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Abstract

Data locality and parallelism are critical optimization objectives for
performance on modern multi-core machines. Both coarse-gin par-
allelism (e.g., multi-core) and fine-grain parallelism (eg., vector SIMD)
must be effectively exploited, but despite decades of progss at both
ends, current compiler optimization schemes that attempta address
data locality and both kinds of parallelism often fail at oneof the three
objectives.

We address this problem by proposing a 3-step framework, witih
aims for integrated data locality, multi-core parallelism and SIMD exe-
cution of programs. We define the concept ofectorizable codelets, with
properties tailored to achieve effective SIMD code generatin for the
codelets. We leverage the power of a modern high-level traf@mation
framework to restructure a program to expose good ISA-indegndent
vectorizable codelets, exploiting multi-dimensional da reuse. Then,
we generate ISA-specific customized code for the codeletssing a col-
lection of lower-level SIMD-focused optimizations.

We demonstrate our approach on a collection of numerical kemnels
that we automatically tile, parallelize and vectorize, exibiting signifi-
cant performance improvements over existing compilers.

Categories and Subject Descriptors D 3.4 [Programming lan-
guage§ Processor — Compilers; Optimization

General Terms Algorithms; Performance
Keywords Compiler Optimization; Loop Transformations; Affine
Scheduling; Program synthesis; Autotuning
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While hand tuned library kernels such as GotoBLAS address alll
the above factors to achieve over 95% of machine peak for spe-
cific computations, no vectorizing compiler today comes anywhere
close. Recent advances in polyhedral compiler optimization [5, 11]
have resulted in effective approaches to tiling for cache locality,
even for imperfectly nested loops. However, while significant per-
formance improvement over untiled code has been demonstrated,
the absolute achieved performance is still very far from machine
peak. A significant challenge arises from the fact that polyhedral
compiler transformations to produce tiled code generally require
auxiliary transformations like loop skewing, causing much more
complex array indexing and loop bound expressions than the orig-
inal code. The resulting complex code structure often leads to in-
effective vectorization by even sophisticated vectorizing compilers
such as Intel ICC. Further, locality enhancing transformations, e.g.
loop fusion, can result in dependences in the innermost loops, in-
hibiting vectorization.

In this paper, we present a novel multi-stage approach to over-
come the above challenges to effective vectorization of imperfectly
nested loops. First, data locality at the cache level is addressed by
generating tiled code that operates on data footprints smaller than
L1 cache. Code within L1-resident tiles is then analyzed to find
affine transformations that maximize stride-0 and stride-1 refer-
ences in parallel loops as well as minimization of unaligned loads
and stores. This results in the decomposition of a L1-resident tile
into codeletsFinally, a specialized back-end codelet optimizer ad-
dresses optimization of register load/store/shuffle operations, max-
imization of aligned versus unaligned load/stores, as well as regis-

The increasing width of vector-SIMD instruction sets (e.g., 128 bits ter |evel reuse. Target-specific intrinsics code is generated for the

in SSE, to 256 bits in AVX, to 512 bits in LRBni) accentuates the
importance of effective SIMD vectorization. However, despite the

codelet by the back-end optimizer.
This paper makes the following contributions. (1) It presents

significant advances in compiler algorithms [15, 26, 28, 30, 31, 43] 3 novel formalization for an affine loop transformation algorithm
over the last decade, the performance of code vectorized by eurren ihat is driven by the characteristics of codelets.(2) Unlike most
compilers is often far below a processor’s peak. . previous approaches that focus on a single loop of a loop-nest
_ A combination of factors must be addressed to achieve very for vectorization, it develops an approach that performs integrated
high performance with multi-core vector-SIMD architectures: (1) analysis over a multi-dimensional iteration space for optimizing the
effective reuse of data from cache — the aggregate bandwidth toyector-SIMD code. (3) It represents the first demonstration of how
main memory on multi-core processors in words/second is far lower pjgh-|evel polyhedral transformation technology can be effectively
than the cumulative peak flop/second; (2) exploitation of SIMD integrated with back-end codelet optimization technology through a
parallelism on contiguously located data; and (3) minimization of ,gdel-driven approach, with significant performance improvement
load, store and shuffle operations per vector arithmetic operation. qyer production and research compilers.
This paper is organized as follows. Sec. 2 gives a high-level
overview of our approach, and Sec. 3 defines the concept of vec-
torizable codelets, the interface between a high-level loop transfor-
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mation engine and a low-level ISA-specific SIMD code generator.
Sec. 4 details our new framework for automatically extracting max-
imal codelets. Sec. 5 details the framework for ISA-specific SIMD
code generation. Experimental results are presented in Sec. 6, and
related work is discussed in Sec. 7.



2. Overview DEFINITION 1 (Line codelet).A line codelet is an affine inner-
most loop with constant trip count such that:

1. there is no loop-carried dependence,

2. all array references are stride-1 (fastest varying array dimen-
sion increments by one w.r.t. the innermost loop) or stride-0 (in-
nermost loop absent from array index expressions),

3. unaligned load/stores are avoided whenever possible.

The key to our approach to vectorization is a separation of tasks
between a high-level program restructuring stage and an ISA-
specific SIMD code generation stage. High-level program trans-
formation frameworks such as the polyhedral/affine framework
excel at finding loop transformation sequences to achieve high-
level, cost-model-based objectives. Examples such as maximizing
data locality [7], maximizing parallelism (fine-grain or coarse-grain  To illustrate the process of abstract SIMD vectorization, Fig. 1
[11, 16, 29]) and possibly balancing the two [33, 34] illustrate the shows a code example which satisfies the above requirements.
ability of the polyhedral framework to aggressively restructure pro- |t is the transformed output of a sample full tile by our codelet
grams. On the other hand, SIMD-specific concerns such as ISA- exposure algorithm, to be discussed later. Fig. 3 shows its abstract
specific vector instruction selection, scheduling, and register pro- vector variant, after performing a basic unroll-and-jam as shown
motion have been implemented using frameworks that depart sig-in Fig. 2. The abstract vector code generation involves peeling
nificantly from classical loop transformation engines [15, 28, 30].  the vectorizable loop with scalar prologue code so the first store

In this work we formalize the interface between these two opti- (and all subsequent ones) will be aligned modulothe vector
mization stages — the vectorizable codelet: a tile of code with spe- |ength. Similarly, an epilogue with scalar code is peeled off. All
cific, SIMD-friendly properties. We develop a novel and complete arithmetic operators are replaced by equivalent vector operations,
system to generate and optimize vectorizable codelets. stride-0 references are replicated in a vector by “splatting”, stride-1
references are replaced by vioad/vstore calls, and the vectorized
loop has its stride set to the vector lenyth The arrays in this
example, and the remainder of this paper, are assumed to be padded
to make each row a multiple of the vector lenigth

High-level overview of algorithm The data locality optimization

algorithm in a system like Pluto [11] is geared towards exposing
parallelism and tilability for the outer-most loops first, through
aggressive loop fusion. This is critical for achieving good L1 cache
data locality through tiling, as well as coarse-grained multi-core

parallelization. However, for L1-resident code, those objectives are - : for (i = Ibis i <ubi; i +=2)
often detrimental: for effective exploitation of vector-SIMD ISAs, | "¢ 7 L0 5 &0 ) Lo ot ey o s eent
we need inner-most parallel loops, and the addressing of stridg® Ali-1Li] = Bli-11[j]: for (j = 1bjs j <1bj + 1bj2; +4) {
¢ ¢ . s BliILI) = CLil*AL-1][]); ALL-11[5] = Bli-1](j];
and alignment constraints. Other work has looked at the impact BLIl(I] = Clil*Ali-1][i1;
of unroll-and-jam for SIMD vectorization [12], but they do not 11 Body: codelet (abstract vestorization)
consider the problem of restructuring programs to maximize the Fi 1 Aft ; ubj2 = (Ibj2 - ubj) %V o
applicability of unroll-and-jam, nor any access stride constraint. igure 1. ATter transfo. | for ¢ = Bz b <l e )
In this work, we develop an integrated system aimed at recon- [0 Codelet exposure vetore (BT vm s ).
ciling the different considerations in optimizing for coarse-grain [ior (i = ibi; i < uwi; i += 2 vstore(A[i11], vioad(B[I1[j])):
parallelism and cache data locality versus effective SIMD vector-| "%, (=i < i =) 4 vetore(BIIlT, v (vep &8 (L
ization. Our end-to-end strategy is as follows. S BlI10i) = CLil*ALi-1]1]]; '/ Epilog: peel for miltiple of V.
1. Transform the program for cache data locality (see Sec. 4.2)| s a1l odldioaiin. for (j = ubj - ubj2; | < ubj: ++) {
using: (1) a model-driven loop transformation algorithm for | ! R A
maximizing data locality and tilability [11]; (2) a parametric !

tiling method to tile all tilable loops found [S]; and (3) an  Figure 2. After unroll-
algorithm to Separate partial tiles and fU” tiles [1] and_jam 21 Figure 3. After abstract SIMD vect.

2. For each full tile, transform it to expose maximal vectorizable
codelets (see Sec. 4), using: (1) a new polyhedral loop trans- o ghjective in this work is to automatically transform full tiles
formation algorithm for codelet extraction; (2) unroll-and-jam 15 code fragments satisfying Definition 1 (i.e., Fig. 1), possibly
along permutable loops to increase data reuse potential in thejnterleaved with other code fragments not matching those require-
codelet(s); and (3) an algorithm for abstract SIMD vectoriza- ments, Each vectorizable inner-loop isectorizable codelete

tion, addressing hardware alignment issues. show in Sec. 4 how to leverage the restructuring power of the poly-
3. For each vectorizable codelet, generate high-performance ISA-pg g transformation framework to automatically reshape the loop
specific SIMD code (see Sec. 5), using a specialelet com- nests to satisfy the requirements when possible.

piler akin to FFTW’sgenfft or the SPIRAL system. Further,
use instruction statistics or runtime measurements to autotunes 2 \/ectorizable Codelet Extraction

the codelets if alternative implementations exist. - . . .
Efficient vector code generation requires to exploit data reuse po-

. tential. Specifically, given a program segment that is L1-resident,
3. Vectorizable Codelets we shoulg maximi);egthe potgnti?al for register reuse while increas-
the original program, which satisfy some specific properties that ing the number of vector computations in the codelet. To do so we
enable effective SIMD code to be synthesized for it using an ISA- use register tiling, or unroll-and-jam, which amounts to unrolling
specific back-end code generator. In order to illustrate the proper-outer loops and fusing the unrolled statements together.
ties, we proceed backwards by first describing the process of ab-  Our framework is well suited to perform this optimization:

stract SIMD vectorization on a code satisfying those properties.  the polyhedral framework can restructure a loop nest to maxi-
o mize the number gbermutable loopsalong which unroll-and-jam
3.1 Abstract SIMD Vectorization can be applied. Arbitrarily complex sequences of fusion/distribu-

We use the term abstract SIMD vectorization for the generation tiOn/skewing/shifting may be required to make unroll-and-jam pos-
of ISA-independent instructions for a vectorizable innermost loop. Sible, and we show in Sec. 4 how to automatically generate effec-

The properties to be satisfied by this inner-most loop are summa- Ve sequences for a given program to maximizes the applicability
rized in the following definition: of unroll-and-jam. As a result of our framework, the innermost vec-

torizable loops (the line codelets) will contain an increased number



of vector operations and operands for the ISA-specific synthesizerthe statement instance is executed. Parametric polyhedra are used
to optimize. Definition 2 lists the various optimization objectives to capture loop bounds whose values are invariant through loop
that drive the high-level transformation engine to ensure the cre- execution but unknown at compilation time. These polyhedra use
ation of good (i.e. large) candidate vector codelets. parametersn the inequalities defining their faces, and are a natural
extension to standard polyhedra. For instance, in Fig. 1, the iteration

DEFINITION 2 (Maximal Codelet Extraction)Given a program domain ofRis:

P, maximal codelets are obtained by applying polyhedral loop

transformations on P to obtain a progran §uch that: pr={(i,j) € Z? |1 bi <i<ubinlbj << ubj}.
1. the number of innermost loop(s) iterations which are parallel is

maximized; We denote byg the vector of the surrounding loop iterators; Rr
2. the number of references inwhich are not stride-0 or stride-1  itis (i, j) and takes values imRg.

is minimized,;
3. the number of permutable dimensions is maximized. Accessfunctions They represent the location of the data accessed
4. the number of unaligned stores is minimized,; by the statement, in the form of an affine function of the iteration
5. the number of unaligned loads is minimized, vector. For each point img, the access functidﬁf(fpg) returns the

coordinate of the cell oA accessed by this instance of the memory
reference. We restrict ourselves to subscripts of the form of affine
expressions which may depend on surrounding loop counters and
global parameters. For instance, the subscript function for the read
reference i - 1] [j] of statemenRis FA\(i,j) = (i—1,j).

In this work, we apply maximal codelet extraction on each full
tile in the program. We then apply unroll-and-jam on all permutable
loops, apply abstract SIMD vectorization on all candidate codelets,
before synthesizing ISA-specific SIMD code for each of them.

4. Framework for Codelet Extraction Datadependences The sets of statement instances between which
We now present our high-level framework to automatically trans- there is a producer-consumer relationship are modeled as equalities
form the program to extract candidate vectorizable codelets. and inequalities in dependence polyhedrobependences are de-
fined at the reference granularity of an array element. If two in-
4.1 Polyhedral Framework stancesXr and Xs refer to the same array cell and one of these

references is a write, a data dependence exists between them. To
respect program semantics, the producer instance must be executed
before the consumer instance. Given two statemiRratsdS, a de-
pendence polyhedron, writtemg s, contains all pairs of dependent
instancegXg, Xs). Multiple dependence polyhedra may be required

to capture all dependent instances, at least one for each pairpf arra
references accessing an array (scalars being a particular case of a
ray). Itis possible to have several dependence polyhedra perfpair o
textual statements, as they may contain multiple array references.

To meet our goal of effectively transforming a program (region) to
expose maximal codelets, we use a powerful and expressive math
ematical framework for program representation: the polyhedral
model. In the present work, we leverage recent developments on
expressing various optimization constraints (e.g. loop permutabil-
ity, data reuse, parallelism, etc.) into a single optimization problem
that can then be optimally solved using Integer Linear Program-
ming [34, 39]. We first review the basis of program representation
and optimization in the polyhedral model, using the same notation

asin [34]. Programtransformation Program transformations in the polyhe-

Background and program representation  The polyhedral frame- Qral model are representgd by a schedu!ing functi.on. This function
work is a flexible and expressive representation for imperfectly 1S used to reorder the points in the iteration domain, and the corre-
nested loops with statically predictable control flow. Loop nests SPonding source code can be generated using polyhedral code gen-
amenable to this algebraic representation are callatic control eration [6]. A scheduling function captures, in a single step, what
parts(SCoP) [16, 19], roughly defined as a set of consecutive state- May typlcall_y correspond to a sequence of several te_ns of basic loop
ments such that all loop bounds and conditional expressions aretransformations [19]. It takes the form of a scheduling ma®f¥
affine functions of the enclosing loop iterators and variables that Whose coefficients drive the program restructuring to be performed.
are constant during the SCoP execution (whose values are unknown
at compile-time). Numerous scientific kernels exhibit those proper- DEFINITION 3 (Affine multi-dimensional schedulefiven a state-
ties; they are found frequently in image processing filters (such as ment R, an affine schedu@R of dimension m is an affine form of
medical imaging algorithms) and dense linear algebra operations. the d loop iterators (denotekk) and the p global parameters (de-
Unlike the abstract syntax trees used as internal representationnotedn). OR ¢ 7™ (d+p+1) can be written as:
in traditional compilers, polyhedral compiler frameworks internally

represent imperfectly nested loops and their data dependence infor- 811 o Brgipra XR

mation as a collection of parametric polyhedra. Programs in the @S(XR) = : j

polyhedral model are represented using four mathematical struc- 6. 0 ' 1

tures: each statement has itgration domain each memory ref- ml .- Smdipil

erence is described by an affinecess functiondata dependences . e o

are represented usirdppendence polyhedind finally the pro- _ The scheduling functio®™ maps each point img to a mul-
gram transformation to be applied is represented ussupaduling tidimensional time-stamp (a vector) of dimensionin the trans-
function formed code, the instances Bfdefined inor will be executed

in lexicographic order of their associated time-stamp. Multidimen-
Iteration domains For all textual statements in the program (e.g. sional timestamps can be seen as logical clocks: the first dimension
RandSin Fig. 1) the set of its dynamic instances is described by a similar to days (most significant), the next one to hours (less signif-
set of affine inequalities. When the statement is enclosed by one oricant), etc.
more loops, all iterations of the loops are captured in the iteration ~ The optimization of a full program requires a collection of
domain of the statement. Each executed instance of the statemenaffine schedules, one for each syntactic program statement. Even
corresponds to a point in the iteration domain; the coordinate of this seemingly non-linear transformations like loop tiling (also known
point is defined by the value of the surrounding loop iterators when as blocking) and unrolling can be modeled [19].



4.2 Program Transformation for L1-resident Blocking preserving properties of a schedule so that for each pair of instances
in dependence the source instance will be scheduled necessarily
before the target instance. We bound the coefficient® @b be

in some arbitrary range, so that we can find some arbitrarily large
K € Z such that the fornfK.fi+ K) is an upper bound of the sched-

Tiling for locality involves grouping points in an iteration space

into smaller blocks (tiles) [43], enabling reuse in multiple direc-

tions when the block fits in a faster level of the memory hierarchy
(registers, L1, or L2 cache). Tiling for coarse-grained parallelism : .
partitions the iteration space into tiles that may be executed Concur-“:e Iaterécy ?4]' tger;:fori)p(zs) —Op(%r) = —(K.A+K) is equiv-
rently on different processors with a reduced frequency and volume alent to®p(Xs) — Op(XR) = —c°.

of inter-processor communication. A tile is atomically executed on pepniTion 4 (Semantics-preserving affine schedul@iven a
a processor, with communication required only before and after ex- get of affine scheduleR, ©S. .. of dimension m, the program se-

ecution. The tiling hyperplane method [11] is an effective approach mantics is preserved if the three following conditions hold:
for tiling of imperfectly nested affine loops. However, it can only

generate tiled code for tile sizes that are fixed at compile-time. Al- 0) VDRs, VP, 5gRS €{0,1}

ternatively,parametric tiling[5, 22], used in the present work, en- T

ables run-time selection of tile sizes. It has the advantage that tile jj) VDRs, z 5’gR-S =1 (1)
sizes can be adapted to the problem size and machine used without =1

recompiling the code. (i) VDrs VPE {1....m}, V(%% € DRs @

The first stage of our optimization flow is as follows. Given an
input program, we first apply a model-driven optimization geared
towards maximizing the applicability of tiling [11]. Then parallel
parametric tiling is applied, followed by full-tile separation. The
process of separating full tiles leads to rectangular blocks of code  As Feautrier proposed, the affine form of the Farkas lemma is
whose loop bounds are functions of the tile sizes (which are run- used to build the set of all non-negative functions over a polyhedron
time parameters). Each full tile is a potential candidate for effec- [16], a straightforward process as Eq. 2 represents a non-negativ
tive SIMD execution using the codelet extraction and synthesis ap- function andogs is a polyhedron. As a result, a convex set of
proach detailed below. We note that the codelet extraction and syn-constraints linking the varioug, j coefficients and thé variables
thesis techniques are not limited to tilable programs. However, in is obtained, such that each point in this space is a semantics-
our experiments in Sec. 6 we use benchmarks which can be pro-preserving schedule [34].
cessed by parallel parametric tiling.

The downside of parametric tiling is the generation of very com- 4.4  Codelet-Specific Cost Functions
plex loop bounds for the loops iterating on the various blocks (inter-
tile loops), typically involving complex compositions agil(),
floor() andround() expressions. Current production compilers of-
ten fail to successfully analyze the dependences in such loops, an
therefore are unable to automatically generate the best SIMD code
for the full tiles. This leads to significant performance loss in the
generated program. However, using the information extracted by
the polyhedral compilation framework, full tiles can be manipu-
lated, transformed and vectorized using our proposed approach.

p-1 )
Op(Xe) — Of(%R) > — 5 . (K.A+K)+35"°
k=1

We now present the set of additional constraints we use to formu-
late our scheduling optimization problem. The complete schedul-
d’ng algorithm works in two steps: first we find a schedule for the

program that maximizes parallelism, the number of stride-0/1 ref-
erences, and permutability. Then we apply a second algorithm for
minimizing the number of unaligned load/stores on the transformed
program.

4.4.1 Additional Properties on the Schedule

4.3 Convex Set of Semantics-Preserving Transformations In the present work, we impose specific propertieom j < N.
. Enforcing non-negative coefficients greatly simplifies the process
A key reason for the power and effectiveness of the polyhedral ot finding good schedules. Large coefficients frcan lead to
transformation framework is the ability to formulate, with a single complex code being generated, containing modulo operations [6],
set of (affine) constraints, a set sémantics-preserving (affine)  5nq small values for the coefficients are usually preferred [32].
program transformationf34, 39]. An optimization problem whose o |Lp formulation attempts to minimize the value of coefficients,
solutloqs are subjgct to these constraints WI|| necessarily lead t0 ainarefore making them as close to 0 as possible véher 0.
semantics-preserving program transformation. In addition, we use the so-called 2d+1 schedule form [19],
_ To build such a set of constraints, the reasoning is as follows. \ich forces the scheduling function to be an interleaving of linear
First, we observe that for all pairs of dependent instarfges%s), and constant dimensions. The number of row®®fs set to 2 +1
the dependence is strongly satisfie®if%r) < O(%s), that is if the if Sis surrounded byd loops in the original sub-program, and
producer is scheduled before the consumer@Ais in practice a every odd row of@S is made constant (that i§; | = O for aI’I i
multi-dimensional function, we can more precisely state that the exceptj — d+n+ 1). For instance, in this 2d+1i7florm the original
dependence is strongly satisfied@(Xr) < O(Xs), where < is schedule of Fig 1 iR : (0,i,0, j 0’) andeS: (0,i,0, ’1) Those
the lexicographic precedence operator. This can be rewritten as, o comouted simply by building the AST of the sub-program with
O(%s) — O(%R) - 0. Alternatively, given®p, row p of ©, we have 505 and statements as nodes, and edges between a parent and its
VP, Op(Xs) —O(XR) > 8p with Sp < {0,1}. We note that once a  cpiigren in the AST. Edges are labeled by the syntactic order of
dependence h"’.‘s been strongly sat_lsﬂed ata _dlmelutsmnen It appearance of the children, and to compute the original schedule
does not contribute to the semantics constraint and so we havegne gimply takes the path from the root to the statement, collecting
instead?p > d, Op(Xs) —~Op(¥r) > —o (thatis, a"void” constraint  {he node labels and the edge labels along this path.
with no impact on the solution space). , ... While not technically required for this work, the 2d+1 form
The constraints for semantics preservation are summarized inprqyiges a standardized notation for the schedules, ensures that at
Def. 4, and are the starting basis for our new optimization algo- |e5st one schedule exists in the considered search space (the identity
rithm. For each rowp of the schedu_llng matri© and eac_h de- . schedule, as shown above), and tends to simplify the generated
pendence polyhedrongs, we associate a Boolean decision vari- 505 hounds when implementing full distribution through the scalar
ableégR'S; these decision variables are used to encode semantics-dimensions.



4.4.2 Minimizing Dependence Distance Our approach to model sufficient conditions for the stride of a

The first objective we encode is designed to find solutions with reference to be 0 or 1 is to reason about the system of equalities built
good data locality. It also helps with other objectives. The mini- to create the new references after loop transformations. Specifically,
mization finds a function that bounds the dependence distance [11], V& Want to ensure that the innermost loop iterator (to be vectorized)
for each non-constant scheduling level (the even rows). This func- appears only in the right-most index function (the Fastest Varylng
tion is a form of the program parametetsand requires additional ~ Dimension, FVD) of an array reference, or does not appear at all in
constraints or®: all coefficients associated with the parametérs the reference. Otherwise, the reference is not stride-0/ 1 .

are set to 0. This only removes parametric shifts, and is therefore . AS anillustration of a sufficient condition for stride-1: assuming
not a limiting factor unless there are dependences of parametric dis-the innermost non-constant schedule dimensiogpresents a par-

tances in the program, a rare case. This bounding function is defined2/I€! 100P. then for a reference to be stride-1 itis enough to have (1)
as follows. for each row of the schedule: the schedule coefficients for rows less thmoorresponding to the

s R iterators present in non-FVD functions are non-zero at least once;
Uk A+wyg > 0°(X5) —O7 (XR)  (Xr,%s) € Drs (3) (2) for at least one of the iterators present in the FVD function,
ux € NP,wy € N the schedule coefficients for rows less thcorresponding to this

. . - iterator are all zero.
Intuitively, the value ofuy.ii + wg is an indicator of an upper

bound on the distance between dependent iterations. To minimizeConvex encoding of access stride properties To encode this kind
the distance between dependent iterations, we minimize the valueof property, we resort to two Comp|ementary structures in the ILP.
of uy andw. If, after minimization uy.ii+wg = 0, then the depen-  First, a new set of Boolean variablgs; is introduced, to help us
dent iterations are scheduled at exactly the same time for this loopmodel when a schedule coefficiedyt; is O or not. There are as
level, i.e., the loop is parallel. manyy; j variables as there ag j variables, and for each of them
we sety; j < 6. Intuitively, we sum thesg variables to count
how many schedule coefficients are non-zero.y-pto accurately
Maximizing fine-grain parallelism requires that no dependences in capture when a schedule coefficient is non-zero, we maxiglif\?

the generated code are carried by the innermost loop(s). FeautrlerSO thatyiRj is set to 1 as soon ﬁj is greater or equal to 1.

addressed the problem of maximizing fine-grain parallelism through Second lian tati f th func-
an aggressive strategy of strongly satisfying all dependences as_. econd, we use an auxi |aryFrepresen ation of the access func
early as possible [16]. We propose a different form: minimization tions, using a normalized matr@ f(_)r an access fun(_:tloﬁ. Intu-

of the number of dependences to be solved by the schedule di-UVE!: itis usedto represent which iterators appear in the non-FVD
mension 2 (e.g., the one corresponding to the inner-most loop), index functions, and which appear in the FVD with a coefficient of

together with the objective of minimizing the dependence distance 1. G" has two rows: all iterators appearing in the non-FVD are
at that level. We use the following optimization objective: represented in the first row, and in the second row iterators appear-
ing in the FVD with a coefficient of 1 are represented. Precisely,
min z 5%"5 4) for the access function matri of dimensionl x d +n+ 1, GF
Drs is constructed as follows. (K37 has 2 rows aFnaH colun?:ns. 2)
Indeed, if this sum is equal to 0, andupqy.n + wyq (from the Vi€ {1_"| 1} _VJ < {1“d_}’ it Fj#0 the":GlﬁJ' - '1: Gl,j =0
minimization of the dependence distance at that level) is also equalOtherwise; (3] € {1.d}, if f j = 1thenG; ; = 1,G; ; = 0 oth-
to 0, then the inner-most loop is parallel as no dependence is carriederWise. ) o ) )
by this loop. Minimizing both objectives at the same time ensures  This leads to the following definition [27], wherein besidesyhe
that we discover inner-most parallel loops whenever possible. variables we also define new Boolean variahnl,éandv,': (one pair
per loop surrounding the referengg, andof andog to model this
seemingly non-convex problem in a convex fashion.

4.4.3 Maximizing Fine-grain Parallelism

4.4.4 Maximizing Stride-0/1 References

We propose a framework to embed directly, as constraints on the

coefficients of®, the maximization of the number of stride-0/1 DEFINITION 5 (Constraint for Stride-0/1)Given a statement R
references. It is a complex task to model such a constraint as asurrounded by d loops; a legal sched®€ where all loop-carried
convex optimization problem, so that we can use standard solversdependences have been strongly satisfied beforeddyalmemory
to find coefficients of. The reader is referred to a technical report  reference g for an array A of dimension | with stride-0/1 potential;

[27] for detailed examples. -, vi, of andob, a collection of Boolean decision variables; and

Access functions after scheduling In a nutshell, we aim for suf- GF the normalized matrix for F. When given semantics-preserving
ficient conditions for an array reference to be stride-0/1, when the ©% with parallel inner-dimension, the following constraints
innermost loop is parallel. These conditions come from properties

of the polyhedral code generation process which builds the ex- [d-1 i d-1 i )
pressions connecting the input iterator symbols (é.gj,) with D 9LV = GujHe | A D G2 Vacj < (d=1).02).V | Vi€ {l.d}
the new loop iterators created (e.y2, t4). For instance@R = k:dl g kzld g
(0,i+j,0,j,0) is a valid schedule foR in Fig. 1. Two loops are i oF Yl _F

created after code generation, and their schedule is given by the <j191,14up = legl"‘(’l) " (lzlgz"'vF = j;gz’J 02)

even dimensions @: t2=i+ j,t4=j. Inthe accesali-1][j],

after loop transformatiori, andj are replaced by expressions in  are verified ifo] = 1andab =1 (stride-1), orifof =1ando} =0
the form of the new loop iteratot<?, t 4. This process is done by  (stride-0). Otherwise it is not stride-1/0.

constructing a system of equalities between tthevariables and

the original iterators, based on the schedule, and performing Gaus-The optimization objective is formulated as follows.

sian elimination. Equalities with one original iterator on the left

hand S|de are thel"l Obtalned W|th the above example, we WOU|d getlAS we perform |exicographic Optimization’ we can p|ace thisxima
Alt2-t4-1][t4], which is not a stride-1 reference alohg, the mization as the very last optimization objective to not disrine actual
inner loop. performance-driven optimization objectives.




DEFINITION 6 (Maximization of Stride-0/1 Referencegjhe num-
ber of non-stride-0/1 references is minimized by encoding, for each
memory reference F in the program, the constraints of Def. 5, and
optimizing the following objectives:

maxZ of, maxZ o5

Example To illustrate the above definitions, Fig. 4 shows how

they are applied on a simple program with a single reference. The

stride optimization objectives yield the optimum valuemf= 1
and o, = 1. 01 = 1 implies thaty? = 1, which in turn makes
Y22 = 1. Thus, in the final scheduB, > 1.0, = 1 forcesv! =0,
which propagates and sejs; = 0. In the final scheduleé, 1 =0
and6,» > 1. This corresponds to making the lopghe outer loop.

o2 4

0w +1-2>(0+1)-01 1-vi4+0.v2<il-0p

0-y1>0-pt
1-yp0 > 12

1-yp1 <1-v?
0-y22 <0-Vv?

Figure 4. Example of stride-0/1 constraints

4.4.5 Maximizing Permutability

Our approach to maximize permutability is to add constraints to
capture level-wide permutability [11], and maximizing the number
of such dimensions. We first recall the definition of permutable
dimensions.

DEFINITION 7 (Permutability condition)Given two statements

4.5 Putting It All Together

The above constraints are all embedded into a single optimiza-
tion problem, containing numerous Boolean decision variables, as
well as the schedule coefficients for all statements. We combine
all our optimization objectives into a single optimization problem
that is solved by Integer Linear Programming, by finding the lex-
icographically smallest point in the space. The order of the opti-
mization objectives determines which objective will be maximal-
ly/minimally solved first, with succeeding objectives being opti-
mally solved given the max/min solution of the previous objectives.
Our combined probler® is:

P dminy &, min Uzg.fi+ W, machE, maxZog,

DRs

vk max 'y P S, Wk # 2d min A+ w, max Vi
(]

DRs

There may still be multiple solutions to this optimization prob-
lem, each satisfying the criteria for extraction of maximal codelets
as per Def. 2. While technically enumerating all optimal solutions
should be performed for best performance, in practice we limit our-
selves to the lexicographically smallest solution of the above prob-
lem. The resulting schedule is then applied to the program, poly-
hedral code generation is performed, and candidate codelets are
detected on the generated code (all parallel innermost loops with
only stride-0/1 references are candidate codelets). Those candidate
codelets are the input to the second stage of our optimization frame-
work, which performs retiming+skewing of statements to minimize
the number of unaligned load/stores. In addition, permutable loops
are detected through dependence analysis on the generated code,
and are marked as candidate loops for unroll-and-jam.

4.6 Minimizing Unaligned Stores and Loads

R S. Given the conditions for semantics-preservation as stated by The final stage of our method to extract valid candidate codelets
Def. 4. Their schedule dimensions are permutable up to dimensionsq, ISA-specific SIMD synthesis is to minimize the number of un-

k if in addition:
VDRrs, VP € {1,....k}, V(¥R,Xs) € DR,

05 (Xs) — OR(%r) > 3p~* ®)

Enforcing this constraint on all schedule dimensions may lead
to an empty solution set, if not all dimensions are permutable. So,
we need to relax this criterion in order to captuvbenit is true,
while not removing schedules from the solution set. We start by

introducing Boolean decision variables,*°, i.e., onep variable

perd variable, and sefip*° > pp*°. These variables, when setto 1,
will make Eqg. (2) equal to Eqg. (5), and will not impact the solution
set when set to 0. This is achieved by replacing Eq. (2) by:
p-1
O5(%Xs) — OR(XR) > — kz (8275 — %) (K. 4 K) + 557
=1

When a dependence has been previously satisﬁ@?is(: 1 for
somep), instead of nullifying the legality constraint at subsequent
levels, we will attempt to maximize the number of cases where
Eq. (5) holds, with the following optimization objective for a given
dimensionp:
max z p’gRs
DRS

We note that ad andp variables are connected by an inequality,
maximizingp variables implicitly forces the strong satisfaction of
dependences as early as possible.

aligned stores and loads in each candidate codelet found by the pre-
vious loop transformation step. Despite the fact that hardware align-
ment constraints are usually dealt with at a lower compilation level
[15], this task should more naturally belong to the high-level trans-
formation engine, where multidimensional loop transformations as
well as precise array dataflow analysis can be performed.

To achieve this objective, we perform a combinationstite-
ment retimingat the codelet level, and additional loop skewing for
the unroll-and-jammed loops. Intuitively, we ‘shift’ statements in
the codelet such that (when possible) all array elements which are
referenced by the vectorizable loop become aligned if the first el-
ement being referenced by the loop is aligned. Previous work by
Henretty et al. [23] develops a complete framework for statement
retiming so as to minimize stream alignment conflict on innermost
vectorizable loops. Our candidate codelets fit their definition of vec-
torizable loops, and to find the relevant retiming factor for our op-
timization purpose, we use a slightly adapted version of that algo-
rithm. The main difference is that we add an additional scalar quan-
tity to the shifts found by their algorithm so that stores to different
arrays need the same iteration peeling quantity to ensure alignment
with the technique shown in Sec. 3.1. This is not strictly necessary,
but simplifies the code generation and can reduce the number of
peeled iterations in the scalar prologue/epilogue codes.

Finally, we need to take care of alignment properties in case of
unroll-and-jam of the loops. For this purpose, we resort to skewing
the unroll-and-jammable loops by a positive factor, so that the array
index expression along the FVD is a multiple of the vector length.
Such transformation is always legal, as a positive skew cannot



change the dependence direction. As an illustration, for a Jacobi-

2D example the access function after parametric tiling and full tile
extraction, but before retiming is of the forAj-2t +i ] [-2t +j ] .
AssumingV = 4, we apply an additional skew by 2 to unroll-
and-jam alongd, to getA[ -4t +i ][ -4t +j ] . In this manner, when
unrolling by any factor along and jamming inj, references will

the codelet generator will translate the polymorphic vector opera-
tions to their exact implementation according to the targeted plat-
form and compiler.

The input language expresses the following operations in an
ISA-independent way: 1) loads and stores that are guaranteed to
be naturally aligned (e.g, in 128-bit SSE a 128-bit vector load for

still be vector-aligned irj. which the start address is 16-byte aligned), 2) vector splats and
In summary, to minimize store/load alignment even in the pres- compile-time constants, 3) unaligned loads and stores and their
ence of unroll-and-jam, for each candidate codelet we compute andisplacement loop-carried or constant displacement modulo vec-
ad-hoc polyhedral transformation made only of shifts and skews, tor length, 4) in-register transposes across 2, 4/ .registers (in-
and apply this transformation using a polyhedral code generator. cluding pack/unpack and interleave/deinterleave), and 5) in-register
The resulting codelet is then transformed to abstract vector codepartial and full reductions (e.g., horizontal adds or a dot-product in
using the technique depicted in Sec. 3.1, creating valid inputs to the struction).
next optimization stage: ISA-specific SIMD synthesis of vectoriz- We show an illustrative example that is generated by the pre-
able codelets, as detailed in Sec. 5. vectorization stage below. The SIMD tile meta-program is repre-
sented as a tree data structure, using standard C-like commands
_ i ; (decl for variable declarationd,oop for for loops,assign for
5. ISA-specific SIMD Generation assignments, etc.). Multi-dimensional array access is directly sup-
In this section we discuss the back-end compilation step that trans-ported év_nt h2D _addr ), and the meta-program aspect can be seen
lates pre-vectorized code into machine-specific high-performancein expressions liké sa. vl oad andi sa. vl oadu (aligned and un-
code. The final high-performance code is structurally similar to the aligned load instruction in the current SIMD ISA passed into the
popular auto-tuning package FFTW [18], the auto-tuning BLAS meta-program througtsa). SSA code is supported by constructing
package ATLAS [42], and general-size auto-tuning libraries gen- “fresh” variables. The input language including meta-programming
erated by SPIRAL [35, 41]: the main work is performed in small, capabilities is extensible and new primitives needed by new types of
highly optimized code blocks called codelets, which are automat- kernels or new vector ISAs can be added easily. Our example show
ically generated. A higher-level approach (the polyhedral frame- an editorially simplified input to the codelet generator specifying
work to parallelization) breaks down the bigger computation into a a 2D Jacobi SIMD vector line codelet. The full example contains
skeleton that performs all the book-keeping and calls the codeletsmore annotations attached to the variables.
appropriately. The first important question is how to restructure the
computation to enable the utilization of efficient codelets, which we
discuss in Sec. 4. The remaining problem to solve is how to compile
codelet specifications into highly efficient code, a problem similar
to the role ofgenfft [17] in FFTW.

Jacobi 2D_tile := isa ->
let(range0 := var.fresh_t(TInt), ..
vreg0 := var.fresh_t(isa.vtype)
func(Tint,
| oop_bound_aligned_2, c4, c6, shift_0, shift_1,
decl ([ range0, k0, c8, vreg0, vregl, vreg2,vreg3,...],
chai n(

“jacobi2d_tile",[loop_bound_aligned_1,
local _c8, B, A],

assign(vregl,isa.vload(sv_nth2D_addr (A, add(mul (V(-2),
c4),c6),sub(add(mul (V(-2),c4),c8),1),n,1))),
assign(vreg2,isa.vloadu(sv_nth2D_addr (A, add(mul (

c4),c6), sub(sub(add(mul (V(-2),c4),c8),1),

5.1 Overview
V(-2),
1),n,1))),

Our line codelet generator takes as input a specification of the tilg
code in a LISP-like intermediate representation (a one-to-one trans-
lation is systematically possible from our abstract SIMD form to
this LISP-like form) that captures the necessary amount of informa-
tion needed to generate highly efficient SIMD code. The representat
tion is designed to convey everything that is known by construction
(alignments, loop trip count properties, aliasing, etc.) without over-
specifying the problem. Our codelet generator then performs vari- ] o
ous platform independent transformations such as common subex->-3 Code Generation and Optimization

pression elimination (CSE), array scalarization and strength reduc- Our codelet generator is a full-fledged highly aggressive basic block
tion. Furthermore more advances optimizations such as convertingcompiler with very limited support for loops. It instantiates the
unaligned loads into aligned loads or ISA-specific strength reduc- generic tile specification for a particular SIMD ISA and then op-
tion and pattern transformation are performed. Loops are unrolled timizes the resulting code, and outputs a C function with compiler
in a reuse-conscious way that depends on the problem type. Theand architecture specific SIMD intrinsics.

output of the codelet generator is highly optimized sequential C ) )

code augmented by ISA-specific intrinsics. The code contains well- Loop unrolling - We aggressively unroll loops to produce large
shaped simple loops, large basic blocks in single static assignment?@sic blocks. Modern superscalar out-of-order processors have
(SSA) form, easily analyzable array index expressions, and explicit _huge instruction caches, reorder windows, store-to-load forward-

SIMD vector instructions. This code is finally compiled with the ing, multiple outstanding loads, and many other architectural fea-
target vendor compiler. tures that are fully exercised in steady state only by basic blocks

with hundreds of instructions. We convert the massive basic blocks
into single static assignment (SSA) form to enable better register
allocation through the compiler. In addition, unrolling a time loop

The input to our codelet generator is a program in a LISP-like b : :
. . ! a factor of two allows transparently moving between an input
code representation. The representation enables SIMD architecture; y b y g P

independent meta programs that construct architecture specific in_vector and a temporary space, avoiding extra copy operations.
stances when instantiated. Only the information needed for per- Loop pipelining and blocking The best loop unrolling strategy
forming the operation is captured in the abstraction, details regard- depends on the type of code that is underlying the tile codelet. Our
ing the hardware and the exact calling convention for the SIMD in- codelet generator at present supports three patterns:

trinsics are abstracted away using vector primitives that have atype  First, stencil and filter-type data flow graphs require software
and a length. During the code generation and optimization processpipelining and register rotation. This is either supported in hardware

assi gn(vreg0, mul (0. 200000, add( add(add(add( vr egl,
vreg2),vreg3), vregd), vregs))),

assi gn(deref (tcast (TPUr (datatype), sv_nt h2D_addr (A, add(
add(mul (V(-2) , c4), c6), sub(0, 1)), add(add(mul (V(-2) , c4),
add(c8,sub(shift_0,shift_1))),sub(0,1)),n,1))), vreg6)
))

5.2 Line Codelet Specification



(as on Itanium) or must be done in software through unrolling and blowup is usually no problem given the big instruction cache size
multi-versioning of variables. Proper loop pipelining achieves the and can be compensated through slightly less aggressive unrolling.
optimal steady state load/store to computation ratio (e.g., one load, ) o ) .
one store and 3 flops per loop iteration for 1D Jacobi). Jacobi or Genericoptimizations ~ Finally, the codelet generator applies stan-
wavelet filters are examples of this pattern. dard basic block optimizations used by program generators such as
Second, dense linear algebra-type data flow graphs have highFFTW'sgenfft, SPIRAL and ATLAS. This includes copy propa-
arithmetic intensity. This enables register-level double buffering: 9ation, constant folding, common subexpression elimination, array
on half of the register file a register tile computation is performed Scalarization, and source code scheduling. The codelet generator
while on the other half of the register file in parallel the results from @lso performs simplification of array indexing expression and ex-
the previous register tile are stored and the data for the new registerPrésses them using patterns supported by the ISA, and can generate
tile is loaded. The L1 tile of BLAS3 DGEMM is an example of this ~ array-based and pointer-based code.
pattern [42]. .
Third, O(NlogN)-type data flow graphs require depth first °-3:1 Quality of the Generated Codelets
source code scheduling [17]. This utilizes the available registers Below we show the code generated for an 1D Jacobi tile for Intel
most efficiently and the slow-growing reuse help tolerating a lim- SSSE3. The instruction set operates on 4-way 32-bit float vectors
ited amount of register spilling. FFTW’s codelets, and SPIRAL- and supports theal i gnr instruction. For readability we extract
generated fixed-size FFT and DCT kernels as well as, sorting net-the kernel as inline function. In the actual generated code the func-
works are examples of this pattern. tion would be inlined. The example code is a partial tile codelet
that does not have a time loop inside and thus unaligned store-to-

Unaligned vector array scalarization Unaligned load operations ~ l0ad forwarding through unaligned vector array scalarization is not
following aligned store operations are common in stencil-like codes applied. Nevertheless, all unaligned loads have been replaced by
and introduce two performance penalties. Firstly, unaligned loads aligned loads and theal i gnr instruction. The codelet generator
are substantially more expensive than aligned loads, even on theémplements a software pipeline that for every loop iteration of the
latest Intel processors (SandyBridge and Nehalem). Secondly, theunrolled loop loads one SIMD vector, computes one SIMD vec-
read-after-write dependency introduced by an aligned store fol- tor result with two vector adds, one vector multiply and two vector
lowed by an unaligned load that touch an overlapping memory area alignment operations, and stores the result.
is costly as it introduces hard barriers for the compiler to reorder in-——————— cormel (mi2s 1m0, mize 1oL mizs ion) |
structions to hide memory latencies. They also can introduce probt ~retura™_mm mil_ps(_mn set 1 ps (0. 333333333), t
lems in write buffers and store-to-load forwarding hardware and| — -™a¢¢Ps( oAt o 1287 _malionr_epr8(_mcastps_si128(1n0),
reduce the number of registers that can be used. Jﬁﬁgﬁg;gf;jg - est i 128_ps(m_al i gnr__epi 8( _m,cast ps_si 1281 1)
Our codelet generator performs an important optimization to|; = B ' '
eliminate unaligned load operations. It first unrolls the outer (time) | i | acobi1a_ti1e(_mzs *in, _m2srout, int ) {

loop of a stencil to collect the store and load operations from neigh-  —me¢ o, f1. 12763, 14 576, 1707, e, o
boring iterations of the outer loop in the same basic block. Next, for (i=1; i<n-1; i+=20) {

it replaces unaligned loads with aligned loads and in-register per; g i e
mutations (vector shifts). Then, it replaces the ensuing matching t4 = in[i+3]; out[i+2] = kernel (12, 3, t4);
aligned store/load pairs by automatic (register) vector variables, in 118 = in[i+17]; out[i+16] = Kkernel (t16, t17, t18);
effect scalarizing the SIMD vector array. Finally, it performs ISA- 0= Inl1 +19]: out[1 +18] = kornel (110, 19, (0):
specific strength reduction and common subexpression elimination t1 = in[i+20]; out[i+19] = kernel (t18, t0, t1);

on the introduced permutation instructions to minimize their cost.
Often, more than one instruction sequence can be used to imple-
ment the vector shift and carefully choosing the sequences allows Below we show the assembly generated for this function by
to reuse partial results across multiple iterations of the innermost the_Intel C++ compiler 11.1 in 64-bit mode (EM64T), targeting

loop. The result is a large basic block free of unaligned memory & SandyBridge processor supporting the VEX encoding and 3-

accesses and thus free of unaligned read-after-write dependencie%paetrgr??Hgsérr%‘?é?sgzr\{\r’%Sé%%éhg glc()sma?l?ncct) ;dggﬁ‘ziltng encoding and

that would stall the pipeline. The basic block further can take better

advantage of large register files and fully benefits from super-scalafacopi1d tire  proc
out-of-order cores. ; parameter 1(in): rox
; parameter 2(out): rdx
; parameter 3(n): r8d
) ) ) ) ) vmovaps xmml, XMMAORD PTR [rcx]
Alignment versioning On many SIMD ISAs the instructions ymovaps  xmG, XWMAORD PTR [16+rex]
. . . . . . v N
required to shift data within SIMD registers to resolve miss- mov eax, 16
alignment take the shift value as immediate and thus require it tQ o, ;.. ymuabs i XvmoRD b1 (Teeraxeron oo
be a compile-time constant. On other ISAs different instruction se- vealignr xmm, xmi, xms, 4
quences are required for different shift values. The miss-alighmen vpalignr xms, xm8, xmmi, 12
may be introduced through a loop variable or may vary across vadhe e
codelet invocations. Finally, there may be multiple arrays that are mg:s X, X, [X,";";’de] vt
independently misaligned. ... ; about 300 lines of assennfy repeating the last 5 lines
~ When necessary our codelet generator performs code special- vovape S o ARORD BTR. [ 350+ 1 e en
ization with respect to unknown array miss-alignment. The largest 3235;3” xme, xmi, xms, 12
scope within the codelet for which the miss-alignment is constant vaddps  xms, xmm, xm2
(usually either the whole codelet or the outermost loop body) be- s XMORD PR 804+ axerdn] . xmme
comes aswi t ch statement that contains onase for each com- ad rax, 320
bination of miss-alignments. Eaclase contains specialized code i B2.2
that inlines the miss-alignment values and the resulting specific ret
vector shift instruction sequences. The potentia”y |arge code Size _2ilofloatpacket . 287 DD 03eaaaaabH, 03eaaaaabH, 03eaaaaabH, 03eaaaaabH
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_ 256 *A,
__ml28 *A, Ac = A[1], __m256d *A, Ac = _mm56_pernut e2f 128_ps(
Al = _mm_castsi128_ps(_mm alignr_epi8( Ac = _mm256_pernut e2f 128_pd( A[O], A[1], 0x01);
__mi28d *A, Ac = A[1], _mm_castps_si 128(A[0]), A[ 0], A[1], 0x01); Al = _mm256_shuffle_ps(
Al = _mm_shuf _pd(A[0], t2, 0x21), _mm_castps_si 128(Ac), 12)); Al = _mm256_shuffle_pd( _mm256_shuffle_ps(Ac , A[0],
Ar = _mm_shuf_pd(t2, A[2], 0x12); Ar = _mm_castsi128_ps(_mm_alignr_epi8( A[0], Ac, 0x05); 0x1B), Ac, 0xC6);
_mm_cast ps_si 128( Ac) Ar = _me56_shuffle_pd( Ar = _me56_shuffle_ps(Ac,
_mm_castps_si 128(A[2]), 4)); Ac, A[1], 0x05); _mm256_shuffle_ps( A[1],
Ac, 0x1B), Ox6E);

Figure 5. Extraction of left-shifted (denoted byl ), centered Ac) and right-shifted &r ) SIMD vectors from three aligned vecto#§0] ,
Al 1], andA[ 2] through permutation instructions. We display the data flow and instructiareseq for shifting on SSE 2-way double and
4-way single, and AVX 4-way double and 8-way single, as supportddtetis SandyBridge processors.

One concern is the large size SSE instructions and decoderaration, and coarse-grain shared-memory parallel execution; (2)
limitations, however, post-decoder micro-op caches can alleviate for each full-tile, perform loop transformation to expose maximal
this problem on high performance processors. In Sec. 6 we will codelets, and perform abstract SIMD vectorization; (3) for each
analyze the tile performance for a collection of kernels, machines codelet found, perform ISA-specific SIMD synthesis. This frame-

and vector lengths. work is implemented using PolyOpt/C, a polyhedral compiler based
on the LLNL ROSE infrastructure [2]. The SIMD codelet generator
5.4 Cost Model is implemented in the SPIRAL system’s back-end infrastructure. A

Our codelet generator provides a simple cost model for the gener-Web page and codelet generation web service with makefile tie-in
ated codelets to aid codelet (pre-)selection without the need for pro-¢an be found at [3]. On average, our end-to-end framework (not
filing the code. The line codelets are in steady state run cache resi-considering auto-tuning time) takes about 25 seconds to generate
dent (in hot L1 cache). Thus a weighted instruction count is a good @ Program version for benchmarks like Jacobi-2d, laplacian-2d, or
first order metric to predict the relative performance of codelets. correlation; and about 3 minutes for benchmarks like Jacobi-3D,
The metric captures the fact that generated codelets run close td@placian-3D, or doitgen.

the machine peak and this places a cost on every instruction, even . L

if executed in parallel. The metric in particular allows to measure 6-2 Codelet Extraction Statistics

the vectorization overhead (number of arithmetic operations versusTable 1 reports statistics on the ILP scheduling problem developed
number of all operations). By counting source-level SIMD oper- in this paper. We report for some representative benchmarks the
ations like_nm add_ps, _nm sub_ps, and_nmm unpackl o_ps in- number of dependence polyhedra for array references, the total
stead of assembly instructions likevaps, | ea andnov the metric number of schedule coefficient variablgs, the total number of

is more resilient to effects on aggressive superscalar out-of-orderadditional variables inserted to model our problem, the total number
processors like the Intel Core i7. We pick the coefficients for var- of constraints in the system to be solved (this includes the semantics
ious operations to provide a relative ordering that favors cheaper preserving constraints from dependence polyhedra), and the time to
operations over more expensive operations and models the relativeoptimally solve the ILP using PIPLib. More details can be found in
cost of operations in the target micro-architecture. While the met- a technical report [27].

ric cannot predict actual execution times it is sufficient to prune the
search space and find good candidates and aids auto-tuning in the
high-level framework.

Benchmark #deps #refs @ #others #cst. Time(s)

jacobi-2d 20 8 140 486 3559 3.0711

laplacian-2d 20 10 140 502 3591 3.1982

H poisson-2d 32 12 140 674 5277 5.8132

6. Experlmental Results correlation 5 9 70 177 640 0.0428
6.1 Experimentaj Protocol covariance 3 4 70 176 593 0.0415
doitgen 3 4 117 269 911 0.1383

We evaluate our framework on a collection of benchmarks where
the core computational part is a SCoP. Specifically, we experiment Table 1. ILP statistics
with 5 stencil computations that arise in typical image processing

and physical simulation applications, and 3 linear algebra bench-
marks. Problem sizes are selected to be larger than the last level .
cache (LLC) size of 8 MB. Each benchmark is evaluated using 6.3 Tile Codelet Performance

single-precision f(l oat ) and double-precisiond¢ubl e). Experi- Table 2 summarizes the operation count in steady state for the Ja-
ments are performed on an Intel SandyBridge i7-2600K (3.4GHz, 4 cobi kernels. This establishes the performance of the tile codelets in
cores, 32KB L1, 256KB L2, 8MB L3), using either the SSE or AVX a stand-alone fashion. Here each codelet is made L1-resident, and
vector instruction set. The testbed runs a native 64-bit Linux distri- is the result of unroll-and-jamming multiple loops in the codelet,

bution. We use Intel ICC 13.0 withf ast -paral | el -opennp, leading to multi-loop vectorization in practice. We list the theoret-
except for the sequential baseline where we sest . For AVX ical maximum floating-point operations per cycle and the actually
experiments, the flagxAVX is used. measured floating-point operations per cycle for SSE and AVX on

For each benchmark, we apply the following flow: (1) loop the processor described above, and also for a 2.66 GHZ Intel Ne-
transformations for parallel parametric tiling with full-tle sep- halem processor. The SandyBridge processor supports SSE#4.2 an



Problem SandyBridge 3.4 GHz Nehalem 3.3 GHz

SSE 2-way SSE 4-way AVX 4-way AVX 8-way SSE 2-way SSE 4-way
Name + X mem  shft peak meas peak  meas peak  meas peak  meas peak meas peak meas
Jacobi 1D 3pt 2 1 2 1-5 3 25 6 55 4 2.7 8 8.2 3 1.4 6 2.9
Jacobi 2D 5pt 4 1 2 1-5 25 25 5 4.8 5 4.3 10 7.5 25 24 5 24
Jacobi3D 7pt 6 1 2 1-5 2.3 1.2 4.6 4.5 4.6 3.8 9.3 8.9 2.3 11 4.6 4

Table 2. Cost analysis of the tile codelet specifications and performance (fldp)ayn two different machines (Intel SandyBridge Core i7
2600K and Intel Nehalem X5680). We provide operation counts in stetady for adds/subtracts, multiply, vector shifts, loads and stores.

AVX and provides the three-operand VEX encoding for SSE in- must be relatively small for minimizing the peeling overhead. Also,
structions, which results in very compact code. partial tiles have a considerable impact on the FP performance. In
A three-point 1D Jacobi stencil in steady state requires one load, general partial tiles can cause betweedilto 3x slowdown over
one store, two additions, one multiplication and two shift opera- AFT, and they are particularly detrimental for higher dimensional
tions. The SandyBridge processor can transfer 48 bytes/cycle be-iteration spaces (e.g. Jacobi-3D and doitgen). In general, bigger tile
tween the L1 cache and the register file, execute one vector (SSEsizes improve performance but only up to a certain point, as they
or AVX) addition and vector multiplication each cycle and can per- also gradually push more iterations from full tiles into partial tiles,
form one shift/permute operation per cycle. The decoder can de- even reducing the number of tiles that can be executed concurrently.
code 4 to 5 x86 instructions per cycle and caches decoded micro-Finally, the accumulated effect of peeling and partial tiles execution
ops. The hard limiting factor is the two additions needed per stencil can yield between.Zx and 6x slowdown from ATC to FP.
result and thus the maximum performance is 6 flops/cycle for 4-way
single-precision SSE (one addition every cycle and a multiplication
every other cycle). We achieve 5.5 flops/cycle steady-state L1 per-

Benchmark SIMDISA  ATC (sec) AFT(sec) FP (sec)

formance. In the 2D case the maximum is 5 flop/cycle, which we jacobi-2d SSE 0.040 0.046 0.068
hieve. This is a testament to the power of the latest generation of Jacobi-3d N 0458 0504 1113
ac . pov g lig jacobi-2d AVX 0.036 0.054 0.077
Intel processors and shows that our tile codelets are very efficient. jacobi-3d AVX 0.188 0.354 1.062
The table summarizes further results across kernels and ISAs. laplacian-2d SSE 0.046 0.056 0.071
laplacian-3d SSE 0.482 0.538 1.131
6.4 EullP Perf laplacian-2d AVX 0.031 0.042 0.061
. ull Program Feriormance laplacian-3d AVX 0.197 0.373 0.993
One of the key aspects of our framework is the ability to perform poisson-2d SSE 0.051 0.064 0.090
. - . y ke poisson-2d AVX 0.029 0.049 0.075
extensive auto-tuning on a collection of parameters with significant correlation SSE 0.840 0.915 1.179
impact on performance. The two categories of parameters we em- correlation AVX 0.752 0.917 1.139
pirically tune are (1) the tile sizes, so as to partition the computation covariance SSE 0.846 0.922 1.159
in L1-resident blocks; and (2) the unroll-and-jam factor, that affects covariance AVX 0733 0.883 1121
h ber of operations in a codelet. While technically the param- doitgen N 0ot 0353 0.805
the num p . ythe p doitgen AVX 0.158 0.308 0.834

eter space is extremely large, it can be greatly pruned based on a
number of observations. (1) We test tile sizes whose footprint is Table 3. Time breakdown for kernels: All Tile Codelets
L1-cache resident. (2) We set the tile size of the vector dimension (ATC), All Full Tiles (AFT=ATC+Peeling) and Full Program
to be some multiple of the unrolling factor of this loop by the vec- (FP=AFT+Partial Tiles)
tor length, so as to minimize the peeling required for alignment. (3)
We keep only tile sizes where the percentage of total computation
performed by the full tiles is above a given threshold, so as to avoid Overall performance Finally, we report in Table 4 the full-
tile shapes where a significant fraction of the computation is done application performance for the benchmarks. For each benchmark
by partial tiles. For 2D benchmarks we use a threshold of 80%, and x vector ISAx data type, we compare our performance in GF/s to
a threshold of 60% for 3D benchmarks. (4) We unroll-and-jam all that attained by ICC on the input program (both sequentially and
permutable dimensions, using unrolling factors of 1, 2, 4 and 8. Wwith automatic parallelization flags) amfile, the performance of

The auto-tuning is broken into two phases. In the first phase, PTile [5], a state-of-the-art Parallel Parametric Tiling software (tile
approximately 100 tile sizes are tested and the 10 with the most Sizes have been auto-tuned). The performance achieved using only
iteration points in full tiles are selected. This process takes 2-3 the front-end of our framework (transformation for codelet extrac-
minutes. The second phase tests 6-8 codelet optimizations for eacHion) is reported in thePrevect columns, i.e., we restructure the

of the 10 tile sizes, taking about 10-15 minutes. program to expose codelets but simply emit standard C code for the
codelet body and use the C compiler’s vectoris#viD reports the
Time breakdown over full/partial tiles and tile codelets To gain performance achieved by using our ISA-specific SIMD synthesizer

insights into the effectiveness and potential limitations of our on each codelet after codelet extraction.

framework, we first present a breakdown of time expended within We observe very significant performance improvements over
tile codelets, within full tiles, and in partial tiles. Table 3 shows the ICC and PTile, our two reference compilers. Up tobibnprove-
performance comparison using 3 metrie3C, the time spent in ment is achieved using AVX for the covariance benchmark, for in-
all tile codelets;AFT, the time spent in all full tilesfFP, and the stance. We systematically outperform ICC (both with and without
total time of the full program. We make the following observations: auto-parallelization enabled) with our complete framework using
Peeling is the main reason for loss of performance when moving AVX (the SIMD/AVX column) since ICC fails to effectively vec-
from ATC to AFT, and slowdowns can vary betweeti:2 and 2x. torize most of the benchmarks. However, we note that due to the
The fraction of performance loss depends on the vector length andpolyhedral model’s limitation of not allowing explicit pointer man-
unrolling factors used in the FVD. Thus, these two parameters mustagement, the stencil codes have an explicit copy-back loop nest
be tightly coupled with the FVD tile size while remaining tile sizes instead of a pointer flip. We note that the stencil benchmarks are



single double

Benchmark PB Size ICC PTile Prevect SIMD ICC PTile Prevect SIMD
seq par SSE AVX SSE AVX seq par SSE AVX SSE AVX
jacobi-2d 20<200¢ 2.96 3.71 6.24 17.15 13.22 25.39 20.96 179 186 6.25 13.35.8011 17.86  15.72
laplacian-2d 2 200¢  4.30 4.44 6.29 18.7 17.85 24.86 26.57 215 223 6.30 13.19 1313.16.01 18.53
poisson-2d 2x200¢ 4.23 6.68 17.47 1956 14.75 3177 4223 3.08 336 16.86 15.1.31 20.67 29.77
jacobi-3d 20x 256 421 470 3.82 5.38 5.04 3.84 5.53 222 206 401 2.70 2.87 726341
laplacian-3d 2 256 480 544 439 6.13 5.67 6.99 6.26 255 238 458 3.34 3.17 5 4.13.98
correlation 2009 094 081 26.21 1878 19.89 3335 5243 0.64 063 1438 9.56.66 9 21.28 26.29
covariance 200D 097 099 2653 18.70 20.08 3485 5592 0.65 216 1352 9.66.70 9 21.88 27.23
doitgen 258 8.63 856 14.72 3135 30.76 41.63 52.66 485 468 9.14 16.8%.801 26.45 25.96

Table 4. Performance data in GFLOP/s.

severely memory-bandwidth bounded. Although ICC is able to au- ization [31], our proposed work makes also a step forward by doing
tomatically parallelize and vectorize the benchmarks, it is unable (tiled) loop nestvectorization, as codelets embed in their body up
to perform time-tiling on the benchmarks and therefore the mem- to all iterations of the surrounding loops.
ory bandwidth limits the speedup achieved from parallelism. We Program generation (also called generative programming) has
also outperform, usually very significantly, the PTile research com- gained considerable interest in recent years [8, 9, 13, 21, 36].
piler in all but two cases (Jacobi-3D and Laplacian-3D, DP). These The basic goal is to reduce the development, maintenance, and
anomalies are due to our criteria of "good tile sizes” during the analysis of software. Among the key tools for achieving these
auto-tuning phase: tile sizes are selected based on the percentaggoals, domain-specific languages provide a compact representation
of points that will be executed in full tiles vs. partial tiles. There- that raises the level of abstraction for specific problems and hence
fore, a good configuration for our line codelet is not necessarily the enables the manipulation of programs [10, 20, 24, 37]. Our codelet
overall best tile configuration. As explained before, increasing tile generator is an example of such a program generation system.
sizes shift iterations from full to partial tiles (which are slower) and Automating the optimization of performance libraries is the
reduce the number of concurrent tiles down to possibly a single one.goal in recent research efforts on automatic performance tuning,
We also remark that the Prevect performance does not necessarprogram generation, and adaptive library frameworks that can offe
ily follow the vector length (and hence the arithmetic throughput), high performance with greatly reduced development time. Exam-
nor does it necessarily outperform ICC or PTile. One of the main ples include ATLAS [42], Bebop/Sparsity [14, 25], and FFTW [18]
reason is the complexity, in terms of number of basic blocks, of for FFTs. SPIRAL [35] automatically generates highly efficient
the codelets which are generated. By exploiting large tile sizes andfixed-size and general-size libraries for signal processing algo-
unroll-and-jam, codelets with hundreds of blocks are generated andrithms across a wide range of platforms. SPIRAL and FFTW
ICC simply cannot process the loop nest without splitting it, there- provide automatic SIMD vector codelet generation while ATLAS
fore negating the potential benefit of our approach. In general, we utilizes contributed hand-written SIMD vector kernels. While our
have observed that despite being in a form that satisfies the vec-transformation+synthesis approach bears some resemblance with
torizability criteria, the C code generated by our high-level frame- those work, we address a much more general problem which re-
work does not lead to effectively exploited SIMD parallelism by the quires to combine highly complex program transformations — that
compiler, emphasizing the impact from an explicit coupling with a can be modeled effectively only by means of the polyhedral frame-
SIMD synthesizer. In some cases, ICC degrades performance withwork — with ISA-specific code generation.
automatic parallelization, possibly due to inaccurate profitability
models. PTile can also be slower than ICC parallel, due to com- .
plicated loop bound expressions as seen for single precision Jacobfg' Conclusion
and Laplacian 3D. The 3D stencils require a careful balance be- Automatic short-vector SIMD vectorization is ubiquitous in mod-
tween maximization of the size of full tiles for high performance ern production and research compilers. Nevertheless, the task of
of the codelets, and keeping the size small enough to ensure thatautomatically generating effective programs — addressing the data
a high percentage of operations are in full tiles. Other tile shapes locality, coarse-grain and SIMD parallelism challenges — remains
such as diamond tiling [4] may be needed for better performance. only partly solved in the vast majority of cases.
We have made a statement about a viable scheme to achieve
this goal, for a class of programs that arises frequently in compute-
7. Related Work intensive programs. We have isolated and formalized program opti-
Automatic SIMD vectorization has been the subject of intense re- mizations that can be effectively performed by a high-level loop
search in the past decades, i.e. [15, 26, 28, 30, 43]. These worktransformation engine, from those optimizations that can be ef-
are usually focusing on the back-end part, that is the actual SIMD fectively implemented by SIMD code generation. We have used
code generation from a parallel loop [15, 28, 30], or on the high- the power and expressiveness of the polyhedral compilation frame-
level loop transformation angle only [12, 26, 38, 40]. To the best work to formalize a series of scheduling constraints so as to form
of our knowledge, our work is the first to address simultaneously maximalvectorizable codeletsargeting parallelization, data reuse,
both problems by setting a well-defined interface between a pow- alignment, and the stride of memory references in a single com-
erful polyhedral high-level transformation engine and a specialized bined problem. As a result, we have unleashed the power of a cus-
SIMD code generator. Vasilache et al. also integrated SIMD and tom ISA-specific SIMD code synthesizer, which translates those
contiguity constraints in a polyhedral framework, in the R-Stream codelets into very effective (up to near-peak) SIMD execution. We
compiler [40], with similar objectives as ours. However, to the best have demonstrated the power of our approach on a collection of
of our knowledge, they are not considering the coupling of this benchmarks, providing very significant performance improvement
framework with a powerful back-end SIMD code generator as we over an auto-parallelizing production compiler as well as a state-of-
do. Other previous work considered inner- and outer-loop vector- the-art research compiler.



Acknowledgments
The authors acknowledge support by DOE through awards DEDGED33

and DE-SC0008844, NSF through awards 0926688, 111680292127,
by the U.S. Army through contract W911NF-10-1-0004, and bglIBCG.

References

[1] PoCC, the polyhedral compiler collection. http:/p@murceforge.net.
[2] PolyOpt/C. http://hpcrl.cse.ohio-state.edu/wikdex.php/polyopt/c.
[3] www.spiral.net/software/stencilgen.html.

[4] V. Bandishti, I. Pananilath, , and U. Bondhugula. Tilisggncil com-
putations to maximize parallelism. ACM/IEEE Conf. on Supercom-
puting (SC'12)2012.

[5] M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, danfRnujam,
and P. Sadayappan. Parameterized tiling revisited C&O, April
2010.

[6] C. Bastoul. Code generation in the polyhedral model iseedsan you
think. In IEEE Intl. Conf. on Parallel Architectures and Compilation

Techniques (PACT'04pages 7-16, Juan-les-Pins, France, Sept. 2004.

[7] C. Bastoul and P. Feautrier. More legal transformati@amddcality. In
Euro-Par’10 Intl. Euro-Par conference, LNCS 314%$ages 272-283,

Pisa, august 2004.

D. Batory, C. Johnson, B. MacDonald, and D. von Heedelhiéang
extensibility through product-lines and domain-specifitglaages: A
case studyACM Transactions on Software Engineering and Method-
ology (TOSEM)11(2):191-214, 2002.

D. Batory, R. Lopez-Herrejon, and J.-P. Martin. Genegproduct-

lines of product-families. IProc. Automated Software Engineering

Conference (ASER002.

[10] J. Bentley. Programming pearls: little languag€®smmunications of
the ACM 29(8):711-721, 1986.

[11] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappa
practical automatic polyhedral program optimization systen®LDI,
June 2008.

[12] C. Chen, J. Chame, and M. Hall. Chill: A framework for compos
ing high-level loop transformations. Technical Report @8-8USC
Computer Science Technical Report, 2008.

[13] K. Czarnecki and U. Eisenecke&enerative Programming: Methods,
Tools, and ApplicationsAddison-Wesley, 2000.

[14] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. PgtiReVuduc,
C. Whaley, and K. Yelick. Self adapting linear algebra aldpons and
software.Proc. of the IEEE93(2):293-312, 2005.

[15] A. Eichenberger, P. Wu, and K. O’Brien. Vectorizatioor fsimd

architectures with alignment constraints.RhDI, 2004.

[16] P. Feautrier. Some efficient solutions to the affine sakied problem,
part Il: multidimensional time. Intl. J. of Parallel Programming
21(6):389-420, Dec. 1992.

[17] M. Frigo. A fast Fourier transform compiler. PLDI, pages 169-180,
1999.

[18] M. Frigo and S. G. Johnson. The design and implementatfon o
FFTW3. Proc. of the IEEE93(2):216-231, 2005.

[19] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. PareM. Sigler,
and O. Temam. Semi-automatic composition of loop transformations
International Journal of Parallel Programming4(3):261-317, June
2006.

[20] K. J. Gough. Little language processing, an altermativcourses on
compiler constructionSIGCSE Bulletin13(3):31-34, 1981.

[21] GPCE. ACM conference on generative programming and coengon
engineering.

[22] A. Hartono, M. Baskaran, C. Bastoul, A. Cohen, S. Kriasimoorthy,
B. Norris, J. Ramanujam, and P. Sadayappan. Parametric mudti-le
tiling of imperfectly nested loops. IICS, 2009.

8

[9

[23] T. Henretty, K. Stock, L.-N. Pouchet, F. FranchettiRhmanujam,
and P. Sadayappan. Data layout transformation for stengipate-

tions on short simd architectures. BETAPS International Conference
on Compiler Construction (CC'11pages 225-245, Saarbrcken, Ger-

many, Mar. 2011. Springer Verlag.

[24] P. Hudak. Domain specific languages.
request, 1997.

[25] E.-J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimizatib|amework
for sparse matrix kernelnt'l J. High Performance Computing Appli-
cations 18(1), 2004.

[26] K. Kennedy and J. AllenOptimizing compilers for modern architec-
tures: A dependence-based approabtorgan Kaufmann, 2002.

[27] M. Kong, L.-N. Pouchet, and P. Sadayappan. Abstractore8IMD
code generation using the polyhedral model. Technical Ré&jah-
nical Report 4/13-TR08, Ohio State University, Apr. 2013.

[28] S. Larsen and S. P. Amarasinghe. Exploiting superworel lparal-
lelism with multimedia instruction sets. PLDI, 2000.

[29] A. W. Lim and M. S. Lam. Maximizing parallelism and minimign
synchronization with affine transforms. POPL, pages 201-214,
1997.

[30] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorizationrgéileaved
data for simd. IrPLDI, 2006.

[31] D. Nuzman and A. Zaks. Outer-loop vectorization: reedifor short
simd architectures. IRACT, 2008.

[32] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazogatite opti-
mization in the polyhedral model: Part Il, multidimensional tima
PLDI, pages 90-100. ACM Press, 2008.

L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, dnfanujam,
and P. Sadayappan. Combined iterative and model-driven agatiiomn
in an automatic parallelization framework. ACM Supercomputing
Conf. (SC’10) New Orleans, Lousiana, Nov. 2010.

L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, dorRnujam,
P. Sadayappan, and N. Vasilache. Loop transformations: éXigy
pruning and optimization. IROPL, pages 549-562, Austin, TX, Jan.
2011.

M. Puschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,®&hen,

R. W. Johnson, and N. Rizzolo. SPIRAL: Code generation foPDS
transforms.Proc. of the IEEE93(2):232—- 275, 2005.

D. R. Smith. Mechanizing the development of software. InBvoy,
editor, Calculational System Design, Proc. of the InternationamSu
mer School MarktoberdarfNATO ASI Series, 10S Press, 1999.
Kestrel Institute Technical Report KES.U.99.1.

[37] W. Taha. Domain-specific languages. Rroc. Intl Conf. Computer
Engineering and Systems (ICCE2008.

[38] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen.
Polyhedral-model guided loop-nest auto-vectorizatiorPACT, Sept.
2009.

[39] N. Vasilache.Scalable Program Optimization Techniques in the Poly-
hedra Model PhD thesis, University of Paris-Sud 11, 2007.

[40] N. Vasilache, B. Meister, M. Baskaran, and R. Lethirintlscheduling
and layout optimization to enable multi-level vectorizatidn Proc.
of IMPACT’12 Jan. 2012.

[41] Y. Voronenko and M. Bschel. Algebraic signal processing theory:
Cooley-tukey type algorithms for real dftsSlEEE Transactions on
Signal Processing7(1), 2009.

[42] R. C. Whaley and J. Dongarra. Automatically Tuned Linetgebra
Software (ATLAS). InProc. Supercomputingl998. mat h- at | as.
sour cef or ge. net ..

[43] M. J. Wolfe. High Performance Compilers For Parallel Computing
Addison-Wesley, 1996.

Available from autbn

(33]

(34]

[35

[36



