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Introduction: iWAPT’10

Overview

Situation:
» New advances in parametric tiling — more user code to be tuned
» The problem of tile size selection is complex and unsolved!

Our approach:
» Use machine learning to create a performance predictor of tile size
performance, for a specific program
» Rely on the distribution shape to extract promising subspaces for
empirical search

» Qutcome: < 2% of the space traversed — 90+% of maximal speedup
achieved
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Problem Statement: iWAPT10

Tiling

» Tiling partition the computation into blocks
» Note we consider only rectangular tiling here
» For tiling to be legal, such a partitioning must be legal

Ohio State

1
¢ OlInstances of S1 t
@ Instances of S2 O Legal tile
OA tile IIllegal tile
N+ O (0— 0 >0— 00
Sl gy %%
s O 00— 0 >0—>0/ >0
NG :
W71/
34 O
.1 AL
) / : N
. . . 2 .
] I S S S g4 L S



Problem Statement: iWAPT’10

Parametric Tiling

Automatic parametric tiling [ICS’09,CGO’10]:
» Produce code where the tile dimensions are parameters
» Seamlessly find/apply all required transformation to make the code
tilable
» Actual tile sizes are given at run-time
» very useful for tile size selection (no need to recompile)
» recent progresses have generalized the approach:
> Operates on arbitrary affine-control loops (imperfectly nested)
Produce good quality code

>
> Even expose pipeline-parallelism if needed
» Software (from OSU): Pluto, PrimeTile/DynTile/PTile
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Problem Statement: iWAPT’10

Tile Size Selection

Problem: how to select the tile size to have the best performance?

data reuse within the execution of a tile;
data reuse between tiles;
the layout in memory of the data used in a tile;

vV v v v

the relative penalty of misses at each level of the hierarchy, which is
machine-dependent.

v

the cache replacement policy;
» the interaction with other units, such at prefetching;

» the interaction with vectorization, to enable a profitable steady-state for
the vectorized loop(s);
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Problem Statement: iWAPT10

Performance Distribution
Performance distribution of fdtd-2d and syr2k

fdtd-2d: Performance distribution with Tile Size dsyr2k: Performance Distribution with Tile Size
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» Search space: 10648 possible tile sizes
» {1,2,4,6,8,10,12,16, 30,32,40,48,64,100, 128,
150,200,256,300,400, 500,600}
» Machine: Core i7 (1 thread)

» 2 "standard" distribution shapes
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Performance Prediction: iWAPT’10

Ojectives

Correlate execution time with tile sizes

v

(Static) performance models do exist...

v

... but fail to capture the interplay between all hardware components

v

Usually better suited for well-known problems (eg, uniform reuse +
square tiles)

Another view: pruning the space of poor-performing tile sizes

v

Our approach:
» Build a neural network to model the performance distribution

» Focus directly on the execution time
» ANN dedicated to a specific program + dataset size
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Performance Prediction: iWAPT’10

Neural Network

Layout:

» Fully connected, multi-layer perceptron (MLP)

» Input layer: the tile sizes (7}, T}, Ty)

» Output layer: predicted execution time

» One hidden layer consisting of 30 hidden neurons

» Use Stuttgart Neural Network Simulator library
Training:

» Select 5% (530 tuples) from the search space of 10648

» Run the program on the machine using the tile size specified by the
tuples

» Train with resilient back-propagation (rprop), using the actual execution
time for a tuple

» Standard 10% cross-validation procedure
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Performance Prediction: iWAPT10
Performance Prediction [1/2]
fdtd-2d: Predicted versus Actual Performance
o dsyr2k : Predicted versus Actual Performance
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Performance Prediction: iWAPT’10

Performance Prediction [2/2]

lu: Predicted versus Actual Performance .
08 dgemm: Predicted versus Actual Performance
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Performance Prediction: iWAPT’10

Discussions

» for trmm, lu, 2d-jacobi, syr2k and doitgen, predict more than 90% of our
search space with less than 10% deviation for the actual execution time

» In total, can predict 80% and more with less than 10% deviation
» Usually smaller deviation for the best tile sizes

— These ANN are able to model the performance distribution
Openings:

» Program classifier w.r.t. performance distribution
» Training: do not "fit" that much the training points?
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Tile Size Selection: iWAPT’10

Selecting the Best Tile Size

The performance distribution can drive the empirical search to focus on
promising subspaces

Tile size selection:
» Random approach has a huge variability on some distribution shapes
» Exhaustive search is likely not needed

» Need for an intermediate solution

> Low number of empirical runs
» Good convergence, good variability
» General enough to work on arbitrary user codes
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Tile Size Selection: iWAPT’10

Overview of the Algorithm

@ Generate a parametrically tiled code

© Randomly select x% of the tile size space, and run them on the machine
@ Train an ANN using this data

© Use the ANN to predict performance of the entire space

@ Collect y tile sizes that are predicted best and not already ran

@ Run the y tile sizes on the machine, output the best found
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Tile Size Selection: iWAPT’10

Experimental Setup

v

Studied various kernels (perfectly/imperfectly nested, BLAS & stencils)

v

Only focused on single-threaded execution, on an Intel Core i7

v

Comparison: simple random search (R), ANN search (ANN)

v

Repeat each experiment 100 times, for various sampling rate
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Tile Size Selection: iWAPT’10

Experimental Results (y = 50)

[ [ [ doitgen [ gemm [ syrek | lu [ 2d-jacobi | fdid-2d |
R-best 100% 99.86% 98.15% 99.89% 99.91% 97.75%
R-average 98.71% 96.29% 94.80% 92.19% 94.10% 84.15%

1% R-worst 95.35% 69.64% 89.81% 40.63% 17.69% 31.02%
ANN-best 100% 99.86% 100% 100% 99.91% 100%
ANN-average 98.89% 96.35% 96.01% 92.62% 98.51% 84.50%
ANN-worst 97.26% 82.93% 89.79% 79.68% 94.23% 66.53%
R-best 99.97% 99.86% 98.71% 99.89% 100% 100%
R-average 98.71% 96.42% 94.80% 92.87% 97.60% 84.10%

2%, R-worst 86.49% 67.89% 88.20% 45.29% 55.98% 27.30%
ANN-best 100% 99.86% 100% 100% 100% 100%
ANN-average 98.89% 96.76% 96.69% 95.34% 98.55% 88.61%
ANN-worst 97.26% 89.83% 89.65% 85.80% 94.17% 60.65%
R-best 99.97% 99.86% 98.71% 99.89% 100% 100%
R-average 98.77% 96.47% 94.80% 94.27% 98.39% 85.47%

39 R-worst 94.89% 63.58% 87.99% 61.24% 84.54% 47.99%
ANN-best 99.97% 99.86% 100% 100% 100% 100%
ANN-average 98.93% 97.14% 97.17% 95.34% 98.74% 91.45%
ANN-worst 97.64% 91.01% 92.27% 85.80% 94.50% 63.34%
R-best 99.97% 99.86% 98.71% 99.89% 100% 100%
R-average 98.80% 96.65% 94.93% 92.19% 98.41% 85.55%

4% R-worst 96.86% 69.73% 88.57% 52.03% 82.47% 43.74%
ANN-best 100% 99.86% 100% 100% 100% 100%
ANN-average 98.99% 97.67% 97.20% 95.79% 98.90% 93.55%
ANN-worst 98.28% 93.65% 92.66% 85.80% 94.50% 79.26%
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Tile Size Selection: iWAPT’10

Some Related Work

Epshteyn et al. [LCPC’05]:
» Search-oriented contribution
» Uses regression curves to approximate the performance distribution
» Uses active learning to select good candidates for empirical evaluation
» Good results for BLAS kernels

Yuki et al. [CGO’10]:
» Aims at selecting/combining between different static models
» Uses program features to characterize accesses, train ANN
» Results demonstrated for matrix-like kernels
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Tile Size Selection: iWAPT’10

Conclusions and Future Work

ANN is a candidate approach to connect tile sizes with performance
» Good prediction quality
» Deviation usually smaller for the good points

» Combined search heuristic proposed:

» Strong variability improvement over naive random approach
> 90+% efficiency using < 2% of the space, likely can be improved further

Future work:
» Generalization!

» Categorize benchmarks reg. the performance distribution shape
> Dataset size

» Do not try to fit the random samples during training

> Reduce the training time
» problem: ANN configuration

Ohio State 17



Acknowledgements: iWAPT10
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