Neural Network Assisted Tile Size Selection

Mohammed Rahman, Louis-Noél Pouchet and P. Sadayappan

Dept. of Computer Science and Engineering
Ohio State University

June 22, 2010

iWAPT 2010 Workshop
Berkeley, USA

Introduction: iWAPT’10

Overview

Situation:
» New advances in parametric tiling — more user code to be tuned
» The problem of tile size selection is complex and unsolved!

Our approach:
» Use machine learning to create a performance predictor of tile size
performance, for a specific program
» Rely on the distribution shape to extract promising subspaces for
empirical search

» Qutcome: < 2% of the space traversed — 90+% of maximal speedup
achieved

Ohio State

Problem Statement: iWAPT10

Tiling

» Tiling partition the computation into blocks
» Note we consider only rectangular tiling here
» For tiling to be legal, such a partitioning must be legal

Ohio State

1
¢ OlInstances of S1 t
@ Instances of S2 O Legal tile
OA tile IIllegal tile
N+ O (0— 0 >0— 00
Sl gy %%
s O 00— 0 >0—>0/ >0
NG :
W71/
34 O
.1 AL
) / : N
. . . 2 .
] I S S S g4 L S

Problem Statement: iWAPT’10

Parametric Tiling

Automatic parametric tiling [ICS’09,CGO’10]:
» Produce code where the tile dimensions are parameters
» Seamlessly find/apply all required transformation to make the code
tilable
» Actual tile sizes are given at run-time
» very useful for tile size selection (no need to recompile)
» recent progresses have generalized the approach:
> Operates on arbitrary affine-control loops (imperfectly nested)
Produce good quality code

>
> Even expose pipeline-parallelism if needed
» Software (from OSU): Pluto, PrimeTile/DynTile/PTile

Ohio State 4

Problem Statement: iWAPT’10

Tile Size Selection

Problem: how to select the tile size to have the best performance?

data reuse within the execution of a tile;
data reuse between tiles;
the layout in memory of the data used in a tile;

vV v v v

the relative penalty of misses at each level of the hierarchy, which is
machine-dependent.

v

the cache replacement policy;
» the interaction with other units, such at prefetching;

» the interaction with vectorization, to enable a profitable steady-state for
the vectorized loop(s);

Ohio State 5

Problem Statement: iWAPT10

Performance Distribution
Performance distribution of fdtd-2d and syr2k

fdtd-2d: Performance distribution with Tile Size dsyr2k: Performance Distribution with Tile Size
configurations Configurations

“

4

E

3 B 00 g

g

$

£ 04

A

E

£

p

g

H

3

8

¢

i
e s s s & s = = - - Z g 8 8 8 % 8 8.8 : 3
5% 8 ¢ 8 ¥ 8 g § g g i0¢ 0% = 2 & 5 5 2 8 g
g g 2 ¢ & 8 -] i § g § 3 %]

MRS - I 308 208 2 8 o
Tile Sizes (Ti:Tj:Tk) Tile sizes- Ti:Tj:Tk

» Search space: 10648 possible tile sizes
» {1,2,4,6,8,10,12,16, 30,32,40,48,64,100, 128,
150,200,256,300,400, 500,600}
» Machine: Core i7 (1 thread)

» 2 "standard" distribution shapes

Ohio State 6

Performance Prediction: iWAPT’10

Ojectives

Correlate execution time with tile sizes

v

(Static) performance models do exist...

v

... but fail to capture the interplay between all hardware components

v

Usually better suited for well-known problems (eg, uniform reuse +
square tiles)

Another view: pruning the space of poor-performing tile sizes

v

Our approach:
» Build a neural network to model the performance distribution

» Focus directly on the execution time
» ANN dedicated to a specific program + dataset size

Ohio State 7

Performance Prediction: iWAPT’10

Neural Network

Layout:

» Fully connected, multi-layer perceptron (MLP)

» Input layer: the tile sizes (7}, T}, Ty)

» Output layer: predicted execution time

» One hidden layer consisting of 30 hidden neurons

» Use Stuttgart Neural Network Simulator library
Training:

» Select 5% (530 tuples) from the search space of 10648

» Run the program on the machine using the tile size specified by the
tuples

» Train with resilient back-propagation (rprop), using the actual execution
time for a tuple

» Standard 10% cross-validation procedure

Ohio State 8

Performance Prediction: iWAPT10
Performance Prediction [1/2]
fdtd-2d: Predicted versus Actual Performance
o dsyr2k : Predicted versus Actual Performance
g 5
06 45
5 —ExTime (Actual)
2 s g 4 ExTime(Predicted)
0 ExTime (Predicted) § 35
5 04 8
£ e 25
F o3 E
< £ o2
S §
= o2 £1s
3 g
£ o1 i
w 05
o 0
g & 8 g 2 %8 $ 8 g 8 % I % % 8 8 88 8 ¥ § %
s 5 %8 % o8 3 % g 8 5838 g sg 83§ s
" D I B § i8¢
Tile Sizes (Ti:Tj:Tk) Tile sizes - TiTj: Tk
Ohio State 9

Performance Prediction: iWAPT’10

Performance Prediction [2/2]

lu: Predicted versus Actual Performance .
08 dgemm: Predicted versus Actual Performance

07 ExTime (Actual)
ExTime (Predicted)

06

ExTime (Actual)
ExTime (Predicted)

05

04

03

Execution Time in Seconds

02

|

Execution Time in Secorids

01 0
: I EIEIEGl
= 8 = = & : &5 s : : = g g g g &]
- o8 8 T 8 & 8 Tile Sizes (Ti:Tj:Tk)

Tile sizes (TET:TK)

Ohio State 10

Performance Prediction: iWAPT’10

Discussions

» for trmm, lu, 2d-jacobi, syr2k and doitgen, predict more than 90% of our
search space with less than 10% deviation for the actual execution time

» In total, can predict 80% and more with less than 10% deviation
» Usually smaller deviation for the best tile sizes

— These ANN are able to model the performance distribution
Openings:

» Program classifier w.r.t. performance distribution
» Training: do not "fit" that much the training points?

Ohio State

Tile Size Selection: iWAPT’10

Selecting the Best Tile Size

The performance distribution can drive the empirical search to focus on
promising subspaces

Tile size selection:
» Random approach has a huge variability on some distribution shapes
» Exhaustive search is likely not needed

» Need for an intermediate solution

> Low number of empirical runs
» Good convergence, good variability
» General enough to work on arbitrary user codes

Ohio State 12

Tile Size Selection: iWAPT’10

Overview of the Algorithm

@ Generate a parametrically tiled code

© Randomly select x% of the tile size space, and run them on the machine
@ Train an ANN using this data

© Use the ANN to predict performance of the entire space

@ Collect y tile sizes that are predicted best and not already ran

@ Run the y tile sizes on the machine, output the best found

Ohio State 13

Tile Size Selection: iWAPT’10

Experimental Setup

v

Studied various kernels (perfectly/imperfectly nested, BLAS & stencils)

v

Only focused on single-threaded execution, on an Intel Core i7

v

Comparison: simple random search (R), ANN search (ANN)

v

Repeat each experiment 100 times, for various sampling rate

Ohio State 14

Tile Size Selection: iWAPT’10

Experimental Results (y = 50)

[[[doitgen [gemm [syrek | lu [2d-jacobi | fdid-2d |
R-best 100% 99.86% 98.15% 99.89% 99.91% 97.75%
R-average 98.71% 96.29% 94.80% 92.19% 94.10% 84.15%

1% R-worst 95.35% 69.64% 89.81% 40.63% 17.69% 31.02%
ANN-best 100% 99.86% 100% 100% 99.91% 100%
ANN-average 98.89% 96.35% 96.01% 92.62% 98.51% 84.50%
ANN-worst 97.26% 82.93% 89.79% 79.68% 94.23% 66.53%
R-best 99.97% 99.86% 98.71% 99.89% 100% 100%
R-average 98.71% 96.42% 94.80% 92.87% 97.60% 84.10%

2%, R-worst 86.49% 67.89% 88.20% 45.29% 55.98% 27.30%
ANN-best 100% 99.86% 100% 100% 100% 100%
ANN-average 98.89% 96.76% 96.69% 95.34% 98.55% 88.61%
ANN-worst 97.26% 89.83% 89.65% 85.80% 94.17% 60.65%
R-best 99.97% 99.86% 98.71% 99.89% 100% 100%
R-average 98.77% 96.47% 94.80% 94.27% 98.39% 85.47%

39 R-worst 94.89% 63.58% 87.99% 61.24% 84.54% 47.99%
ANN-best 99.97% 99.86% 100% 100% 100% 100%
ANN-average 98.93% 97.14% 97.17% 95.34% 98.74% 91.45%
ANN-worst 97.64% 91.01% 92.27% 85.80% 94.50% 63.34%
R-best 99.97% 99.86% 98.71% 99.89% 100% 100%
R-average 98.80% 96.65% 94.93% 92.19% 98.41% 85.55%

4% R-worst 96.86% 69.73% 88.57% 52.03% 82.47% 43.74%
ANN-best 100% 99.86% 100% 100% 100% 100%
ANN-average 98.99% 97.67% 97.20% 95.79% 98.90% 93.55%
ANN-worst 98.28% 93.65% 92.66% 85.80% 94.50% 79.26%

Ohio State 15

Tile Size Selection: iWAPT’10

Some Related Work

Epshteyn et al. [LCPC’05]:
» Search-oriented contribution
» Uses regression curves to approximate the performance distribution
» Uses active learning to select good candidates for empirical evaluation
» Good results for BLAS kernels

Yuki et al. [CGO’10]:
» Aims at selecting/combining between different static models
» Uses program features to characterize accesses, train ANN
» Results demonstrated for matrix-like kernels

Ohio State 16

Tile Size Selection: iWAPT’10

Conclusions and Future Work

ANN is a candidate approach to connect tile sizes with performance
» Good prediction quality
» Deviation usually smaller for the good points

» Combined search heuristic proposed:

» Strong variability improvement over naive random approach
> 90+% efficiency using < 2% of the space, likely can be improved further

Future work:
» Generalization!

» Categorize benchmarks reg. the performance distribution shape
> Dataset size

» Do not try to fit the random samples during training

> Reduce the training time
» problem: ANN configuration

Ohio State 17

Acknowledgements: iWAPT10

Acknowledgements

This work was funded in part by the U.S. National Science Foundation
through award 0926688 and the Defense Advanced Research Projects
Agency through AFRL Contract FA8650-09-C-7915. The opinions and
findings in this document do not necessarily reflect the views of either
the United States Government or the Ohio State University.

Ohio State 18

	Introduction
	Problem Statement
	Performance Prediction
	Tile Size Selection
	Acknowledgements

