tile sizes indexing from 2X2X2 to 64X64X64

Fig. 18: Running times ofacobi-2d using GNUgcc Fig. 19: Running times ojacobi-2d using Intelicc

shown in Figure 14. More specifically, the tile size combimost of the computation will be performed using adapted
nation which leads to the execution time spikeHfile also tile sizes found through the search algorithm proposed
leads to a spike (although a much smaller onefrnlveTile. (Fetch_New_Tile_sizes algorithm). In our experiments, we
This is because, during the search for effective tile sizeshave setN EvolvePoints according to this rule.

certain fraction of the total computation is performed gsin \we summarize our experimental results in Table IV and
the seed tile size. Therefore, if the computation is staoféd Tape v, for thegcc andicc compilers respectively. We report
with poorly performing file sizes, then the performancel® t e pest and worst execution time found in the space analyzed
first few iterations of the computation is greatly affectedilu (rectangular tile sizes fromd to 64), as well as the average
the adaptation starts changing the tile sizes. execution time of all the tested tile sizes.

However, when theN EvolvePoints is set to a value We observe from Table IV and Table V the robustness of
greater or equal to the lower bound given by Equation (4ur approach in particular through tererage column. For

TABLE IV: Execution Time with GNUgcc with PTile.

| Scheme | Best (ins)| Average (ins)| Worst (in s) TABLE VI: Best Execution Time Obtained
PTile 44,79 59.46 113.00
e EvolveTile 43.82 47.34 60.66 | Tested Tile sizes | Scheme | gcc (ins) | icc (in's)
dsyr2k PTile 38.72 49.99 98.33
EvolveTile 38.39 40.82 50.91 dsyrk (2,2, 2)t0 PTile 43.35 12.97
PTile 65.90 80.30 176.59 (2048, 2048, 2048)| EvolveTile 43.41 13.51
fdtd-2d | g gverile 65.31 68.62 80.91 dsyrok 2221 PTile 3777 27.04
- PTile 117.19 136.11 214.67 (2048, 2048, 2048) EvolveTile 37.81 27.84
adi | gyovetile | 11832 125.87 139.27 dtd-2d 2.2,2) o PTile 6412 | 4221
- - PTile 104.22 170.27 398.57 (1024, 1024, 1024) EvolveTile 64.08 43.29
jacobi-2d | g1 eTile 105.34 116.87 179.86 adi (2,2,2) 1o PTile 11719 10321
(1024, 1024, 1024)| EvolveTile 117.99 98.54
{acobi-2d 2,2 2)to PTile 104.22 43.82
TABLE V: Execution Time with Intelicc (2048, 2048, 2048) BvolveTile 104.28 44.43
| Scheme | Best (in's)| Average (in s)| Worst (in s)
PTile 15.02 50.46 155.00
dsyrk | Evolverile 13.94 19.21 48.87 VI. RELATED WORK
N = el M8 Exploiting data locality is a key issue in achieving high
tdtd-2d PTile 4221 62.62 165.24 performance and tiling has been widely used to improve data
EvolveTile 43.50 48.65 62.86 |ocality in loop nests. Since, the choice of tile sizes caraty
adi EVEI\T/'('E%I R 183'2% igg'g igi'gg influence the realized performance, a number of researchers
{acobi2d PTile 7515 64.19 157,35 have addressed the problem of selecting good tile sizesibase
EvolveTile 45.01 50.49 67.85 on cache-based performance models [4], [8]-[10], [12]],[13

[24], [31], [40]. Hsu and Kremer [16] provide a comparative
study of tile size selection algorithms. Recently, Yuki &t a

instance withgcc, the difference between the best tile sizel#t2] have explored the automatic creation of cubic tile size

and the average across the space uBifitg ranges from 16% M° els. _ o
to 55%, while usingEvolveTile this difference narrows down Several works have used search-based techniques for finding

to less than 10%, and often below 5%. This in conjunctiotHe si_zes in an auto-tuning environment for known target
to the fact that performance of the best tile sizes is similg#achines [3], [23], [34], [35], [38]. The ATLAS system
for both schemes shows that tile-size adaptation appraach EMPIOYS extensive empirical tuning to find the best tile size
compensate with great success ineffective seed tile sizes, 07 different problem sizes in the BLAS library; tuning is
correctly adapt at run time the tile sizes towards a very god@N€ Once atinstallation. Kisuki et al. [23] have used dffe
solution. Similar observations are done when usiog as techniques such as genetic algorithms and simulated angeal
shown in Table V: for all butdsyrk the difference between [0 Manage the size of the search space. Tiwari et al. [35]
the best and average numbers ElveTile is around 10%, "Ote: “a key challenge that faces auto-tuners, especiallyea

a number which is from 2 to 8 times smaller than witfile, expand the scope of their capabilities, involves scaladéech

while again observing a minimal difference between the bed’0Ng alternative implementations.” The Active Harmony
execution time forPTile and EvolveTile. project [34], [35] uses several different algorithms toues

Finally, we also report the overall best running times iH1e size of the search space such as the Nelder-Mead simplex
Table VI when all the tile sizes which are powers of algorithm. However, auto-tuning is not suitable for scérsar
in the range from2 to the benchmark problem size aréike cloud computing, where the characteristics of thedarg

considered, for all benchmarks. This space is much lar ptforms and the load due to other jobs cannot be known

than the previous tile size space considered, and spans RREPre hand.
entire possibilities of power-of-two tile sizes. We obseonly

a marginal benefit in increasing the space size, at most a

5% performance improvement. Nevertheless our obsengtion In this paper, we have developed an approach to dynamically
on the low overhead of the adaptive scheme are confirmedyying tile sizes as a tiled loop nest executes, to find gfec
sinceEvolveTile performs at worst 5% slower th&Tile when tile sizes for the execution environment. We presented the
using directly the best tile size. Interestingly, fadi with the theory behind the code generation techniques required to
icc compiler we observe thdtvolveTile performs even better enable such a dynamic variation of tile sizes. A tile-size
thanPTile. This is because the search algorithmEwolveTile optimizing algorithm was also proposed that uses the tile
is not limited to using only the tile sizes that are power ddize adaptation capability to move towards effective tiles
two, as shown in Figure 9(Il), and for this specific case thgtarting from an initial set of seed tile sizes. Experimenta
best working tile size thaEvolveTile computed during the results on several benchmarks demonstrate that the approac
execution was better than any power-of-two tile sizes testes robust and effective across a wide range of seed tile.sizes

VIl. CONCLUSION

ACKNOWLEDGMENT [20]

We thank the reviewers for their feedback and suggestions
that have helped us improve the presentation of the paper.
This work was supported in part by the Defense Advancé#!
Research Projects Agency through AFRL Contract FA8650-
09-C-7915, and the U.S. National Science Foundation throug2]

awards 0811457, 0811781, 0926687 and 0926688.

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

El

(20]
[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]

[19]

[23]
REFERENCES

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. iéwof
cloud computing.Commun. ACM, 53:50-58, April 2010.

M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, dnfanujam, and
P. Sadayappan. Parameterized tiling revisitedC®0O, April 2010.

J. Bilmes, K. Asanovic, C. Chin, and J. Demmel. Optimizing rixatr
multiply using PHIPAC. InProc. ACM International Conference on
Supercomputing, pages 340-347, 1997.

F. Bodin, W. Jalby, D. Windheiser, and C. Eisenbeis. A mfitative
algorithm for data locality optimization. Ii€ode Generation, pages [26]
119-145, 1991.

U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramemyj (27]
A. Rountev, and P. Sadayappan. Automatic transformations for
communication-minimized parallelization and locality optiation in
the polyhedral model. Innternational conference on Compiler Con-
struction (ETAPS CC), Apr. 2008.

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayapp&an
practical automatic polyhedral program optimization systémPLDI,
2008. [29]
P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)mitte tiling?
Integration, the VLS Journal, 17(1):33-51, 1994. 30]
J. Chame and S. Moon. A tile selection algorithm for datzality and
cache interference. 1tCS'99: Proceedings of the 13th international
conference on Supercomputing, pages 492-499, New York, NY, USA,
1999. ACM Press.

S. Coleman and K. S. McKinley. Tile size selection usingteorgani-
zation and data layout. IRLDI ’95: Proceedings of the ACM SIGPLAN
1995 conference on Programming language design and implementation,
pages 279-290, New York, NY, USA, 1995. ACM Press.

K. Esseghir. Improving data locality for caches. Ma'sténesis, Dept.
of Computer Science, Rice University, Sep 1993.

P. Feautrier. Parametric integer programmin@perations Research,
22(3):243-268, 1988.

J. Ferrante, V. Sarkar, and W. Thrash. On estimating arfthrecing
cache effectiveness. lbanguages and Compilers for Parallel Comput-
ing, pages 328-343, 1991.

S. Ghosh, M. Martonosi, and S. Malik. Cache miss equatiarcompiler
framework for analyzing and tuning memory behaviohkCM Trans.
Program. Lang. Syst., 21(4):703-746, 1999.

A. Hartono, M. Baskaran, C. Bastoul, A. Cohen, S. Kristmoorthy,
B. Norris, J. Ramanujam, and P. Sadayappan. Parametric nugti-le
tiling of imperfectly nested loops. IICS, 2009.
HiTLoG: Hierarchical Tiled Loop Generator.
MMAIphattiling.

C. Hsu and U. Kremer. A quantitative analysis of tile semdection
algorithms. J. Supercomput., 27(3):279-294, 2004.

F. Irigoin and R. Triolet. Supernode partitioning. RLDI, 1988.

M. Jiménez, J. Llabéa, and A. Ferandez. Register tiling in nonrectan-
gular iteration space®\CM Trans. Program. Lang. Syst., 24(4):409-453,
2002.

M. Jiménez, J. Llabda, and A. Ferandez. A cost-effective imple- [41]
mentation of multilevel tiling. |IEEE Trans. Parallel Distrib. Syst.,
14(10):1006-1020, 2003. [42]

(24]

(25]

(28]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

www.cslestate.edu/
[38]

(39]

(40]

N. Kalinnik, M. Korch, and T. Rauber. An efficient timeegt-based self-
adaptive algorithm for predictor-corrector methods of reskgtta type.

Journal of Computational and Applied Mathematics, In Press, Corrected
Proof:—, 2011.

D. Kim and S. Rajopadhye. Parameterized tiling for imeettfy nested
loops. Technical Report CS-09-101, Colorado State U., D@pinputer

Science, February 2009.

D. Kim, L. Renganarayanan, M. Strout, and S. Rajopadivelti-level

tiIin}g: "M’ for the price of one. InSC, 2007.
T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O'Boyle. Coinled

selection of tile sizes and unroll factors using iteratizengilation. In
PACT ’00: Proceedings of the 2000 International Conference on Parallel
Architectures and Compilation Techniques, page 237, Washington, DC,
USA, 2000. IEEE Computer Society.

M. Lam, E. Rothberg, and M. Wolf. The cache performance epii
mizations of blocked algorithms. FProc. 4th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems, pages 63—
74, 1991.

J. Li, G. Tan, and M. Chen. Automatically tuned dynamic greom-
ming with an algorithm-by-blocks.Parallel and Distributed Systems,
International Conference on, 0:452-459, 2010.

PolyBench: Polyhedral Benchmark suite. http://www.ohio-state.edu/
~pouchet/software/polybench/.

A. Qasem, J. Guo, F. Rahman, and Q. Yi. Exposing tunablanpaters
in multi-threaded numerical code. IRroceedings of the 2010 IFIP
international conference on Network and parallel computing, NPC'10,
pages 46-60, Berlin, Heidelberg, 2010. Springer-Verlag.

J. Ramanujam and P. Sadayappan. Tiling multidimensicesahtion
spaces for multicomputersJournal of Parallel and Distributed Com-
puting, 16(2):108-230, 1992.

L. Renganarayana, D. Kim, S. Rajopadhye, and M. Straarafeterized
tiled loops for free. INPLDI’07, pages 405-414, 2007.

L. Renganarayana and S. Rajopadhye. Positivity, pmsyals and tile
size selection. IrProceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC '08, pages 55:1-55:12, Piscataway, NJ, USA, 2008.
IEEE Press.

G. Rivera and C. Tseng. Locality optimizations for muétel caches.
In Supercomputing '99: Proc. of the 1999 ACM/IEEE conference on
Supercomputing, page 2, New York, NY, USA, 1999. ACM.

V. Sarkar and N. Megiddo. An analytical model for loopng and its
solution. In Proceedings of the 2000 IEEE International Symposium
on Performance Analysis of Systems and Software, pages 146-153,
Washington, DC, USA, 2000. IEEE Computer Society.

R. Schreiber and J. Dongarra. Automatic blocking of eé$vops. Tech.
Report 90.38, RIACS, NASA Ames Research Center, 1990.

C. Tapus, I. Chung, and J. K. Hollingsworth. Active hamyotowards
automated performance tuning. 8¢, pages 1-11, 2002.

A. Tiwari, C. Chen, J. Chame, M. Hall, and J. HollingsworScalable
autotuning framework for compiler optimization. I?DPS '09, May
2009.

A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingstio A
scalable autotuning framework for computer optimization.RBPS 09,
Rome, May 2009.

TLoG: A Parametrized Tiled Loop Generator. http://wwsvcolostate.
edu/MMAIphattiling/.

R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated gogbi
optimization of software and the ATLAS projecParallel Computing,
27(1-2):3-35, 2001.

M. Wolf. More iteration space tiling. IProceedings of Supercomputing
'89, pages 655-664, 1989.

M. Wolf and M. S. Lam. A data locality optimizing algorithnin PLDI
‘91, pages 30-44, 1991.

J. Xue. Loop tiling for parallelism. Kluwer Academic Publishers,
Norwell, MA, USA, 2000.

T. Yuki, L. Renganarayanan, S. Rajopadhye, C. AndergorEichen-
berger, and K. O'Brien. Automatic creation of tile size sétat models.
In CGO, pages 190-199, 2010.

