
Companion paper for the 2nd HiPEAC Industrial Workshop

Iterative Optimization in the Polyhedral Model:
One-Dimensional Scheduling case

Louis-Noël Pouchet, Cédric Bastoul and Albert Cohen
ALCHEMY, LRI - INRIA Futurs

firstname.lastname@inria.fr

Abstract
Emerging micro-processors introduce unprecedented parallel com-
puting capabilities and deeper memory hierarchies, increasing the
importance of loop transformations in optimizing compilers. Be-
cause compiler heuristics rely on simplistic performance models,
and because they are bound to a limited set of transformations se-
quences, they only uncover a fraction of the peak performance on
typical benchmarks. Iterative optimization is a maturing framework
addressing these limitations, but so far, it was not successfully ap-
plied complex loop transformation sequences because of the com-
binatorics of the optimization search space.

We focus on the class of loop transformation which can be ex-
pressed as one-dimensional affine schedules. We define a system-
atic exploration method to enumerate the space of all legal, distinct
transformations in this class This method is based on an upstream
characterization, as opposed to state-of-the-art downstream filter-
ing approaches. Our results demonstrate orders of magnitude im-
provements in the size of the search space and in the convergence
speed of a dedicated iterative optimization heuristic.

Keywords Iterative optimization, polyhedral model, affine schedul-
ing, loop transformations.

1. Introduction
Feedback-directed and iterative optimizations have become essen-
tial defenses in the fight of optimizing compilers fight to stay com-
petitive with hand-optimized code: they freshen the static informa-
tion flow with dynamic properties, adapting to complex architec-
ture behaviors, and compensating for the inaccurate single-shot of
model-based heuristics. Whether a single application (for client-
side iterative optimization) or a reference benchmark suite (for in-
house compiler tuning) are considered, the two main trends are:

• tuning or specializing an individual heuristic, adapting the prof-
itability or decision model of a given transformation [31];

• tuning or specializing the selection and parameterization of
existing (black-box) compiler phases [32, 1].

This paper takes a more offensive position in this fight. To
avoid diminishing returns in tuning individual phases or combi-
nations of those, we collapse multiple optimization phases into a
single, unconventional, iterative search algorithm. By construction,
the search space we explore encompasses all legal program trans-
formations in a particular class. Technically, we consider the whole
class of loop nest transformations that can be modeled as one-
dimensional schedules [10], a significant leap in model and search
space complexity compared to state-of-the-art applications of iter-
ative optimization. We make the following contributions:

• we statically construct the optimization space of all, arbitrar-
ily complex, arbitrarily long sequences of loop transformations

that can be expressed as one-dimensional affine schedules (us-
ing a polyhedral abstraction);

• this search space is built free of illegal and redundant transfor-
mation sequences, avoiding them altogether at the very source
of the exploration;

• we demonstrate multiple orders of magnitude reduction in
the size of the search space, compared to filtering-based ap-
proaches on loop transformation sequences or state-of-the-art
affine schedule enumeration techniques;

• these smaller search spaces are amenable to fast-converging,
mathematically founded operation research algorithms, allow-
ing to compute the exact size of the space and to traverse it
exhaustively;

• our approach is compatible with acceleration techniques for
feedback-directed optimization, in particular on machine-learning
techniques which focus the search to a narrow set of most
promising transformations;

• our source-to-source transformation tool yields significant per-
formance gains on top of a heavily tuned, aggressive optimizing
compiler.

Eventually, we were stunned by the intricacy of the transformed
code, which was far beyond our expectations; a confirmation that
whatever the performance model and whatever the expertise of the
programmer, designing a predictive model for loop transformation
sequences seems out of reach.

2. Related Work
Iterative compilation aims at selecting the best parameterization of
the optimization chain, for a given program or for a given appli-
cation domain. It typically affects optimization flags (switches),
parameters (e.g., loop unrolling, tiling) and the phase ordering.
[6, 5, 3, 20, 1, 25].

This paper studies a different search space: instead of relying on
the compiler options to transform the program, we statically con-
struct a set of candidate program versions, considering the distinct
result of all legal transformations in a particular class. Our method
is more tightly coupled with the compiler transformations and is
thus complementary to other forms of iterative optimization. Fur-
thermore, it is completely independent from the compiler back-end.

Because iterative compilation relies on multiple, costly “runs”
(including compilation and execution), the current emphasis is on
improving the profile cost of individual program versions [20, 13],
or the total number of runs, using, e.g., genetic algorithms [19] or
machine learning [31, 1]. Our meta-heuristic is tuned to the rich
mathematical properties of the qunderlying polyhedral model of
the search space, and exploits the regularity of this model to reduce
the number of runs. Combining it with more generic machine

1 2006/10/16

learning techniques seems promising and is the subject of our
ongoing work.

The polyhedral model is a well studied, powerful mathematical
framework to represent loop nests and to remove the main limi-
tations of classical, syntactic loop transformations. Many studies
have tried to assess a predictive model characterizing the best trans-
formation within this model, mostly to express parallelism [21, 11]
or to improve locality [35, 29, 24]. We present experimental results
showing that such models, although associated with optimal strate-
gies, fail to scratch the complexity of the target architecture and the
interactions with the back-end compiler, yielding far from optimal
results even on simple kernels.

Iterative compilation associated to the polyhedral model is not
a very common combination. To the best of our knowledge, only
Long et al. tried to define a search space based on this model
[22, 23], using the Unified Transformation Framework [16] and tar-
geting Java applications. Long’s search space includes a potentially
large number of redundant and/or illegal transformations, that need
to be discarded after a legality check, and the fraction of distinct
and legal transformations decreases exponentially to zero with the
size of program to optimize. On the contrary, we show how to build
and to take advantage of a search space which, by construction,
contains no redundant and no illegal transformation.

3. Generating a Variety of Program Versions
Program restructuring is usually broken into sequences of primitive
transformations. In the case of loops, typical primitives are the loop
fusion, loop tiling, or loop interchange [2]. This approach has se-
vere drawbacks. First, it is difficult to decide the completeness of a
set of directives and to understand their interactions. Many different
sequences lead to the same target code and it is typically impossi-
ble to build an exhaustive set of candidate transformed programs in
this way. Next, each basic transformation comes with its own ap-
plication criteria such as legality check or pattern-matching rules.
For instance it is unlikely that loop fusion would be applied by a
compiler if the bounds of the original loops do not match (while
this may be the result of a former transformation in the sequence).
Finally, long sequences of transformations contribute to code size
explosion, polluting instruction cache and potentially forbidding
further compiler optimizations.

Instead of reasoning on transformation sequences, we look for
a representation where composition laws have a simple structure,
with at least the same expressiveness as classical transformations,
but without conversions to or from transformation descriptions
based on sequences of primitives. To achieve this goal, we used
an algebraic representation of both programs and transformations.
This is the so-called polyhedral representation; it is introduced in
Section 3.1. We will focus on a sub-class of transformations that
can be modeled trough one-dimensional schedules; this class is
described in Section 3.2.

3.1 An Algebraic Program Representation
Only parts of the program, called Static Control Parts (SCoP), can
be represented algebraically in the polyhedral model. Roughly, a
SCoP is a maximal set of consecutive instructions such that:

• the only allowed surrounding control structures are for loops
and if conditionals,

• loop bounds and conditionals are affine functions of the sur-
rounding loop iterators and the global parameters.

The importance of SCoPs has been widely discussed by Girbal et
al. [14], showing that they capture a large portion of the computa-
tion time of scientific and signal processing applications.

In such a program class, semantic information can be repre-
sented as Z-polyhedra. For instance, let us consider the matvect
kernel in Figure 1.

for (i = 0; i <= n; i++) {
R s[i] = 0;

for (j = 0; j <= n; j++)
S s[i] = s[i] + a[i][j] * x[j];

}

Figure 1. matvect kernel

Instruction R is enclosed by a single loop iterating on i. Its
iteration vector ~xR is (i). Iterator i takes values between 0 and n,
hence the polyhedron containing all the values successively taken
by i is DR : {i | 0 ≤ i ≤ n}. Intuitively, to each point of the
polyhedron corresponds an execution of instruction R, called an
instance, where the value of the loop iterator i is the corresponding
point coordinates in the polyhedron. With a similar reasoning we
can express the iteration domain of instruction S: ~xS =

(
i
j

)
. The

polyhedron representing its iteration domain is DS = {i, j | 0 ≤
i ≤ n ∧ 0 ≤ j ≤ n}.

In the remainder, we use a matrix representation with homo-
geneous coordinates to express systems of affine (not only linear)
inequalities. For instance, for the iteration domain of R, we get :

DR :

[
1 0 0

−1 1 0

]
.

 i
n
1

 ≥ ~0

Each statement in a SCoP will be represented using its iteration
domain and a set of data references. For our purpose, we consider
only array accesses with affine subscript functions of outer loop
iterators and global parameters (scalars may be seen as degenerate
cases of arrays). In this way, array references can be expressed
using matrices, for instance the reference to array a in Figure 1
is a[i][j] or a[f(~xS)] with

f(~xS) =

[
1 0 0 0
0 1 0 0

]
.

 i
j
n
1

 .

Other kinds of array references have to be modeled conserva-
tively. Pointers arithmetic is forbidden (except when translated by a
former restructuring pass to array-based references [12]) and func-
tion calls have to be inlined.

3.2 One-Dimensional Schedules
A schedule is a function which associates a logical execution date
(a timestamp) to each execution of a given statement. In the tar-
get program, statement instances will be executed according to the
increasing order of these execution dates. Two instances (possibly
associated with distinct statements) with the same timestamp can be
run in parallel. This date can be either a scalar (we will talk about
one-dimensional schedules), or a vector (multidimensional sched-
ules). We only consider affine schedules for decidability reasons.

A one-dimensional schedule, if it exists, expresses the program
as a single sequential loop, possibly enclosing one or more par-
allel loops. A multidimensional schedule expresses the program
as one or more nested sequential loops, possibly enclosing one or
more parallel loops. Affine schedules have been extensively used
to design systolic arrays [28] and in automatic parallelization pro-
grams [10, 8, 15], then have seen many other applications.

In this study, we focus on affine one-dimensional schedules:
given a statement S, it is an affine form on the outer loop iterators

2 2006/10/16

~xS and the global parameters ~n. It is written

θS(~xS) = T

~xS

~n
1


where T is a constant row matrix. Such a representation is much
more expressive than sequences of primitive transformations, since
a single one-dimensional schedule may represent a potentially in-
tricate and long sequence of any of the transformations shown in
Figure 2.

Transformation Description
reversal Changes the direction in which a loop

traverses its iteration range
skewing Makes the bounds of a given loop

depend on an outer loop counter
interchange Exchanges two loops in a perfectly

nested loop, a.k.a. permutation
peeling Extracts one iteration of a given loop

index-set splitting Partitions the iteration space between
different loops

shifting Allows to reorder loops
fusion Fuses two loops, a.k.a. jamming

distribution Splits a single loop nest into many,
a.k.a. fission or splitting

Figure 2. Possible Transformations Embedded in a One-
Dimensional Schedule

There exist robust and scalable algorithms and tools to recon-
struct a loop nest program from a polyhedral representation (i.e.,
from a set of affine schedules) [17, 27, 4]. We will thus generate
transformed versions of each SCoP by exploring its legal, distinct
affine schedules, regenerating a loop nest program every time we
need to profile its effective performance.

4. Building The Search Space
In general, restructuring a program will change its semantics. When
a transformation preserves the original program semantics, we will
say that it is legal. Previous works on iterative optimization us-
ing a polyhedral representation ensure this property by checking,
after computing a transformation, whether it is legal or not [22,
23] (non-iterative optimization algorithms use either a similar ap-
proach [18], either consider programs simple enough that nearly
every transformation is possible [36]). This results in considering
huge search spaces, since every illegal or redundant solutions have
to be checked, and to a significant computation overhead corre-
sponding to each legality check (typically most of them stating that
the transformation must not be applied). Such an approach cannot
scale since the number of redundant and/or illegal transformations
grows exponentially faster than the number of different and legal
transformations with the size of the input program.

To overcome those issues, we propose to build a search space
which, by construction, encompasses all legal program transforma-
tions in our one-dimensional schedule class. The following sections
presents formally the search space construction, first by recalling
how we can represent data dependences in our algebraic represen-
tation in section 4.1, then how we build the search space thanks to
a deep result in linear algebra in section 4.2.

4.1 Data Dependence Representation
Two statements instances are in dependence relation if they access
the same memory cell and at least one of these accesses is a write.

For a program transformation to be correct, it is necessary to pre-
serve the original execution order of such statement instances and
thus to know precisely the instance pairs in dependence relation. In
the algebraic program representation depicted in section 3.1, it is
possible to characterize exactly the set of instances in dependence
relation in a very synthetic way.

Three conditions have to be satisfied to state that a statement
instance R(~xR) depends on a statement instance S(~xS). (1) They
must refer the same memory cell, which can be expressed by
equating the subscript functions of a pair of references to the same
array. (2) They must be actually executed, i.e. ~xS and ~xR have
to belong to their corresponding iteration domains. (3) S(~xS) is
executed before R(~xR) in the original program. Each of these
three conditions may be expressed using affine inequalities (see
section 3.1, or [2] for more details). It leads that exact sets of
instances in dependence relation can be represented using affine
inequality systems.

For instance, if we consider the matvect kernel in Figure 1,
dependence analysis gives two dependence sets: instances of state-
ment S depending on instances of statement R (R produces values
used by S), D1 : RδS, and similarly, D2 : SδS. The dependence
D1 doesn’t occur for each value of ~xR and ~xS , but only if iR = iS .
We can then define a dependence polyhedron, being a subset of the
Cartesian product of the iteration domains, containing all the val-
ues of iR, iS and jS for which the dependence exists. We can write
this polyhedron in matrix representation (the first line represents
the equality iR = iS , the two next ones the constraint that (iR)
have to belong to the iteration domain of R and similarly, the four
last lines states that (iS , jS) belongs to the iteration domain of S):

DD1 :



1 −1 0 0 0
1 0 0 0 0

−1 0 0 1 0
0 1 0 0 0
0 −1 0 1 0
0 0 1 0 0
0 0 −1 1 0


.


iR
iS
jS

n
1

 = 0

≥ ~0

4.2 Legal Transformation Space
The data dependence analysis gives the exact information on which
statement instance pairs have to respect their relative original exe-
cution order. We can express the legality condition as an affine non-
negative function over a given set of statement instances which are
in dependence. Using the affine form of the Farkas Lemma [30]
(a deep result in linear algebra), we can express the set of affine
unique non-negative functions which meets the legality criterion.
It will result in a linear system to solve for the dependence, where
the solution set represents constraints on the schedule coefficients
in order to ensure the respect of the precedence constraint imposed
by the dependence.

For many dependence sets, the result is simply the intersection
of the various constraint systems. Ultimately, we express in this
way the space of all legal one-dimensional schedules for a given
program of the SCoP class. Each point in this space corresponds
to a valid, unique transformation sequence. To traverse this search
space is now possible using polyhedra scanning methods [17, 27,
4].

5. Practical Search Space
The legal one-dimensional schedule space for a given SCoP as
described in section 4.2 is possibly infinite. For instance it is easy
to see that if there is no data dependence at all, every value of the
schedule coefficients is possible. It is necessary to bound this space
in such a way that an exhaustive scan becomes possible. Bounding
the space will remove some possible program transformations. We

3 2006/10/16

have to ensure we remove only the less interesting solutions for
performance.

It is done by using a side effect of the code generation algorithm:
the code generated from schedules with high coefficients values is
expected to embed too much complex controls. We so try to keep
them as small as possible, with different values with regards to the
type of the free variable attached to the coefficient.

We made several tests to compare our approach, taking into
account only the legal schedules, to considering every schedules
and filter legal ones thanks to a legality check, as Long et al. sug-
gests [22]. We used different compute-intensive kernel benchmarks
coming from various origins and listed in Figure 3. h264 is a frac-
tional sample interpolation of the H.264 standard [34]. fir and fft
are DSP kernels extracted from UTDSP benchmark suite [34]. lu,
gauss, crout and matmul are well known mathematical kernels
corresponding to LU factorization, Gaussian elimination, Crout
matrix decomposition and matrix-matrix multiply. MVT is a kernel
including two matrix-vector multiplies, one matrix being the trans-
position of the other. locality is an hand-written memory access
intensive kernel.

These kernels are typically small, from 2 to 17 statements. They
are quite well adapted to the present study since first, they should
not challenge present production compiler optimization schemes,
and second, they will make it possible to achieve an exhaustive visit
of our search space which is necessary to evaluate the potential of
the method and to design heuristic techniques. Dealing with larger
benchmarks presents some technical difficulties. First, every SCoP
do not have a one-dimensional schedule and some preprocessing
(such as using a single assignment form) may be necessary. We still
not have tools to apply such preprocessing or even to extract useful
program informations automatically (iteration domains, subscript
functions, etc.) from the source code. The GRAPHITE framework
inside GCC should soon provide such a facility and allow us to
enlarge our benchmark set [26].

The results of our study on the search spaces are summarized
in Figure 3. The first column presents the various kernel bench-
marks; the second one labeled #Dependences precises the num-
ber of dependence sets for the corresponding kernel; ~ı-Bounds
gives the iterator coefficient bounds used for search space bound-
ing; ~p-Bounds gives the parameter coefficient bounds; c-Bounds
gives the constant coefficient bounds; #Schedules gives the to-
tal number of schedules, including illegal ones; #Legal gives the
number of actual schedules in our space, i.e. the number of legal
schedules; lastly Time precises the search space computation time
on a Pentium 4 Xeon, 3.2GHz.

Results shows the very high benefit to work directly on a space
including only legal transformations since it lowers the number of
considered transformations by one to many orders of magnitude for
a quite acceptable computation time. On the contrary, these results
shows that without such a politic, achieving an exhaustive search
is not possible even for small kernels. While these results shows
profitability, it is not a demonstration of scalability, in the following
we will propose to actually visit the search space exhaustively or
using an heuristic way.

6. Scanning the Optimization Search Space
In previous sections, we formally defined how to build a singular
search space where each point corresponds to a legal program ver-
sion. We also adapted this space in such a way that a scan becomes
possible in any case. In the following, we will actually visit the
search space to evaluate its potential for program optimization. In
section 6.1, we present our experimental setup, section 6.2 shows
results on exhaustive search while section 6.6 presents a heuristic
to avoid performing a large number of runs while preserving the
core optimization benefits.

6.1 Experimental Setup
We implemented tools for dependence analysis, legal transforma-
tion space construction and scanning. We used for that purpose ex-
ternal publicly available tools as PipLib, a linear algebra tool [9]
and CLooG, a code generator in the polyhedral model [4]. We de-
signed our tools to be able to use them as a plugin in the future
GRAPHITE GCC’s polyhedral framework [26].

We ran our experiments on an Intel workstation based on Xeon
3.2GHz, 8KB L1, 512KB L2 caches. We used four different com-
pilers: GCC 3.4.2, GCC 4.1.1, Intel ICC 9.0.1 and PathScale
EKOPath 2.5. We used hardware counters to measure the number
of cycles used by various programs. In order to avoid interferences
with other programs and the system, we set the system scheduler
policy to FIFO for every test. The kernel benchmark set is the one
presented in section 5.

6.2 Exhaustive Space Scanning
Because our search space is only based on legal solutions, the ac-
ceptable number of solutions for our various kernel benchmarks
makes it possible to achieve an exhaustive search in a reasonable
amount of time. Figure 4 summarizes our results. The Benchmark
column states the input original program; the Compiler column
shows the compiler used to build each program version of the
search space (GCC version was 4.1.1); the Options column pre-
cises the compiler options; the Parameters column gives the
values of the global parameters (for instance the array sizes);
the Improved column shows the number of transformations that
achieves a better performance than the original program (the total
number of versions is shown in Figure 3); the ID best gives the
“number” of the best solution; lastly, the Speedup column gives the
speedup achieved by the best solution with respect to the original
program performance.

The two main results shown by this figure are, firstly, that the
best program version highly depends on both compiler and com-
piler options. Even considering the several very best solutions,
there are typically no intersection between the set of best transfor-
mations for two pairs compiler/compilation-options. Second, sig-
nificant speedups are achieved thank to the traversal of the search
space, demonstrating the interest of the method for optimizing
compilation. In few cases, a 0% speedup is achieved, meaning that
the original code was already optimal for our experimental setup.
In average, the method leads to a 35.4% speedup, or to 14.9% with-
out the extreme results of matrix-multiply kernel which is known
to be a good candidate for such study.

Another interesting result is the form of the best transformed
program since they typically appear to be quite complex. Most of
the time, it was not possible to easily understand why they result in
better performance since a significant part of the answer was related
to the compiler design. We also noticed that optimization algorithm
based on formal representations were sometimes far away from the
optimal solution. A striking example is the MVT kernel benchmark.
It is made of two matrix-vector multiplies in a perfectly nested
i,j loop nest such that one of the matrices is the transposition of
the other one. The simple, supposed optimal transformation in our
class suggests a schedule of (i) for the first innermost statement
and (j) for the second one, which results in accessing the same
memory cell of the shared matrix during each iteration. The very
best schedule was in fact (j + 1) and (i + j + n + 1) where n is
the vector size, which result in distributing the statements in two
different loop nests and to skew one of the resulting loop nests,
leading to a weird data access pattern.

The relation with the compiler is described further in sec-
tion 6.3. Section 6.4 deals with the effect of compiler options and
lastly, we discuss the performance distribution in section 6.5.

4 2006/10/16

Kernel Benchmark #Dependences ~ı-Bounds ~p-Bounds c-Bounds #Schedules #Legal Time
h264 15 −1, 1 −1, 1 0, 4 3165 360 0.011
fir 12 −1, 1 −1, 1 −1, 1 4.78× 106 432 0.004
fft 36 −2, 2 −2, 2 0, 6 5.8× 1025 804 0.079
lu 14 0, 1 0, 1 0, 1 3.2× 104 1280 0.005

gauss 18 −1, 1 −1, 1 −1, 1 5.9× 104 506 0.021
crout 26 −3, 3 −3, 3 −3, 3 2.3× 1014 798 0.027

matmult 7 −1, 1 −1, 1 −1, 1 19683 912 0.003
MVT 10 −1, 1 −1, 1 −1, 1 4.7× 106 16641 0.001

locality 2 −1, 1 −1, 1 −1, 1 59049 6561 0.001

Figure 3. Search Space Computation

Benchmark Compiler Options Parameters #Improved ID best Speedup
h264 PathCC -Ofast none 11 352 36.1%
h264 GCC -O2 none 19 234 13.3%
h264 GCC -O3 none 26 250 25.0%
h264 ICC -O2 none 27 290 12.9%
h264 ICC -fast none 0 N/A 0%
fir PathCC -Ofast N=150000 240 72 6.0%
fir GCC -O2 N=150000 259 192 15.2%
fir GCC -O3 N=150000 119 289 13.2%
fir ICC -O2 N=150000 420 242 18.4%
fir ICC -fast N=150000 315 392 3.4%
fft PathCC -O2 N=256 M=256 O=8 21 267 7.2%
fft GCC -O2 N=256 M=256 O=8 10 285 0.9%
fft GCC -O3 N=256 M=256 O=8 11 289 1.8%
fft ICC -O2 N=256 M=256 O=8 17 260 6.9%
fft ICC -fast N=256 M=256 O=8 20 112 6.4%
lu PathCC -Ofast N=1000 100 224 6.5%
lu GCC -O2 N=1000 321 339 1.6%
lu GCC -O3 N=1000 330 337 3.9%
lu ICC -O2 N=1000 281 770 9.0%
lu ICC -fast N=1000 262 869 8.7%
gauss PathCC -Ofast N=150 212 4 3.1%
gauss GCC -O2 N=150 204 2 1.7%
gauss GCC -O3 N=150 52 2 0.01%
gauss ICC -O2 N=150 63 288 0.05%
gauss ICC -fast N=150 15 39 0.03%
crout PathCC -Ofast N=150 0 N/A 0%
crout GCC -O2 N=150 132 638 3.6%
crout GCC -O3 N=150 56 628 1.7%
crout ICC -O2 N=150 37 625 0.5%
crout ICC -fast N=150 63 628 2.9%
matmul PathCC -Ofast N=250 402 283 308.1%
matmul GCC -O2 N=250 318 573 243.6%
matmul GCC -O3 N=250 345 143 248.7%
matmul ICC -O2 N=250 390 311 56.6%
matmul ICC -fast N=250 318 641 645.4%
MVT PathCC -Ofast N=2000 5652 4934 27.4%
MVT GCC -O2 N=2000 3526 13301 18.0%
MVT GCC -O3 N=2000 3601 13320 21.2%
MVT ICC -O2 N=2000 5826 14093 24.0%
MVT ICC -fast N=2000 5966 4879 29.1%
locality PathCC -Ofast N=10000, M=2000 6069 5430 47.7%
locality GCC -O2 N=10000, M=2000 30 5494 19.0%
locality GCC -O3 N=10000, M=2000 589 4332 6.0%
locality ICC -O2 N=10000, M=2000 3269 2956 38.4%
locality ICC -fast N=10000, M=2000 4614 3039 54.3%

Figure 4. Search Space Statistics

6.3 The Compiler as an Element of the Target Platform
Our iterative optimization scheme is independent from the compiler
and may be seen as a higher level to classical iterative compilation.

In the same way as a given program transformation may better ex-
ploit a feature of a given processor, it also may enable more ag-

5 2006/10/16

gressive options of a given compiler. Because production compilers
have to generate a target code in any case in a reasonable amount of
time, their optimizations are very fragile, i.e. a slight difference in
the source code may enable or forbid a given optimization phase.

To study this behavior and estimating how a higher level it-
erative optimization scheme may lead to better performances, we
achieved a exhaustive scan of our search space for various programs
and compilers with aggressive optimization options. We illustrate
our results in Figure 4, and with more details in Figure 6 for the
matrix-multiply kernel shown in Figure 5, a very classic computa-
tional kernel. This kernel benchmark has been extensively studied,
and is a typical target of aggressive optimizations of production
compilers.

for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++) {

S1 C[i][j] = 0;
for (k = 1; k <= n; k++)

S2 C[i][j] = A[i][k] * B[k][j];
}

Figure 5. matmult

We tested the whole set of legal schedules within the bounds
−1, 1 for all coefficients (912 points), and checked the speedup for
various compilers with aggressive optimizations enabled. Matrices
are double arrays of size 250 × 250. We compared, for a given
compiler, the number of cycles the original code took (Original) to
the number of cycles the best transformation took (Best) (results
are in millions of cycles).

Figure 6 shows significant speedups achieved by the best trans-
formations for each back-end compiler. Such speedups are not un-
common when dealing with the matrix-multiplication kernel. The
important point is that we do not perform any tiling (it requires
multi-dimensional schedules), contrary to nearly all other works
(see [36, 2] for useful references). It was possible to check using
PathScale EKOPath that many optimization phases have been en-
abled or disabled, depending on the version generated from our ex-
ploration tool. Nevertheless it is technically hard to know precisely
the contribution of the one-dimensional schedule (which has a high
potential, by itself, as an optimizing transformation) with respect
to the enabled compiler optimizations. But another striking result
is the high variation of the best schedules depending on the com-
piler. For instance the lack of the j iterator in θS1(~xS1) for GCC or
the lack of the n parameter θS2(~xS2) for ICC.

These results, which are consistent with the other tested pro-
grams, emphasize the need of a compiler-dedicated transformation
to achieve the best possible performance. One possible explanation
is the difference between optimization phases in the different back-
end compilers. Compilers have attained such a level of complexity
that it is no longer possible to model the effects of downstream
phases on upstream ones. Yet it is mandatory to rely on the down-
stream phases of a back-end compiler to achieve a decent perfor-
mance, especially those which cannot be embedded naturally in the
polyhedral model.

6.4 On the Influence of Compiler Options
Experiments have shown a relation between the best transforma-
tions and the compiler options. For instance, in the matmult ker-
nel benchmark case with the ICC compiler used with the aggres-
sive -fast option, the best transformation yields a 4.5% slow-
down when it is compiled with -O2 and compared to the best one
found for this compiler option. This behavior was observed on all

the tested programs. Finding the best compiler options is the sub-
ject of many research works in iterative compilation (see section 2
for useful references). Studying this aspect is out of the scope of the
present paper but those results are a sign that combining our method
with existing iterative compilation techniques is a promising way.

6.5 Discussion on Performance Distribution
Exhaustive scanning of all program versions is feasible on (small)
kernels, and lets us observe the exact performance distribution. Fig-
ures 7 and 8 show this distribution for the matmult, locality and
crout examples, considering multiple compilers and optimization
options. Each graph represents the computation time of every point
in the search space as a function of its number in the scanning order.
An horizontal line shows the performance of the original program:
every point below this line corresponds to a more efficient program
version.

Although the scanning order may be a weird choice for such
representation, it shows that the performance distribution is not
totally chaotic.1

From these observations, we conclude that:

• in most cases, contiguous regions of similar performance can
be identified;

• several transformations may be close to the best performance,
but the probability to find them at random can be very low (e.g.,
on locality);

• for some benchmarks (e.g., on matmult), strong correlations do
exist but are not easily observable without reordering the index
space of the transformations (the X axis on the performance
distribution figures).

The impact of the compiler on the distribution is emphasized
in Figure 8. Here we compare, for an identical original program
(hence an identical optimization search space), the the distribu-
tion on ICC -fast and GCC4 -03 on the crout kernel bench-
mark. Hence, understanding performance regularities may help to
find hot regions in the search space, thus avoiding useless runs in
low-interest regions and diminishing-return searches among nearly
optimal solutions. Machine learning techniques are used to solve
similar problems for classical iterative optimization problems, and
seem particularly promising to achieve this goal [31, 1]. We defer
the application of these approaches to a further study, dedicating
this paper to the study of the mathematical properties of our model,
in an attempt to pruning the search space without loosing the most
interesting solutions.

6.6 Heuristic Traversal of the Optimization Space
Since it is unpractical to explore the whole search space on real-
world benchmarks, we propose a heuristic to enumerate only a
high-potential sub-space, using the properties of the polyhedral
model to characterize the highest potential and narrowest one.

6.6.1 Decoupling Heuristic
We represent the schedule coefficients of a statement as a three
component vector:

θS(~xS) = (~ı ~p c)

~xS

~n
1


Where ~ı represents the iterators coefficients, ~p the parameters

coefficients and c the constant coefficient.

1 It is not an absurd ordering though: the scanning procedure could be seen
as a very deep loop nest were the outer loop iterates on values of the first
iterator coefficient of the first statement and the inner loop iterates on values
of the constant coefficient of the last statement.

6 2006/10/16

Compiler Option Original Best Schedule Speedup

GCC 3.4.2 -O3 519 163
θS1(~xS1) = −1
θS2(~xS2) = k + 1

318.4%

GCC 4.1.1 -O3 515 207
θS1(~xS1) = −i− j + n− 1
θS2(~xS2) = k + n

248.7%

ICC 9.0.1 -fast 465 72
θS1(~xS1) = −i + n
θS2(~xS2) = k + 1

645%

PathCC 2.5 -Ofast 228 79
θS1(~xS1) = j − n− 1
θS2(~xS2) = k

308%

Figure 6. Results for the matmult example

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 2.2e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

(M
)

Transfo. ID

matxmat

Original

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 1000 2000 3000 4000 5000 6000 7000

C
yc

le
s

(M
)

Transfo. ID

locality

Original

Figure 7. Performance Distributions for matmult and locality using GCC4 -O2

 1.26e+09

 1.27e+09

 1.28e+09

 1.29e+09

 1.3e+09

 1.31e+09

 1.32e+09

 1.33e+09

 1.34e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

(M
)

Transfo. ID

crout

Original

 1.26e+09

 1.28e+09

 1.3e+09

 1.32e+09

 1.34e+09

 1.36e+09

 1.38e+09

 1.4e+09

 1.42e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

(M
)

Transfo. ID

crout

Original

Figure 8. Performance Distributions for crout, ICC -fast and crout, GCC4 -O3

In this search space representation, two neighbor points may
represent a very different generated code, since a minor change in
the ~ı part can drastically modify the compound transformation (a
program where interchange and fusion are applied can be the neigh-
bor of a program with none of these transformations). The most

significant impact on the generated code is caused by iterator coef-
ficients, and we intuitively assume their impact on performance will
be equaly important. Conversely, modifying parameters or constant
coefficients is less critical (especially when one-dimensional sched-
ules are considered). Hence it is relevant to propose an exploration

7 2006/10/16

heuristic centered on the enumeration of the possible combinations
for the~ı coefficients.

The proposed heuristic is window-search based. It decouples
iterator coefficients from the others, enabling a systematic explo-
ration of all the possible combinations for the ~ı part. At first, we
do not care about the values for the ~p and c part (they can be cho-
sen arbitrarily in the search space, as soon as they are compatible
with the ~ı sequence). The resulting sub-set of program versions is
then filtered with respect to effective performance, keeping the top
points only. Then, we repeat the systematic exploration of the pos-
sible combination of values for the ~p and c coefficients to refine the
program transformation sequence.

The heuristic can be sketched in 5 steps.

1. Build the set of all different possible combinations of coeffi-
cients for the ~ı part of the schedule, inside the set of all legal
schedules. Choose ~p and c at random in the space, according to
the~ı part.

2. For each schedule in this set, generate and instrument the cor-
responding program version and run it.

3. Filter the set of schedules by removing those associated with
a run time more than x% slower than the best one (combined
with a bound on the limit of selected schedules).

4. For each schedule in the remaining set, explore the set of possi-
ble values for the ~p and c part (inside the set of all legal sched-
ules) while the~ı part is left unchanged.

5. Select the best schedule and generated program in this set.

6.6.2 Discussion
Figure 9 details a run of our decoupling heuristic, and compares it
witho a plain random search for some of our kernel benchmarks.2

It shows the relative percentage of the best speedup achieved as a
function of the number of iterative runs. A fast convergence of the
decoupling heuristic is attained on some examples like crout or
locality, where regularities in the distribution can be observed.
On these tested examples, more than 95% of the maximum speedup
can be achieved with an order of magnitude reduction of the num-
ber of runs, compared to an exhaustive scan.

On the other hand, we observed a suboptimal behavior of the
heuristic comparatively to a full random driven approach, as Fig-
ure 9 shows for the matmult kernel. Not surprisingly, as soon as
the density of interesting transformations is large, a random space
scan may converge faster than our enumeration-based method.

A more important problem is the scalability to larger SCoPs. To
prevent the possibly large set of legal values for the ~ı coefficients,
it is possible to:

1. impose a static or dynamic limit to the number of runs, which
should be coupled to an exploration strategy starting with co-
efficients as close as possible to 0 (remember 0 may not corre-
spond to any legal schedule);

2. to replace an exhaustive enumeration of the ~ı combinations by
a limited set of random draws in the~ı space.

The choice between the exhaustive, limited or random exploration
of the ~ı space can be heuristically determined with regards to the
size of the original SCoP (this size gives a good intuition of the
order of magnitude of the size of the search space).

2 Some results are missing due to temporary instabilities in the experimental
test-bed. We work to correct these bugs before the final version.

7. Future Work
Affine multidimensional schedules It is always possible to find a
multidimensional affine schedule to a SCoP, while a one-dimensional
schedule may not exists. Unfortunately, the generalization of our
method to multidimensional schedules leads to a well known com-
binatorial barrier: if there is exactly one way to choose the set of
dependences to satisfy in the one-dimensional case (they must all
be satisfied in one dimension, i.e. in one set), there is a combi-
natorial way to choose the sets as soon as there is more than one
dimension. Feautrier proposed a greedy algorithm to solve the max-
imal set of dependences at a given depth, and increment the depth if
unresolved dependences remain [11]. This would give us the min-
imal sequential depth of the schedule [33], but the combinatorics
remains if we want to explore all the legal schedules.

Parallelism The polyhedral model is designed to express in a nat-
ural way parallelism inside loop nests. Our study was only applied
to monoprocessor machines, but it is a short term assignment to
exploit this parallelism in a state-of-the-art shared-memory system.
We need to slightly modify the code generation phase in order to
generate an OpenMP equipped C code [7].

8. Conclusion
Iterative and empirical search techniques are one of the last hopes to
let compilers harness the complexity of modern processors and hide
it from the application programmers. We focus on loop transforma-
tions because they are both criticaly important for performance and
very hard to drive in an optimizing compiler.

Iterative loop nest optimization is intrinsicly difficult because
of the large number of distinct, legal transformations for a given
program, and it is complicated by the inability of classical loop
transformation frameworks to statically characterize this set. So
far, all attempts have relied on a separate filtering step to remove
redundant and/or illegal candidate transformation from the search
space. Our experiments show that such approaches are likely to be
impractical, even for tiny kernels of a few lines of code.

On the contrary, we propose an algorithm to express the whole
set of distinct, legal affine one-dimensional schedules for a pro-
gram, that is the expression of every legal combination of transfor-
mations for this class of schedules that result in distinct semantics.
On small kernels, our early experiments demonstrate the ability to
discover the wall-clock optimal schedule, thanks to an exhaustive
exploration of that space, given a back-end compiler, target archi-
tecture and data set. To our knowledge, this is the first time such a
space is explored.

It is expected that a systematic exploration will not scale to
large programs, or when multi-dimensional schedules are consid-
ered. But our study also contributes key observations about the per-
formance distributions in the transformation space, a first step to-
wards combining our search space construction and enumeration
approach with more generic machine learning or empirical search
techniques.

References
[1] AGAKOV, F., BONILLA, E., CAVAZOS, J., FRANKE, B., FURSIN,

G., O’BOYLE, M. F. P., THOMSON, J., TOUSSAINT, M., AND
WILLIAMS, C. K. I. Using machine learning to focus iterative
optimization. In CGO ’06: Proceedings of the International
Symposium on Code Generation and Optimization (Washington,
DC, USA, 2006), IEEE Computer Society, pp. 295–305.

[2] ALLEN, J., AND KENNEDY, K. Optimizing Compilers for Modern
Architectures. Morgan Kaufmann Publishers, 2002.

[3] ALMAGOR, L., COOPER, K., GROSUL, A., HARVEY, T., REEVES,
S., SUBRAMANIAN, D., TORCZON, L., AND WATERMAN, T.

8 2006/10/16

 65

 70

 75

 80

 85

 90

 95

 100

 0 20 40 60 80 100 120 140

R1
H1

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100 120 140 160 180

R1
H1

 92

 93

 94

 95

 96

 97

 98

 99

 100

 0 5 10 15 20 25 30

H1
R1

Figure 9. Comparison between the random and the decoupling heuristics, on the locality, matmul and mvt examples

Finding effective compilation sequences. In Languages, Compilers,
and Tools for Embedded Systems (LCTES) (New York, 2004),
pp. 231–239.

[4] BASTOUL, C. Code generation in the polyhedral model is easier than
you think. In PACT’13 IEEE International Conference on Parallel
Architectures and Compilation Techniques (Juan-les-Pins, september
2004), pp. 7–16.

[5] BODIN, F., KISUKI, T., KNIJNENBURG, P. M. W., O’BOYLE,
M. F. P., AND ROHOU, E. Iterative compilation in a non-linear
optimisation space. In Workshop on Profile and Feedback Directed
Compilation (Paris, October 1998).

[6] CHOW, K., AND WU, Y. Feedback-directed selection and charac-
terization of compiler optimizations. In 2nd Workshop on Feedback-
Directed Optimization (Israel, November 1999).

[7] DAGUM, L., AND MENON, R. OpenMP: An industry-standard API
for shared-memory programming. IEEE Comput. Sci. Eng. 5, 1
(1998), 46–55. See http://www.openmp.org.

[8] DARTE, A., ROBERT, Y., AND VIVIEN, F. Scheduling and Automatic
Parallelization. Birkhauser, 2000.

[9] FEAUTRIER, P. Parametric integer programming. RAIRO Recherche
Opérationnelle 22, 3 (1988), 243–268.

[10] FEAUTRIER, P. Some efficient solutions to the affine scheduling
problem: one dimensional time. International Journal of Parallel
Programming 21, 5 (october 1992), 313–348.

[11] FEAUTRIER, P. Some efficient solutions to the affine scheduling
problem. Part II. Multidimensional time. Int. J. Parallel Program. 21,
5 (1992), 389–420.

[12] FRANKE, B., AND O’BOYLE, M. Combining array recovery and
high level transformation: an empirical evaluation for embedded
processors. In CPC’10 International Workshop on Compilers for
Parallel Computers (Amsterdam, January 1995), pp. 29–38.

[13] FURSIN, G., COHEN, A., O’BOYLE, M., AND TEMAM, O. A
practical method for quickly evaluating program optimizations.
In Intl. Conf. on High Performance Embedded Architectures and
Compilers (HiPEAC’05) (Barcelona, Nov. 2005), no. 3793 in LNCS,
Springer-Verlag, pp. 29–46.

[14] GIRBAL, S., VASILACHE, N., BASTOUL, C., COHEN, A., PAR-
ELLO, D., SIGLER, M., AND TEMAM, O. Semi-automatic com-
position of loop transformations for deep parallelism and memory
hierarchies. Intl. J. of Parallel Programming 34, 3 (2006).

[15] GRIEBL, M., FABER, P., AND LENGAUER, C. Space-time mapping
and tiling – a helpful combination. Concurrency and Computation:
Practice and Experience 16, 3 (march 2004), 221–246.

[16] KELLY, W., AND PUGH, W. A framework for unifying reordering
transformations. Tech. rep., College Park, MD, USA, 1993.

[17] KELLY, W., PUGH, W., AND ROSSER, E. Code generation for
multiple mappings. In Frontiers’95 Symposium on the frontiers of

massively parallel computation (McLean, 1995).

[18] KODUKULA, I., AHMED, N., AND PINGALI, K. Data-centric multi-
level blocking. In ACM SIGPLAN’97 Conference on Programming
Language Design and Implementation (Las Vegas, june 1997),
pp. 346–357.

[19] KULKARNI, P., ZHAO, W., MOON, H., CHO, K., WHALLEY, D.,
DAVIDSON, J., BAILEY, M., PAEK, Y., AND GALLIVAN, K. Finding
effective optimization phase sequences. In LCTES ’03: Proceedings
of the 2003 ACM SIGPLAN conference on Language, compiler, and
tool for embedded systems (San Diego, California, USA, 2003), ACM
Press, pp. 12–23.

[20] KULKARNI, P. A., HINES, S. R., WHALLEY, D. B., HISER, J. D.,
DAVIDSON, J. W., AND JONES, D. L. Fast and efficient searches
for effective optimization-phase sequences. ACM Trans. Archit. Code
Optim. 2, 2 (2005), 165–198.

[21] LIM, A. W., AND LAM, M. S. Maximizing parallelism and
minimizing synchronization with affine transforms. In POPL ’97:
Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (New York, NY, USA, 1997),
ACM Press, pp. 201–214.

[22] LONG, S., AND FURSIN, G. A heuristic search algorithm based on
unified transformation framework. In ICPPW ’05: Proceedings of
the 2005 International Conference on Parallel Processing Workshops
(ICPPW’05) (Washington, DC, USA, 2005), IEEE Computer Society,
pp. 137–144.

[23] LONG, S., AND FURSIN, G. Systematic search within an optimisa-
tion space based on unified transformation framework, 2006.

[24] MCKINLEY, K. S., CARR, S., AND TSENG, C.-W. Improving data
locality with loop transformations. ACM Trans. Program. Lang. Syst.
18, 4 (1996), 424–453.

[25] MONSIFROT, A., BODIN, F., AND QUINIOU, R. A machine learning
approach to automatic production of compiler heuristics. In AIMSA
’02: Proceedings of the 10th International Conference on Artificial
Intelligence: Methodology, Systems, and Applications (London, UK,
2002), Springer-Verlag, pp. 41–50.

[26] POP, S., COHEN, A., BASTOUL, C., GIRBAL, S., JOUVELOT,
P., SILBER, G.-A., AND VASILACHE, N. GRAPHITE: Loop
optimizations based on the polyhedral model for GCC. In Proc.
of the 4th GCC Developper’s Summit (Ottawa, Canada, June 2006).

[27] QUILLERÉ, F., RAJOPADHYE, S., AND WILDE, D. Generation
of efficient nested loops from polyhedra. International Journal of
Parallel Programming 28, 5 (october 2000), 469–498.

[28] QUINTON, P., AND DONGEN, V. V. The mapping of linear
recurrence equations on regular arrays. The Journal of VLSI Signal
Processing 1, 2 (october 1989), 95–113.

[29] SCHREIBER, R., AND VILLARD, G. Lattice-based memory
allocation. IEEE Trans. Comput. 54, 10 (2005), 1242–1257. Member-
Alain Darte.

9 2006/10/16

[30] SCHRIJVER, A. Theory of Linear and Integer Programming. John
Wiley & Sons, 1986.

[31] STEPHENSON, M., AMARASINGHE, S., MARTIN, M., AND
O’REILLY, U.-M. Meta optimization: improving compiler heuristics
with machine learning. SIGPLAN Not. 38, 5 (2003), 77–90.

[32] TRIANTAFYLLIS, S., VACHHARAJANI, M., VACHHARAJANI, N.,
AND AUGUST, D. I. Compiler optimization-space exploration. In
CGO ’03: Proceedings of the international symposium on Code
generation and optimization (Washington, DC, USA, 2003), IEEE
Computer Society, pp. 204–215.

[33] VIVIEN, F. On the optimality of Feautrier’s scheduling algorithm.
In Euro-Par ’02: Proceedings of the 8th International Euro-Par
Conference on Parallel Processing (London, UK, 2002), Springer-
Verlag, pp. 299–308.

[34] WIEGAND, T., SULLIVAN, G., AND LUTHRA, A. Itu-t rec. h.264 –
iso/iec 14496-10 avc - final draft. Tech. rep., Joint Video Team (JVT)
of ISO/IEC MPEG and ITU-T VCEG, May 2003.

[35] WOLF, M. E., AND LAM, M. S. A data locality optimizing
algorithm. In PLDI ’91: Proceedings of the ACM SIGPLAN 1991
conference on Programming language design and implementation
(New York, NY, USA, 1991), ACM Press, pp. 30–44.

[36] WOLFE, M. High performance compilers for parallel computing.
Addison-Wesley Publishing Company, 1995.

10 2006/10/16

