
app or t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
69

62
--

FR
+E

N
G

Domaine 2

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Hybrid Iterative and Model-Driven Optimization in
the Polyhedral Model

Louis-Noël Pouchet — Uday Bondhugula — Cédric Bastoul — Albert Cohen —

J. Ramanujam — P. Sadayappan

N° 6962

June 2009

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université

4, rue Jacques Monod, 91893 ORSAY Cedex
Téléphone : +33 1 72 92 59 00

Hybrid Iterative and Model-Driven Optimization in the
Polyhedral Model

Louis-Noël Pouchet ∗, Uday Bondhugula† , Cédric Bastoul∗ ,
Albert Cohen∗ , J. Ramanujam‡ , P. Sadayappan§

Domaine 2 — Algorithmique, programmation, logiciels et architectures
Équipes-Projets ALCHEMY

Rapport de recherche n° 6962 — June 2009 — 26 pages

Abstract: On modern architectures, a missed optimization can translate into perfor-
mance degradations reaching orders of magnitude. More than ever, translating Moore’s
law into actual performance improvements depends on the effectiveness of the com-
piler. Moreover, missing an optimization and putting the blame on the programmer is
not a viable strategy: we must strive for portability of performance or the majority of
the software industry will see no benefit in future many-core processors.

As a consequence, an optimizing compiler must also be a parallelizing one; it must
take care of the memory hierarchy and of (re)partitioning computation to best suit the
target architecture. Polyhedral compilation is a program optimization and paralleliza-
tion framework capable of expressing extremely complex transformation sequences.
The ability to build and traverse a tractable search space of such transformations re-
mains challenging, and existing model-based heuristics can easily be beaten in iden-
tifying profitable parallelism/locality trade-offs. We propose a hybrid iterative and
model-driven algorithm for automatic tiling, fusion, distribution and parallelization of
programs in the polyhedral model. Our experiments demonstrate the effectiveness of
this approach, both in obtaining solid performance improvements over existing auto-
parallelizing compilers, and in achieving portability of performance on various modern
multi-core architectures.

Keywords: Affine Scheduling, Tiling, Iterative Compilation, Loop Transformation,

∗ ALCHEMY, Inria Saclay Île-de-France and University of Paris Sud 11
† IBM T.J. Watson Research, Yorktown Heights, New York
‡ Louisiana State University
§ The Ohio State University

Contents
1 Introduction 3

2 Automatic Parallelization and Optimization 3
2.1 Polyhedral Model . 4

2.1.1 Representing Programs . 4
2.1.2 Representing Optimizations 5

2.2 Hybrid Optimization . 5
2.2.1 Fusion/Distribution Strategy 5
2.2.2 Tiling Hyperplanes . 7
2.2.3 Static Cost Model . 7

3 Building Program Versions 8
3.1 Properties of the Search Space . 8
3.2 A Convex Space of All, Distinct Total Preorders 9
3.3 Pruning for Legality . 12

3.3.1 The Algorithm . 12
3.3.2 Generalization to Multi-Level Fusion 14
3.3.3 Search space statistics . 14

3.4 Testing Relevant Program Versions 14

4 Experimental Results 15
4.1 Experimental Setup . 16
4.2 Performance Improvement . 16
4.3 Performance Portability . 18

5 Related Work 19

6 Conclusion 20

References 20

A Proof of Lemma 1 24

Hybrid Iterative and Model-Driven Optimization in the Polyhedral Model 3

1 Introduction
Portability of performance over a broad range of architectures is a difficult task. It re-
quires: (1) to be able to apply complex sequences of loop transformations; and (2) to
effectively model the interplay of all hardware components involved in program exe-
cution. Current model-driven optimization heuristics either rely on a restricted subset
of the possible program transformations, or simply fail to be portable.

The polyhedral representation of programs allows expression of arbitrarily complex
sequences of loop transformations. The downside of this expressiveness is the extreme
difficulty in selecting a good optimization strategy combining the most important loop
transformations, including loop tiling, fusion, distribution, interchange, skewing, per-
mutation and shifting [14, 24]. It is also hard for any model-based technique to capture
analytically the complex interplay between hardware components, taking into account
downstream optimization passes.

Considering the state-of-the-art tiling and parallelization algorithm in the polyhe-
dral model [6], we show that a purely model-based approach fails to achieve perfor-
mance portability. It is not sufficient since several other high-impact factors, including
cache conflicts and vectorization, are not taken into account. Tuning a transformation
to best fit the architectural constraints is required, and we wish to exhibit portable per-
formance, trading scalability, locality and synchronization overhead efficiently for any
target.

To address these challenges, we designed a hybrid scheme for optimization and
parallelization. It relies on an iterative, feedback-directed exploration of loop fusion
/ distribution choices, that efficiently drives a model-based algorithm for many other
loop transformations, including loop tiling. Portability is achieved thanks to iteratively
testing for different program versions, and our method finds the optimal version on the
benchmarks we considered. We obtained improvements ranging from 1.1× to 21.3×
over reference parallelizing compilers using model-based heuristics, and validated the
portability of our approach considering three different modern multi-core architectures
(Intel Dunnington, AMD Shanghai and IBM Power5+).

The rest of the paper is organized as follows. Section 2 recalls the fundamen-
tal concepts and presents the model-based optimization algorithms used in our hybrid
strategy. Section 3 details the search space construction, pruning and traversal strat-
egy. Section 4 evaluates this technique experimentally, and Section 5 discusses related
work.

2 Automatic Parallelization and Optimization
Most compiler internal representations match the inductive semantics of imperative
programs (syntax tree, call tree, control-flow graph, SSA). In such reduced representa-
tions of the dynamic execution trace, a statement of a high-level program occurs only
once, even if it is executed many times (e.g., when enclosed within a loop). Rep-
resenting a program in this manner is not convenient for optimizations that need a
representation granularity at the level of dynamic statement instances. For example,
transformations like loop interchange, fusion or tiling operate on the execution order
of statement instances [34]. In addition, a rich algebraic structure is required when
building complex compositions of such transformations [14], enabling efficient search
space construction and traversal heuristics [24].

RR n° 6962

4 Pouchet, Bondhugula et al.

2.1 Polyhedral Model
The polyhedral model is a flexible and expressive representation for loop nests with
statically predictable control flow. Loop nests amenable to algebraic representation
are called static control parts (SCoP) [11, 14], roughly defined as a set of consecutive
statements such that loop bounds and conditionals involved are affine functions of the
surrounding loop iterators and global variables (constant that are unknown at compile
time). Relaxation of these constraints based on affine over-approximations have been
proposed [3]. Our optimization scheme is compatible with it, but we limit this work to
describing the representation and optimization of regular SCoPs.

2.1.1 Representing Programs

Polyhedral program optimization is a three stage process. First, the program is analyzed
to extract its polyhedral representation, including dependence information and access
pattern.

The set of all executed instances of each statement is called an iteration domain.
These sets are represented by affine inequalities involving the loop iterators and the
global variables. Considering the gemver kernel in Figure 1, the iteration domain of
S1 is:

DS1 = {(i, j) ∈ Z2 | 0≤ i < M∧0≤ j < M}

DS1 is a (parametric) integer polyhedron, that is a subset of Z2. The iteration vector
~xS1 is the vector of the surrounding loop iterators, for S1 it is (i, j) and takes value in
DS1.

for(i=0; i<M; i++)
for(j=0; j<M; j++)

S1 A[i][j] = A[i][j] + u1[i] * v1[j]
+ u2[i] * v2[j];

for(i=0; i<M; i++)
for (j=0; j<M; j++)

S2 x[i] = x[i] + beta*A[j][i]*y[j];
for(i=0; i<M; i++)

S3 x[i] = x[i] + z[i];
for(i=0; i<M; i++)
for(j=0; j<M; j++)

S4 w[i] = w[i] + alpha*A[i][j]*x[j];

Figure 1: gemver original code

Two statements instances are in dependence relation if they access the same mem-
ory cell and at least one of these accesses is a write. Given two statements R and S, a
dependence polyhedron DR,S is a subset of the Cartesian product of DR and DS. DR,S
contains all pairs of instances 〈~xR,~xS〉 such that ~xS depends on ~xR, for a given array
reference. Hence, for an optimization to respect the program semantics, it must ensure
that~xR is executed before~xS, for all pairs 〈~xR,~xS〉 ∈DR,S.

To capture all program dependences we build a set of dependence polyhedra, one
for each pair of array references accessing the same array cell (scalars being a particular

INRIA

Hybrid Iterative and Model-Driven Optimization in the Polyhedral Model 5

case of array), thus possibly building several dependence polyhedra per pair of state-
ments. The polyhedral dependence graph is a multi-graph with one node per statement,
and an edge eR→S is labeled with a dependence polyhedron DR,S, for all dependence
polyhedra.

2.1.2 Representing Optimizations

The second step of polyhedral program optimization is to pick a transformation for the
program. Such a transformation captures in a single step what may typically corre-
spond to a sequence of several tens of textbook loop transformations [14]. It takes the
form of a carefully crafted affine multidimensional schedule, together with (optional)
iteration domain or array subscript transformations.

In this work, a given loop nest optimization is defined by a multidimensional affine
schedule. Given a statement S, we use an affine form on the outer loop iterators ~xS. It
is written

Φ
S(~xS) = CS

(
~xS
1

)
where CS is a matrix of non-negative integer constants. Multidimensional dates can
be seen as logical clocks: the first dimension corresponds to days (most significant),
next one is hours (less significant), the third to minutes, and so on. Note that every
static control program has a multidimensional affine schedule [12], and that any loop
transformation can be represented in the polyhedral representation [34].

We note φS
i the ith row of CS. A row is an affine hyperplane on DS. For S with mS

outer loop iterators we note:

φ
S
i = [cS

1 cS
2 . . . cS

mS
cS

0]

That is, cS
0 is the coefficient attached to the scalar.

Multidimensional polyhedral tiling is applied by modifying the iteration domain of
the statements to be tiled, in conjunction with further modifications of Φ [14].

Finally, syntactic code is generated back from the polyhedral representation on
which the optimization has been applied. We use the state-of-the art code generator
CLOOG [2] to perform this task.

2.2 Hybrid Optimization
We organize the optimization and automatic parallelization of a loop nest as an itera-
tive, feedback-directed search. Each iteration of the search is further decomposed into
two stages:

1. choose a partition of the program statements, such that statements inside a given
class can share at least one common loop in the generated code;

2. on each class of this partition, apply a model-driven, tiling-based optimization
and parallelization algorithm.

2.2.1 Fusion/Distribution Strategy

The first step of our optimization process is to partition the statements of the program,
such that a class of this partition corresponds to a set of fusable statements. The par-
tition of all statements is called a fusion structure for the program: each statement is
given the identifier pid of the class it belongs to.

RR n° 6962

6 Pouchet, Bondhugula et al.

The class identifier reflects the distribution of statements across outer loops of the
generated code. So a fusion structure is a total preorder1 on the n statements of a pro-
gram. For instance, the partition fs(S1,S2,S3,S4) = (0,0,1,2) of gemver corresponds
to the code in Figure 2. Intuitively, S1 and S2 are executed at the same “day” (under
the same outer loop), then S3 in the next outer loop, then S4 in the last one.

for(i=0; i<M; i++)
for(j=0; j<M; j++) {

S1 A[i][j] = A[i][j] + u1[i] * v1[j]
+ u2[i] * v2[j];

S2 x[j] = x[j] + beta * A[i][j] * y[i];
}

for(i=0; i<M; i++)
S3 x[i] = x[i] + z[i];

for(i=0; i<M; i++)
for(j=0; j<M; j++)

S4 w[i] = w[i] + alpha * A[i][j] * x[j];

Figure 2: gemver fusion structure (0,0,1,2)

It is very hard to predict a profitable fusion structure, due to the combinatorial of
the problem and to the very complex and chaotic interplay of transformations resulting
from the selection of a given partition. To find a profitable (target-specific) fusion
structure for a given loop nest, we will thus resort to iterative, feedback-directed search.

To make sure that statements in a given class are fusable without impacting the
program semantics, we leverage the polyhedral representation and define fusability as
follows.

Definition 1 (Fusability of two statements) Given two statements R and S, they are
fusable (through a fine-grain interleaving) at dimension d if, for all dimensions 1 to d
and for all dependence polyhedra DR,S,

φ
S
d (~xS)−φ

R
d (~xR) ≥ 0, 〈xR,xS〉 ∈DR,S (1)

mR

∑
i=1

cR
i > 0,

mS

∑
i=1

cS
i > 0

This definition takes into account any composition of loop interchange, skewing,
shifting and peeling that is required to fuse the statements under a common loop (pos-
sibly with prologue and epilogue). Notice that, strictly speaking, it is possible to find
φR, φS which respects this definition and still result in distributed statements, for in-
stance when the loop bounds are scalars and c0 is greater than the loop bound, thus
representing a shift larger than the iteration domain, that is, a distribution. To avoid
this case, loops are represented with a fictitious parameter for the upper bound when
they have a scalar upper bound, preventing us from finding a value for c0 larger than
the loop bound. The constraints on φR, φS coefficients guarantee that some instances
share the same time-stamp at level 1 to d; these instances are thus effectively fused.

1A total preorder is defined as a relation which is reflexive, transitive and total.

INRIA

Hybrid Iterative and Model-Driven Optimization in the Polyhedral Model 7

To model distribution, we insert in Φ, for each loop level k to distribute, a row φk
such that φk = pid . So given R and S such that pR

id 6= pS
id , all timestamps at dimensions

k and greater will be distinct and hence statements cannot be fused starting level k.

2.2.2 Tiling Hyperplanes

The second step is to apply, individually on each class of the partition, a polyhedral
transformation which combines complex compositions of multi-dimensional tiling, fu-
sion, skewing, interchange, shifting, and peeling, known as the Tiling Hyperplanes
method [5, 6].

Tiling (or blocking) is a crucial loop transformation for parallelism and locality.
The tiling hyperplane method computes an affine multidimensional schedule such that
parallel loops are brought to the outer levels, and loops with dependences are pushed
inside [5, 6]; at the same time, the number of dimensions that can be tiled are maxi-
mized. This technique is applied locally on each class, hence maximizing parallelism
at the class level without disturbing the outer level fusion structure.

Tiling along a set of dimensions is legal if it is legal to proceed in fixed block sizes
along those dimensions: this requires dependences to not be backward along those di-
mensions, thus avoiding a dependence path going out of and coming back into a tile;
this makes it legal to execute the tile atomically. (1) must hold true for all dimensions
to be tiled [16, 27, 5]. In addition, a second constraint is used to enforce linear inde-
pendence: hyperplanes obtained (rows of ΦS) level-by-level are linearly independent.

The algorithm proceeds by computing the schedule level by level, from the outer-
most to the innermost. At each level, a set of legal hyperplanes is computed for the
considered statements, according to the cost model defined in Section 2.2.3. Depen-
dences satisfied by these hyperplanes are removed, and another set is computed for the
next level such that the new set is independent to all previously computed sets, and so
on until all dependences have been satisfied. If at a given level it is not possible to
find legal hyperplanes for all statements, the statements are split [5], resulting in a loop
distribution at this level.

2.2.3 Static Cost Model

There are infinitely many hyperplanes that may satisfy the legality criterion (1). An
approach that has proved to be simple, practical, and powerful has been to find those
directions that have the shortest dependence components along them [5]. For poly-
hedral code, the distance between dependent iterations can always be bounded by an
affine function of the global parameters, represented as a p-dimensional vector~n.

u.~n+w≥ φ
S (~xS)−φ

R (~xR) 〈~xR,~xS〉 ∈DR,S (2)
u ∈ Np,w ∈ N

The legality and bounding function constraints from (1) and (2) are recast through
the affine form of the Farkas Lemma [12] such that the only unknowns left are the
coefficients of φ and those of the bounding function, namely u, w. Coordinates of the
bounding function are then used as the minimization objective to obtain the unknown
coefficients of φ.

minimize≺ (u,w, . . . ,ci, . . .) (3)

The resulting transformation is a complex composition of multidimensional loop
fusion, distribution, interchange, skewing, shifting and peeling. For each class in a

RR n° 6962

8 Pouchet, Bondhugula et al.

partition, several goals are achieved through this cost model: (1) maximizing coarse-
grained parallelism, (2) minimizing communication and frequency of synchronization,
and (3) maximizing locality. Finally, multidimensional tiling is applied on all per-
mutable bands. Tile sizes are computed such that data accessed by each tile roughly
fits in the L1 cache.

3 Building Program Versions
This section returns to the problem of selecting a profitable partition for the set of pro-
gram statements. Each chosen fusion structure corresponds to a different transformed
program version. We wish to find the best performing one, trading scalability, locality
and synchronization overhead efficiently for any program and target.

With our approach, this trade-off has several consequences as fusion also impacts
tilability and parallelism. Firstly, maximally fusing statements may hinder paralleliza-
tion and vectorization, and there is a trade-off between improving locality and increas-
ing parallelization possibilities. Secondly, fusion may interfere with hardware prefetch-
ing. Also, after fusion, too many data spaces end up using the same cache, reducing
the effective cache capacity of each statement. Conflict misses are also likely to in-
crease. Obviously, systematically distributing loops is a no better solution as it may be
detrimental to locality.

Our approach consists of building a search space of candidate fusion structures, and
for each of them, we then perform a full optimization thanks to the method presented
in the previous section.

3.1 Properties of the Search Space
The search space is modeled as a convex set of candidate fusion structures, defined
by affine inequalities. There are several motivating factors. The set of possible fusion
structures of a program is extremely large (in the order of 1012 possibilities for 14 ele-
ments [29], with a super-exponential growth), while the space complexity of a carefully
designed convex set hardly depends on the cardinality of the represented set. Also, re-
moving a subset of unwanted fusion structures is made tractable as it involves adding
affine constraint(s) to the space, in contrast to other representations that would require
enumerating all elements for elimination. Finally, the issue of efficiently scanning a
search space represented as a well-formed polytope has been addressed [25, 24], and
these techniques apply directly.

Previous research on building a convex search space of legal affine schedules high-
lighted the benefits of integrating the legality criterion directly into the search space,
leading to orders of magnitude smaller search spaces [25, 24]. This is critical to allow
any iterative search method to focus on relevant candidates only. The following two
properties are mandatory to achieve scalability, even on the smallest kernels:

1. there are no duplicates in the space, each candidate in the set is distinct

2. there are only legal candidates in the space, all preserve original program seman-
tics.

A significant difference between building a set of affine schedules [25] and build-
ing the set of legal fusion structures is the definition of a duplicate. An affine schedule
is duplicate if and only if all its coefficients are the same as that of another schedule,

INRIA

Hybrid Iterative and Model-Driven Optimization in the Polyhedral Model 9

in essence due to the generated code being syntactically different from another case.
When considering the problem of fusion structures, we are only interested in represent-
ing distinct relative orderings of statements. For instance, given a program with two
statements R and S, the fusion structures f s(R,S) = (0,0) and f s(R,S) = (1,1) are du-
plicates: they both represent the statements being fused, and only one of the two must
be in the search space. This motivates the need for a stronger convex representation of
distinct relative orderings, known as total preorders.

3.2 A Convex Space of All, Distinct Total Preorders
Given a set S with n elements, we define P as the set of all and distinct total preorders
of its n elements. Let O be the target convex set we are looking for. The key problem is
to guarantee one-to-one correspondence between points in O and P , while preserving
the convexity of O. Note that this problem is not purely reminiscent of standard order
theory problems: we look for the set of all distinct total preorders of n elements, in
contrast of previous work defining counting functions of this set [29].

To the best of our knowledge, uniqueness cannot be modeled in a convex fashion
on a set with n variables. We propose to model an order between two elements i, j ∈ S
by using three binary decision variables, defined as follows. pi, j = 1 if and only if i
precedes j, ei, j = 1 if and only iff i equals j and si, j = 1 if and only if i succeeds j. To
model the entire set, we introduce three binary variables for each non-ordered pair of
elements, i.e., all pairs (i, j) such that 1 ≤ i < n, i < j ≤ n. They are gathered in the
set, O, containing 3×n(n−1)/2 variables.

O =

 0≤ pi, j ≤ 1
0≤ ei, j ≤ 1
0≤ si, j ≤ 1


For instance, the fusion structure f s(S1,S2,S3,S4) = (0,0,1,2) of Figure 2 is rep-

resented by:

e1,2 = 1, e1,3 = 0, e1,4 = 0, e2,3 = 0, e2,4 = 0, e3,4 = 0
p1,2 = 0, p1,3 = 1, p1,4 = 1, p2,3 = 1, p2,4 = 1, p3,4 = 1

with all si, j coefficients set to 0. Then, one can easily recompute the corresponding total
preorder (0,0,1,2), for instance by taking the lexicographic minimum of a system W
of 4 non-negative variables that embed the order constraints modeled by all pi, j, ei, j
and si, j values.

A key issue is the consistency of orderings: we need to guarantee that a total pre-
order can be recomputed from any point in O. An inconsistent ordering occurs when
W is infeasible. Without any further conditions, inconsistent orderings may be gener-
ated, for instance by setting e1,2 = 1 and p1,2 = 1, a contradiction. As a first condition
for consistency, we have, for all decision variables, the following mutual exclusion
equality:

pi, j + ei, j + si, j = 1 (4)

For the sake of simplicity, we immediately get rid of the si, j variables, thanks to
(4). We also relax (4) to get:

pi, j + ei, j ≤ 1

RR n° 6962

10 Pouchet, Bondhugula et al.

Summing up, the general form of the set is:

O =

 0≤ pi, j ≤ 1
0≤ ei, j ≤ 1

pi, j + ei, j ≤ 1


Mutually exclusive decision variables describe the order of a single pair of ele-

ments, and so each point in O that describes a consistent ordering is unique. However,
some points in O still do not represent a total preorder, and they have to be removed.

Let us observe that inconsistent orderings in O have a single origin. They arise
from impossible values for some variables due to the value of other variables. In
other words, they arise from missing transitive conditions in picking a value of a given
coefficient with respect to the values of other coefficients. We have to guarantee that
all points in O preserve the totality and the transitivity conditions that a total preorder
relation satisfies.

Basic transitivity of e coefficients For instance, to respect the transitivity of the
relation, the following rule must hold true for all points in O. For some k:

ei, j = 1∧ ei,k = 1⇒ e j,k = 1

We will omit the = 1 in the rest of the paper. Then, the following equation is equivalent
to Eq (3.2):

ei, j ∧ ei,k ⇒ e j,k

Similarly, we have:
ei, j ∧ e j,k ⇒ ei,k

These two rules set the basic transitivity of e variables. These conditions are easily
modeled as affine constraints:{

∀k ∈] j,n], ei, j + ei,k ≤ 1+ e j,k
ei, j + e j,k ≤ 1+ ei,k

}
By applying a similar reasoning, we can collect all constraints to enforce the tran-

sitivity of the total preorder relation as shown in the following.

Basic transitivity of p coefficients We apply a similar reasoning for the p coeffi-
cients. We have:

pi,k ∧ pk, j ⇒ pi, j

This translates into: {
∀k ∈]i, j[, pi,k + pk, j ≤ 1+ pi, j

}
(5)

Complex transitivity on p and t coefficients We also have transitivity conditions
imposed by a connection between the value for some e coefficients and some p ones.
For instance, R < S and S = T implies R < T . The general equations for those cases
are:

ei, j ∧ pi,k ⇒ p j,k

ei, j ∧ p j,k ⇒ pi,k

ek, j ∧ pi,k ⇒ pi, j

INRIA

Hybrid Iterative and Model-Driven Optimization in the Polyhedral Model 11

These translate to the following affine constraints: ∀k ∈] j,n] ei, j + pi,k ≤ 1+ p j,k
ei, j + p j,k ≤ 1+ pi,k

∀k ∈]i, j[ek, j + pi,k ≤ 1+ pi, j

 (6)

Complex transitivity on s and p coefficients Lastly, we have to take into account
the transitivity on the fictitious s variables (those modeling R > S). The transitivity
condition is:

si,k ∧ p j,k ⇒ si, j

Since the reduction equation gives:

si, j = 1− pi, j− ei, j

with pi, j and ei, j being mutually exclusive, the rule translates to the following affine
constraints: {

∀k ∈] j,n] ei, j + pi, j + p j,k ≤ 1+ pi,k + ei,k
}

(7)

General formulation of O All the previous constraints are gathered in the following
expression of O, the convex set of all, distinct total preorders of n elements. For 1 ≤
i < n, i < j ≤ n, O is:



0≤ pi, j ≤ 1
}

Variables are binary
0≤ ei, j ≤ 1

pi, j + ei, j ≤ 1
}

Relaxed mutual exclusion

∀k ∈] j,n] ei, j + ei,k ≤ 1+ e j,k
}

Basic transitivity on e
ei, j + e j,k ≤ 1+ ei,k

∀k ∈]i, j[pi,k + pk, j ≤ 1+ pi, j

}
Basic transitivity on p

∀k ∈] j,n] ei, j + pi,k ≤ 1+ p j,k
 Complex transitivity on p and eei, j + p j,k ≤ 1+ pi,k

∀k ∈]i, j[ek, j + pi,k ≤ 1+ pi, j

∀k ∈] j,n] ei, j + pi, j + p j,k ≤ 1+ pi,k + ei,k

}
Complex transivity on s and p

Lemma 1 (Completeness and correctness) The set O contains one and only one point
per distinct total preorder of n elements.

The full proof (shown in Appendix A) proceeds by showing that the transitivity of
the total preorder relation is preserved for all points in the set, i.e., all possible cases
of transitivity have been enforced. Totality of the preorder comes from the mutual
exclusion condition, and reflexivity is trivially satisfied. �

RR n° 6962

12 Pouchet, Bondhugula et al.

3.3 Pruning for Legality
The set O represents all possible and distinct fusion structures. We first prune it of all
fusion structures that does not preserve the original program semantics. This to reduce
the size of the search space, then containing only useful candidates. Such a pruning has
a drastic impact: for instance, on the benchmark ludcmp, only 8 legal structures remain
in place of the 1012 initial ones.

To the best of our knowledge, no previous work address the problem of construct-
ing an enumerable search space of all and only legal fusion structures including inter-
change, skewing, shifting and peeling as enabling transformations for fusion. While
the problem is combinatorial, we show how to control its complexity effectively.

3.3.1 The Algorithm

The general principle of the pruning algorithm is to detect all the smallest possible sets
of unfusable statements S1,S2,S3, . . . ,Sn, and for each of them, to update O by adding
an affine constraint of the form:

e1,2 + e2,3 + . . .+ en−1,n < n−1 (8)

thus preventing them (and any super-set of them) to be fused all together. We note F1
the final set with all pruning constraints for legality, F1 ⊆ O. A naive approach could
be to enumerate all unordered subsets of the n statements of the program and check for
fusability, while avoiding to enumerate a super-set of an unfusable set.

Instead, we propose to leverage the polyhedral dependence graph to test a much
smaller set of possible structures. First, let us recall two intuitive properties on fusion.
Given two statements R and S:

1. if R and S are not fusable, then any statement on which R transitively depends on
is not fusable with S and any statement transitively depending on S;

2. reciprocally, if R and S must be fused, then any statement depending on R and
on which S depends on must also be fused with R and S.

These properties allow to dramatically cut the number of tested sequences, in particular
in highly constrained program such as in loop-intensive kernels. They are used at each
step of the following algorithm.

The first step of our algorithm is to build a graph, called the fusion graph with one
node per statement. We check the fusability of all possible pairs of statements, and
add an edge between two nodes only if (1) there is a dependence between them, and
(2) they can be fused leveraging Definition 1. Note that we do not need to check the
fusability of non-dependent statements: they are trivially fusable under Definition 1.

Checking for fusability of two statements R and S is done by checking the existence
of a solution in the set TR,S, defined as:

TR,S =
\
∀DR,S

{
φ

S(~xS)−φ
R(~xR)≥~0, 〈~xR,~xS〉 ∈DR,S

}
The second step is to enumerate all paths of length ≥ 2 in the fusion graph. Given

a path p, the nodes in p represent a set of statements that has to be tested for fusabil-
ity. Each time they are detected to not be fusable, all paths with p as a sub-path are
discarded from enumeration, and F1 is updated with an equation in the form of (8).

INRIA

Hybrid Iterative and Model-Driven Optimization in the Polyhedral Model 13

Still, this algorithm implies to test for larger and larger set of statements, thus test-
ing for the emptiness of increasingly larger TS1,...,Sn systems. To avoid performing
this test, we want to define the transitivity of fusability, that is, given the fusability
of each pairs of statements determine without solving TS1,...,Sn if they can be fused
all together. One of the key problem is the loop permutation that can be required to
fuse statements. As an illustration, consider the sequence of matrix-by-vector products
x = Ab, y = Ax, z = Ay. While it is possible to fuse them 2-by-2, it is not possible to
fuse them all together. When considering fusing loops for x = Ab, y = Ax, one has to
permute loops in y = Ax. When considering fusing loops for y = Ax, z = Ay, one has
to keep loops in y = Ax as is.

To address this problem, we leverage the two following properties on fusion. First,
Property 1 shows we can always find a complementary transformation to φs such that
whatever the slowing, shifting or peeling applied to φR it can be compensated in φs to
fuse R and S, if they are fusable at start.

Property 1 (Invariance of Fusability)
Given (φR,φS) respecting (1). Then ∀ α1 > 0, β1 there exists α2 > 0, β2 such that:

(φR′ ,φS′) = (α1.φ
R +β1,α2.φ

S +β2)

also respects (1).

Then, Property 2 formalizes that, given a legal loop permutation that allows two
statements to be fused, it is possible to fuse a third statement only if the same permu-
tation has to be performed.

Property 2 (Transitivity of Fusability)
Given R, S and T three statements. If there exists valid hyperplanes (φR,φS), (φS′ ,φT),
(φR′ ,φT ′) such that:

(φR,φS) = (cR
x .~xR +β1,cS

y .~xS +β2)

(φS′ ,φT) = (α1.cS
y .~xS +β3,cT

z .~xT +β4)

(φR′ ,φT ′) = (α2.cR
x .~xR +β5,α3.cT

z .~xT +β6)

with αi > 0, βi ≥ 0. Then R, S and T are fusable.

Property 1 and Property 2 combined define the transitivity of fusability together
with loop permutation (interchange), shifting and peeling as enabling transformations
for fusion.

Leveraging Property 2, we label edges in the fusion graph with the list of all legal
permutations (cR

x ,cS
y) leading to fuse R and S. To check all legal (cR

x ,cS
y), we simply

test in TR,S the existence of solutions of the form (α1.cR
x .~xR + β1, α2.cS

y .~xS + β2), for
all x,y ≥ 1. When a skew is necessary to fuse R and S, the edge is labeled with skew
instead. Then, to detect if a group of statements is fusable, we only have to check for
the existence of a compatible permutation along all the edges in p, avoiding to build
and test in TS1...Sn . Note that if a skew edge is in the path, we still need to perform
the check on the full system, as Property 2 does not determine fusability along with
skewing.

In practice this algorithm proved to be very efficient, for the ludcmp benchmark the
space is pruned from 1012 candidates to 8 remaining legal ones in less than 0.4s on an
Intel Xeon 2.4GHz.

RR n° 6962

14 Pouchet, Bondhugula et al.

3.3.2 Generalization to Multi-Level Fusion

The proposed algorithm builds the set F1 of legal fusion structures at the first dimen-
sion, that is, resulting fusion structures represent partitions where statements in a class
share at least one (but not necessary more) common loop. To build candidates fusion
structures for more than one level, we proceed recursively by building Fk (k = 1 at
start), picking a candidate in Fk, updating the dependence graph by removing all de-
pendences satisfied at loop level k, then build Fk+1 from the updated dependence graph.
Note that it is possible to compute a convex set F1,...,n containing all legal multi-level
fusion structures . To do so, we reproduce the layout of O for the desired number of
levels, and add inter-dimension consistency conditions of the form:

pk
i, j = 1⇒ pl

i, j = 1, ∀l > k

Then, we use the previous algorithm to constrain the space. It is redundant to do so,
as it also implies to enumerate all legal fusion structures at a given depth to be able to
constrain the next depth. We therefore use the recursive procedure depicted above for
the enumeration.

Studies performed on the performance impact of selecting schedules at various
levels highlighted the much higher impact of carefully selecting outer loops [23, 24].
Hence, the selection of the fusion structure at the outermost level captures the most
significant difference in terms of locality and communication. It is thus possible to
limit the recursive traversal of fusion structures to the outer loop level only while still
obtaining significant performance improvement and a wide range of transformed codes.
Nevertheless, when the number of candidates in F1 is very small typically because
of several loop-dependent dependences at the outer level, it is relevant to build F2
and further. One can choose to enumerate the next dimension if there are 2 or less
candidates at the current dimension, mostly to offer freedom for the iterative search
while still controlling the combinatorial nature of the recursive search. Note that in the
experiments presented in this paper we only traverse F1.

3.3.3 Search space statistics

Several ei, j and pi, j variables are set during the pruning of O, so several consistency
constraints are made useless and are not built, significantly helping to reduce the size
of the space to build. Table 3 illustrates this by highlighting, for our benchmarks con-
sidered, the properties of the polytope O in terms of the number of dimensions (#dim),
constraints (#cst) and points (#points) when compared to F1, the polytope of legal
fusion structures at the first dimension. We also report some information on the con-
sidered SCoP for each benchmark (#loops the number of loops, #stmts the number of
statements, #refs the number of array references).

3.4 Testing Relevant Program Versions
A consequence of fusion is to increase cache load, that may affect performance. There
is usually a lack of performance improvement when two statements that do not refer-
ence any common memory location are fused, and with the risk of observing a perfor-
mance degradation if cache conflicts occur. To avoid testing such cases, we perform a
second level of pruning and remove all candidate fusion structures such that statements
with no reuse are fused. This again to allow the iterative search to quickly focus on rel-
evant candidates only. Note that maximal fusion may thus be removed from the search
space.

INRIA

Hybrid Iterative and Model-Driven Optimization in the Polyhedral Model 15

O F1
Benchmark #loops #stmts #refs #dim #cst #points #dim #cst #points

advect3d 12 4 32 12 58 75 9 43 26
atax 4 4 10 12 58 75 6 25 16
bicg 3 4 10 12 58 75 10 52 26
gemver 7 4 19 12 58 75 6 28 8
ludcmp 9 14 35 182 3003 ≈ 1012 40 443 8
doitgen 5 3 7 6 22 13 3 10 4
varcovar 7 7 26 42 350 47293 22 193 96
correl 5 6 12 30 215 4683 21 162 176

Figure 3: Properties of the Search Space

Finally, for each remaining candidate fusion structure, we also test with and without
the application of polyhedral tiling. The motivation is twofold. Firstly, tiling may be
detrimental as it may introduce complex loop bounds and the computation overhead
may not be compensated by the locality improvement. Secondly, tiling may prevent the
compiler from performing aggressive, low-level optimizations, as current production
compilers optimization heuristics are still very conservative, in particular when loop
bounds are complex as in polyhedrally tiled code.

In Figure 4 The final number of candidates that end up being tested during the
iterative process is reported (#Tested), as well as the time to build all candidate fusion
structures from the input source code (that is, including all analysis) on an Intel Xeon
2.4GHz. We also report the dataset size we used for the benchmarks (Pb. Size).

Benchmark #loops #stmts #refs #Tested Time Pb. Size

advect3d 12 4 32 52 0.82s 300x300x300
atax 4 4 10 20 0.06s 8000x8000
bicg 3 4 10 32 0.05s 8000x8000
gemver 7 4 19 12 0.06s 8000x8000
ludcmp 9 14 35 2 0.54s 1000x1000
doitgen 5 3 7 8 0.08s 50x50x50
varcovar 7 7 26 88 0.09s 1000x1000
correl 5 6 12 104 0.09s 1000x1000

Figure 4: Search space statistics

4 Experimental Results
The automatic optimization and parallelization process has been implemented in POCC,
the Polyhedral Compiler Collection, a complete source-to-source polyhedral compiler
based on well established Free software for polyhedral compilation.2 Specifically, the
search space construction has been implemented in the LETSEE optimizer and the
transformations for tiling and parallelization are computed by the PLUTO optimizer.
In the generated programs, parallelization is obtained by marking transformed loops
with OpenMP pragmas. In addition, when compiling for SIMD-capable targets, intra-

2A Beta version of PoCC is available on http://pocc.sourceforge.net

RR n° 6962

http://pocc.sourceforge.net

16 Pouchet, Bondhugula et al.

tile parallel loops are moved to the innermost position and when compiling with ICC
marked with ivdep pragma to facilitate compiler auto-vectorization, when possible.

4.1 Experimental Setup
We experimented on three high-end machines: a 4-socket Intel hexa-core Xeon E7450
(Dunnington) at 2.4GHz with 64GB of memory (24 cores, 24 hardware threads), a 4-
socket AMD quad-core Opteron 8380 (Shanghai) at 2.50GHz (16 cores, 16 hardware
threads) with 64GB of memory, and an 2-socket IBM dual-core Power5+ at 1.65GHz
(4 cores, 8 hardware threads) with 16GB of memory.

All systems were running Linux 2.6.x. We used Intel ICC 11.0 with options -fast
-parallel -openmp referred to as icc-par, and with -fast referred to as icc-nopar,
GCC 4.3.3 with options -O3 -msse3 -fopenmp as gcc, and IBM/XLC 10.1 compiled
for Power5 with options -O3 -qhot=nosimd -qsmp -qthreaded referred to as xlc-
par, and -O3 -qhot=nosimd referred as xlc-nopar.

We consider 8 benchmarks, typical from compute-intensive sequences of algebra
operations. atax, bicg and gemver are compositions of BLAS operations [22], ludcmp
solves simultaneous linear equations by LU decomposition, advect3d is an advection
kernel for weather modeling and doitgen is an in-place 3D-2D matrix product. correl
creates a correlation matrix, and varcovar creates a variance-covariance matrix, both
are used in Principal Component Analysis in the StatLib library. Problem sizes are
reported in column Pb. Size of Figure 4.

The time to compute the space, pick a candidate and compute a full transformation
is negligible with respect to the compilation and execution time of the tested versions.
In our experiments, the full iterative compilation process takes a few seconds for the
smaller benchmarks, and up to about 1 minute for correl on Xeon.

 0.1

 1

 10

 100

advect3d

atax
bicg

gem
ver

ludcm
p

doitgen

varcovar

correl

1
2
3

10

S
pe

ed
up

 /
ic

c-
no

pa
r

Speedup - Intel Xeon 7450 (24 threads)

gcc
iter-gcc

icc-nopar (baseline)
iter-icc

(a) Speedup over best single-threaded version

 0

 1

 2

 3

 4

 5

 6

 7

advect3d

atax
bicg

gem
ver

ludcm
p

doitgen

varcovar

correl

P
er

f.
Im

p
/ i

cc
-p

ar

Performance Improvement - Intel Xeon 7450 (24 threads)

icc-par (baseline)
maxfuse-icc

iter-icc

15.313|

(b) Performance improvement over maximal fusion
and over the reference auto-parallelizing compiler

Figure 5: Performance Results for the quad-Intel E7450

4.2 Performance Improvement
In Figures 5, 6 and 7, we report for all benchmarks the speedup of our iterative tech-
nique when used on top of the three compilers (iter-icc, iter-gcc and iter-xlc) normalized

INRIA

Hybrid Iterative and Model-Driven Optimization in the Polyhedral Model 17

 0.1

 1

 10

 100

advect3d

atax
bicg

gem
ver

ludcm
p

doitgen

varcovar

correl

1
2
3

10

S
pe

ed
up

 /
ic

c-
no

pa
r

Speedup - AMD Opteron 8380 (16 threads)

gcc
iter-gcc

icc-nopar (baseline)
iter-icc

(a) Speedup over best single-threaded version

 0

 2

 4

 6

 8

 10

 12

 14

advect3d

atax
bicg

gem
ver

ludcm
p

doitgen

varcovar

correl

P
er

f.
Im

p
/ i

cc
-p

ar

Performance Improvement - AMD Opteron 8380 (16 threads)

icc-par (baseline)
maxfuse-icc

iter-icc

(b) Performance improvement over maximal fusion
and over the reference auto-parallelizing compiler

Figure 6: Performance Results for the quad-AMD Opteron 8380

 0.1

 1

 10

 100

advect3d

atax
bicg

gem
ver

ludcm
p

doitgen

varcovar

correl

1
2
3

10

S
pe

ed
up

 /
xl

c-
no

pa
r

Speedup - IBM Power5+ (8 threads)

xlc-nopar (baseline)
iter-xlc

(a) Speedup over best single-threaded version

 0

 1

 2

 3

 4

 5

advect3d

atax
bicg

gem
ver

ludcm
p

doitgen

varcovar

correl

P
er

f.
Im

p
/ x

lc
-p

ar

Performance Improvement - IBM Power5+ (8 threads)

xlc-par (baseline)
maxfuse-xlc

iter-xlc

21.315.8| |13.1

(b) Performance improvement over maximal fusion
and over the reference auto-parallelizing compiler

Figure 7: Performance Results for the bi-IBM Power5+

to the best single-threaded version produced by the native compiler (ICC for Intel and
Opteron, XLC for Power5+). We also compare the performance improvement obtained
over maximal fusion [6] and over ICC/XLC with automatic parallelization (icc-par or
xlc-par) in those figures.

For doitgen, correl and varcovar, three compute-bound benchmarks, our technique
exposes a program with a significant parallel speedup of up to 112× on Opteron. Our
optimization technique goes far beyond parallelizing programs, and for these bench-
marks locality and vectorization improvements were achieved by our framework. For
advect3d, atax, bicg, and gemver we also observe a significant speedup, but this is
limited by memory bandwidth as these benchmarks are memory-bound. Yet, we are
able to achieve a solid performance improvement for those benchmarks over the native
compilers, of up to 3.8× for atax on Xeon and 5× for advect3d on Opteron. For lud-
cmp, although parallelism was exposed, the speedup remains limited as the program

RR n° 6962

18 Pouchet, Bondhugula et al.

offers little opportunity for high-level optimizations. Yet, our technique outperforms
the native compiler, by a factor up to 2× on Xeon.

For Xeon and Opteron, the iterative process outperforms ICC with auto paralleliza-
tion, with a factor between 1.2× for gemver on Intel to 15.3× for doitgen. For both
of these kernels, we also compared with an implementation using Intel Math Kernel
Library (MKL) 10.0 and AMD Core Math Library (ACML) 4.1.0 for the Xeon and
Opteron machines respectively, and we obtain a speedup of 1.5× to 3× over these ven-
dor libraries. For varcovar, our technique outperforms the native compiler by a factor
up to 15×. Although maximal fusion significantly improved performance, the best it-
eratively found fusion structure allows for a much better improvement, up to 1.75×
better. Maximal fusion is also outperformed for all but ludcmp. This highlights the
power of the method to discover the right balance between parallelism (both coarse-
grain and fine-grain) and locality.

On Power5+, on all but advect3d the iterative process outperforms XLC with auto-
parallelization, by a factor between 1.1× for atax to 21× for varcovar.

For the sake of completeness, we also provide the best performance in GFLOP/s
for all our benchmarks in Figure 8. Benchmarks are superscripted with d when the data
type is double, and with f for float.

Benchmark Xeon E7450 (24 cores) Opteron 8380 (16 cores) Power5+ (4 cores)
advect3d f 0.47 0.53 0.34
ataxd 2.13 1.42 1.16
bicgd 2.13 1.70 1.15
gemverd 2.20 2.66 1.42
ludcmpd 1.33 0.75 0.48
doitgend 44.64 31.25 10.41
correl f 16.71 11.14 7.16
varcovar f 50.05 33.36 14.30

Figure 8: Best Performance obtained, in GFLOP/s

4.3 Performance Portability
Beyond absolute performance improvement, another motivating factor for iterative se-
lection of fusion structures is performance portability. Because of significant differ-
ences in design, in particular in SIMD units’ performance and cache behavior, a trans-
formation has to be tuned for a specific machine. This leads to a significant variation
in performance across tested frameworks.

To illustrate this, we show in Figure 9 the relative performance normalized with
respect to icc-par of gemver, for Intel and Opteron. The version index is plotted on the
x axis, 1 is max-fuse and 8 is maximal distribution.

For Xeon, the best version is 4, corresponding to the fusion structure in Figure 2.
It performs 10% better than version 2 — version 2 corresponds to the fusion structure
(0,0,0,1) — which is the optimal fusion for Opteron. And for the Opteron, version
4 performs 20% slower than 2. Note that on gemver the performance distribution for
Power5+ is very similar as for Xeon.

Performance variation is also exhibited by maximal fusion results over the three
architectures. For ludcmp, while it is the best performing one on Xeon and Opteron, it
is not on Power5+. Such a pattern can also be observed for doitgen.

INRIA

Hybrid Iterative and Model-Driven Optimization in the Polyhedral Model 19

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t /

 ic
c-

pa
r

Version Index

gemver - Performance Variability

Xeon 7450
Opteron 8380

Figure 9: Performance variability for gemver

The trade-off between coarse-grain parallelization and vectorization is very diffi-
cult to capture, as it also depends on the capability of the back-end compiler to perform
vectorization. One has to capture the interplay between distinct optimization passes,
something missing in present day compilers. Moreover, accurate profitability models
have to be relied upon, and their design remains a major challenge for compiler de-
signers. Tuning the trade-off between fusion and distribution is a relevant technique
to address the performance portability issue. Our technique is able to automatically
adapt to the target framework, and successfully discovers the optimal fusion structure,
whatever the specifics of the program, compiler and architecture.

Finally, note that by checking against the best performing version found on the
entire F1 set, we have experimentally validated that the pruning strategy discussed in
Section 3.4 does not prevent us from finding the optimal fusion structure for all tested
benchmarks and architectures.

5 Related Work
Traditional works on loop fusion [18, 20, 21, 28] are restricted in their ability to find
complex fusion structures. This is mainly due to the lack of a powerful representa-
tion for dependences and transformations. Hence, non-polyhedral approaches typi-
cally study fusion in isolation from other transformations. Megiddo and Sarkar [21]
proposed a way to perform fusion for an existing parallel program by grouping compo-
nents in a way that parallelism is not disturbed. Decoupling parallelization and fusion
clearly misses several interesting solutions that would have been captured if the legal
fusion choices were itself cast into their framework. Darte et al. [10, 9] studied fu-
sion for data-parallelization, but only in combination with shifting. In contrast to all
of these works, our search space can enable fusion in the presence of all polyhedral
transformations.

Several heuristics for loop fusion and tiling have been proposed [33, 26]. Yet those
heuristics fail to capture the heavy interplay between loop transformations, back-end
optimizations performed by the compiler, and components of the target architecture.

RR n° 6962

20 Pouchet, Bondhugula et al.

The polyhedral model creates many more opportunities for the construction of loop
nest optimizers and parallelizing compilers. It is currently being integrated in produc-
tion compilers, including GCC3 and IBM XL.

Bondhugula et al. designed Pluto, the first integrated fusion and tiling heuristic
based on the polyhedral model [5, 6], and subsuming a large space of additional loop
transformations (interchange, skewing, shifting). It inherits the flexibility of the tiling
hyperplane method [16, 15] to build complex sequences of enabling and communication-
minimizing transformations. Despite the weaknesses of its target-independent opti-
mization model, it does identify interesting parallelism-locality trade-offs.

Powerful semi-automatic polyhedral frameworks have been designed as building
blocks for compiler construction or (auto-tuned) library generation systems [17, 8, 14,
7, 31]. They capture fusion structures, but neither do they define automatic iteration
schemes nor do they integrate a model-based heuristic to construct profitable paral-
lelization and tiling strategies.

Iterative compilation has proved its efficiency in providing solid performance im-
provements over a broad range of architectures and transformations [4, 30, 1, 19, 26,
13, 24, 32]. However, none of the previous works achieved the expressiveness and
application of complex transformation sequences presented in this paper, along with a
focused search on legal candidates only.

6 Conclusion
This paper addressed the problem of optimizing and parallelizing programs automat-
ically, focusing on static control loop nests. Our approach departs from the tradi-
tional best-effort compiler optimizations, aiming for effective portability of perfor-
mance over a variety of shared-memory multiprocessors. We proposed a hybrid it-
erative and model-driven approach, leveraging a state-of-the-art parallelization method
based on loop tiling, and combining it with a feedback-directed scheme for loop fusion
and distribution. Our technique builds an expressive search space of loop transforma-
tion sequences, expressed in the polyhedral model as a set of affine scheduling func-
tions. The search space encompasses complex compositions of loop transformations,
including loop fusion and distribution, loop tiling for parallelism and locality (caches,
registers), loop interchange, and loop shifting (pipelining). We proposed a convex en-
coding of all legal transformed program versions as the space to search. We performed
experiments on three different platforms: a new 24-core Xeon and a 16-core Opteron,
and a 4-core Power5+. Our experiments confirm that a single program version does not
perform equally well on different targets, with penalties reaching 2× when running the
best version for a given target on a different target. We also consistently demonstrate
strong scalability on kernels where state-of-the-art model-based compilers could not
find significant coarse-grain parallelism, with performance improvement factors up to
15.3× over Intel’s compiler and up to 21.3× over IBM’s compiler. In the future, we
will study the applicability of machine learning techniques to prune our hybrid opti-
mization space or predict the performance of transformed program versions. We will
also continue to look for ways of building an even more expressive space, and narrow-
ing down the gap with respect to peak performance on a wide set of benchmarks and
target architectures.

3Graphite development branch: http://gcc.gnu.org/wiki/Graphite.

INRIA

http://gcc.gnu.org/wiki/Graphite

Hybrid Iterative and Model-Driven Optimization in the Polyhedral Model 21

References
[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle,

J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learning to
focus iterative optimization. In Proc. of the Intl. Symposium on Code Generation
and Optimization (CGO’06), pages 295–305, Washington, 2006.

[2] C. Bastoul. Code generation in the polyhedral model is easier than you
think. In IEEE Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT’04), pages 7–16, Juan-les-Pins, France, Sept. 2004.

[3] M.-W. Benabderrahmane, C. Bastoul, L.-N. Pouchet, and A. Cohen. A conserva-
tive approach to handle full functions in the polyhedral model. Technical Report
6814, INRIA Research Report, January 2009. Submitted for publication.

[4] F. Bodin, T. Kisuki, P. M. W. Knijnenburg, M. F. P. O’Boyle, and E. Rohou.
Iterative compilation in a non-linear optimisation space. In W. on Profile and
Feedback Directed Compilation, Paris, Oct. 1998.

[5] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev,
and P. Sadayappan. Automatic transformations for communication-minimized
parallelization and locality optimization in the polyhedral model. In International
conference on Compiler Construction (ETAPS CC), Apr. 2008.

[6] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical au-
tomatic polyhedral program optimization system. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, June 2008.

[7] C. Chen, J. Chame, and M. Hall. CHiLL: A framework for composing high-level
loop transformations. Technical Report 08-897, U. of Southern California, 2008.

[8] A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and N. Vasilache. Facili-
tating the search for compositions of program transformations. In ACM Interna-
tional conference on Supercomputing, pages 151–160, June 2005.

[9] A. Darte and G. Huard. Loop shifting for loop parallelization. Technical Report
RR2000-22, ENS Lyon, May 2000.

[10] A. Darte, G.-A. Silber, and F. Vivien. Combining retiming and scheduling tech-
niques for loop parallelization and loop tiling. Parallel Proc. Letters, 7(4):379–
392, 1997.

[11] P. Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle,
22(3):243–268, 1988.

[12] P. Feautrier. Some efficient solutions to the affine scheduling problem, part II:
multidimensional time. Intl. J. of Parallel Programming, 21(6):389–420, Dec.
1992.

[13] F. Franchetti, Y. Voronenko, and M. Püschel. Formal loop merging for signal
transforms. In Proc. of the 2005 ACM SIGPLAN Conf. on Programming language
design and implementation (PLDI’05), pages 315–326. ACM, 2005.

RR n° 6962

22 Pouchet, Bondhugula et al.

[14] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and
O. Temam. Semi-automatic composition of loop transformations for deep par-
allelism and memory hierarchies. Intl. J. of Parallel Programming, 34(3), 2006.

[15] M. Griebl, P. Faber, and C. Lengauer. Space-time mapping and tiling – a help-
ful combination. Concurrency and Computation: Practice and Experience,
16(3):221–246, Mar. 2004.

[16] F. Irigoin and R. Triolet. Supernode partitioning. In ACM SIGPLAN Principles
of Programming Languages, pages 319–329, 1988.

[17] W. Kelly. Optimization within a unified transformation framework. Technical
Report CS-TR-3725, Department of Computer Science, University of Maryland
at College Park, 1996.

[18] K. Kennedy and K. McKinley. Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In Languages and Compilers for Parallel
Computing, pages 301–320, 1993.

[19] S. Long and G. Fursin. A heuristic search algorithm based on unified transforma-
tion framework. In Proc. of the 2005 Intl. Conf. on Parallel Processing Workshops
(ICPPW’05), pages 137–144, Washington, DC, USA, 2005. IEEE Comp. Soc.

[20] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop
transformations. ACM Trans. Program. Lang. Syst., 18(4):424–453, 1996.

[21] N. Megiddo and V. Sarkar. Optimal weighted loop fusion for parallel programs.
In symposium on Parallel Algorithms and Architectures, pages 282–291, 1997.

[22] B. Norris, A. Hartono, E. Jessup, and J. Siek. Generating empirically optimized
composed matrix kernels from MATLAB prototypes. In Int. Conf. on Computa-
tional Science (ICCS’09), may 2009.

[23] L.-N. Pouchet, C. Bastoul, J. Cavazos, and A. Cohen. A note on the perfor-
mance distribution of affine schedules. 2nd Workshop on Statistical and Machine
learning approaches to ARchitectures and compilaTion (SMART’08), Göteborg,
2008.

[24] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative optimization in the
polyhedral model: Part II, multidimensional time. In ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI’08), pages 90–100.
ACM Press, 2008.

[25] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative optimization in
the polyhedral model: Part I, one-dimensional time. In Proc. of the IEEE/ACM
Fifth Intl. Symp. on Code Generation and Optimization (CGO’07), pages 144–
156. IEEE Comp. Soc. press, 2007.

[26] A. Qasem and K. Kennedy. Profitable loop fusion and tiling using model-driven
empirical search. In Proc. of the 20th Intl. Conf. on Supercomputing (ICS’06),
pages 249–258. ACM press, 2006.

[27] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for
multicomputers. Journal of Parallel and Distributed Computing, 16(2):108–230,
1992.

INRIA

Hybrid Iterative and Model-Driven Optimization in the Polyhedral Model 23

[28] S. Singhai and K. McKinley. A Parameterized Loop Fusion Algorithm for Im-
proving Parallelism and Cache Locality. The Computer Journal, 40(6):340–355,
1997.

[29] N. J. A. Sloane. Sequence a000670. The On-Line Encyclopedia of Integer Se-
quences, http://www.research.att.com/∼njas/sequences/A000670.

[30] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly. Meta opti-
mization: improving compiler heuristics with machine learning. SIGPLAN Not.,
38(5):77–90, 2003.

[31] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth. A scalable au-
totuning framework for computer optimization. In IPDPS’09, Rome, May 2009.

[32] Y. Voronenko, F. de Mesmay, and M. Püschel. Computer generation of general
size linear transform libraries. In Intl. Symp. on Code Generation and Optimiza-
tion (CGO’09), Mar. 2009.

[33] M. Wolf, D. Maydan, and D.-K. Chen. Combining loop transformations con-
sidering caches and scheduling. In MICRO 29: Proceedings of the 29th annual
ACM/IEEE international symposium on Microarchitecture, pages 274–286, 1996.

[34] M. Wolfe. High performance compilers for parallel computing. Addison-Wesley
Publishing Company, 1995.

RR n° 6962

24 Pouchet, Bondhugula et al.

A Proof of Lemma 1
We restate the expression of O, the convex set of all, distinct total preorders of n ele-
ments. For 1≤ i < n, i < j ≤ n, O is:



0≤ pi, j ≤ 1
}

Variables are binary
0≤ ei, j ≤ 1

pi, j + ei, j ≤ 1
}

Relaxed mutual exclusion

∀k ∈] j,n] ei, j + ei,k ≤ 1+ e j,k
}

Basic transitivity on e
ei, j + e j,k ≤ 1+ ei,k

∀k ∈]i, j[pi,k + pk, j ≤ 1+ pi, j

}
Basic transitivity on p

∀k ∈] j,n] ei, j + pi,k ≤ 1+ p j,k
 Complex transitivity on p and eei, j + p j,k ≤ 1+ pi,k

∀k ∈]i, j[ek, j + pi,k ≤ 1+ pi, j

∀k ∈] j,n] ei, j + pi, j + p j,k ≤ 1+ pi,k + ei,k

}
Complex transivity on s and p

We want to prove that the set O contains one and only one point per distinct total
preorder of n elements.

Proof:
We first prove that O contains all and only total preorders, before proving the unique-
ness of preorders in O.

From the encoding through s, p and e variables chosen, at least all total preorders
are represented in the initial set  0≤ pi, j ≤ 1

0≤ ei, j ≤ 1
0≤ si, j ≤ 1


We now show that the successive constraints added to prune the set remove all points
that are not a valid total preorder. To prove so, we rely on the fact that a total preorder
relation is a relation which is total, transitive and symetric. Hence, we prove that our
constraints are sufficient to guarantee to preserve the totality, the transitivity and the
reflexivity of the relation.

Totality: Given x, y two elements of a set S of n elements on which the total preorder
relation is defined. Without any loss of generality and for the rest of the proof, we
assume that S is the set of consecutive integers from 1 to n. Given a, b their position
identifier as specified by the preorder. Totality gives:

a� b ∨ b� a

Either a < b, a = b, b < a or b = a which is equivalent to a = b. This is guaranteed by
the relaxed mutual exclusion inequality.

INRIA

Hybrid Iterative and Model-Driven Optimization in the Polyhedral Model 25

Transitivity: Given x, y, z three elements and a, b, c their respective partition iden-
tifier. Transitivity gives:

a� b ∧ b� c ⇒ a� c

That is, one of the following configuration must occur:

1. a < b ∧ b < c ⇒ a < c

2. a < b ∧ b = c ⇒ a < c

3. a = b ∧ b < c ⇒ a < c

4. a = b ∧ c < b ⇒ c < a

5. a = b ∧ b = c ⇒ a = c

6. b < a ∧ c < b ⇒ c < a

7. b < a ∧ b = c ⇒ c < a

Converting 1. into our encoding gives:

px,y ∧ py,z ⇒ px,z (9)

To generalize this constraint to the n possible elements, we must then consider the
different possible values for x, y, z: we can have x < y or x > y, x < z or x > z, and
y < z or z < y. We start by focusing only on the case where x < y < z. (9) is written:

∀ 1≤ i < k < j ≤ n, pi,k ∧ pk, j ⇒ pi, j (10)

This equation can be converted in an affine form in a deterministic fashion (one can
use a Boolean table to ensure the constraint defines an equivalent logic as the impli-
cation), and once converted in an affine form corresponds to the basic transitivity of p
coefficients inequalities shown in the definition of O.

Converting 5. into our encoding gives:

ex,y ∧ ey,z ⇒ ex,z (11)

For this case, if x < y < z, then (11) is written:

∀1≤ i < j < k ≤ n, ei, j ∧ e j,k ⇒ ei,k, (12)

If y < x < z, then (11) is written:

∀1≤ i < j < k ≤ n, ei, j ∧ ei,k ⇒ e j,k, (13)

These equations once converted in an affine form correspond to the basic transitivity of
e coefficients.

Converting 3. into our encoding gives:

ex,y ∧ py,z ⇒ px,z (14)

If x < y < z, then (14) is written:

∀1≤ i < j < k ≤ n, ei, j ∧ pi,k ⇒ p j,k, (15)

RR n° 6962

26 Pouchet, Bondhugula et al.

If y < x < z, then (14) is written:

∀1≤ i < j < k ≤ n, ei, j ∧ p j,k ⇒ pi,k, (16)

Converting 2. into our encoding gives:

ey,z ∧ px,y ⇒ px,z (17)

If x < z < y, then (17) is written:

∀1≤ i < k < j ≤ n, ek, j ∧ pi,k ⇒ pi, j, (18)

Equations (15), (16) and (18) correspond to the complex transitivity constraints on the
p and e variables.

Converting 6. into our encoding gives:

sx,z ∧ py,z ⇒ sx,y (19)

If x < y < z, then (19) is written (thanks to the substitution coming from the mutual
exclusion equation):

∀1≤ i < j < k ≤ n, ¬ei, j ∧ ¬pi, j ∧ p j,k ⇒¬pi,k ∧ ¬ei,k, (20)

This equations corresponds to the complex transitivity constraints on the p and s vari-
ables.

Several cases have not been explicitely addressed, because they are equivalent to the
above-mentionned affine constraints. Their enumeration and computing their equiva-
lence with the presented cases is left to the motivated reader.

All necessary conditions for transitivity have been enforced in O.

Reflexivity: Reflexivity is trivially satisfied in our encoding.
This concludes proving that all points in O is a total preorder, and that all total

preorders are in O.
We must now prove that there is only one point in O per distinct total preorder.

Uniqueness: To prove so, we show there exists a bijection f : P → O between the
set of distinct total preorders P and O.

We first prove that it is not possible that two distinct preorders are represented by
the same point in O. Suppose there exists two distinct total preorders p1 and p2 such
that

f (p1) = f (p2) ∧ p1 6= p2

By construction of the encoding, two distinct preorders result in at least one modifica-
tion of a variable (ei, j and/or pi, j) used to encode the preorder. Hence we must have:

f (p1) = f (p2) ⇒ p1 = p2

To show that it is not possible to have two distinct points in O representing the same
total preorder, we again rely on our encoding definition.

This concludes the proof of Lemma 1. �

INRIA

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 Orsay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

	Introduction
	Automatic Parallelization and Optimization
	Polyhedral Model
	Representing Programs
	Representing Optimizations

	Hybrid Optimization
	Fusion/Distribution Strategy
	Tiling Hyperplanes
	Static Cost Model

	Building Program Versions
	Properties of the Search Space
	A Convex Space of All, Distinct Total Preorders
	Pruning for Legality
	The Algorithm
	Generalization to Multi-Level Fusion
	Search space statistics

	Testing Relevant Program Versions

	Experimental Results
	Experimental Setup
	Performance Improvement
	Performance Portability

	Related Work
	Conclusion
	References
	Proof of Lemma 1

