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Abstract
Data locality and parallelism are critical optimization objectives for
performance on modern multi-core machines. Both coarse-grain par-
allelism (e.g., multi-core) and fine-grain parallelism (e.g., vector SIMD)
must be effectively exploited, but despite decades of progress at both
ends, current compiler optimization schemes that attempt to address
data locality and both kinds of parallelism often fail at oneof the three
objectives.

We address this problem by proposing a 3-step framework, which
aims for integrated data locality, multi-core parallelism and SIMD exe-
cution of programs. We define the concept ofvectorizable codelets, with
properties tailored to achieve effective SIMD code generation for the
codelets. We leverage the power of a modern high-level transformation
framework to restructure a program to expose good ISA-independent
vectorizable codelets, exploiting multi-dimensional data reuse. Then,
we generate ISA-specific customized code for the codelets, using a col-
lection of lower-level SIMD-focused optimizations.

We demonstrate our approach on a collection of numerical kernels
that we automatically tile, parallelize and vectorize, exhibiting signifi-
cant performance improvements over existing compilers.

Categories and Subject Descriptors D 3.4 [Programming lan-
guages]: Processor — Compilers; Optimization

General Terms Algorithms; Performance

Keywords Compiler Optimization; Loop Transformations; Affine
Scheduling; Program synthesis; Autotuning

1. Introduction
The increasing width of vector-SIMD instruction sets (e.g., 128 bits
in SSE, to 256 bits in AVX, to 512 bits in LRBni) accentuates the
importance of effective SIMD vectorization. However, despite the
significant advances in compiler algorithms [15, 26, 28, 30, 31, 43]
over the last decade, the performance of code vectorized by current
compilers is often far below a processor’s peak.

A combination of factors must be addressed to achieve very
high performance with multi-core vector-SIMD architectures: (1)
effective reuse of data from cache — the aggregate bandwidth to
main memory on multi-core processors in words/second is far lower
than the cumulative peak flop/second; (2) exploitation of SIMD
parallelism on contiguously located data; and (3) minimization of
load, store and shuffle operations per vector arithmetic operation.
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While hand tuned library kernels such as GotoBLAS address all
the above factors to achieve over 95% of machine peak for spe-
cific computations, no vectorizing compiler today comes anywhere
close. Recent advances in polyhedral compiler optimization [5, 11]
have resulted in effective approaches to tiling for cache locality,
even for imperfectly nested loops. However, while significant per-
formance improvement over untiled code has been demonstrated,
the absolute achieved performance is still very far from machine
peak. A significant challenge arises from the fact that polyhedral
compiler transformations to produce tiled code generally require
auxiliary transformations like loop skewing, causing much more
complex array indexing and loop bound expressions than the orig-
inal code. The resulting complex code structure often leads to in-
effective vectorization by even sophisticated vectorizing compilers
such as Intel ICC. Further, locality enhancing transformations, e.g.
loop fusion, can result in dependences in the innermost loops, in-
hibiting vectorization.

In this paper, we present a novel multi-stage approach to over-
come the above challenges to effective vectorization of imperfectly
nested loops. First, data locality at the cache level is addressed by
generating tiled code that operates on data footprints smaller than
L1 cache. Code within L1-resident tiles is then analyzed to find
affine transformations that maximize stride-0 and stride-1 refer-
ences in parallel loops as well as minimization of unaligned loads
and stores. This results in the decomposition of a L1-resident tile
into codelets. Finally, a specialized back-end codelet optimizer ad-
dresses optimization of register load/store/shuffle operations, max-
imization of aligned versus unaligned load/stores, as well as regis-
ter level reuse. Target-specific intrinsics code is generated for the
codelet by the back-end optimizer.

This paper makes the following contributions. (1) It presents
a novel formalization for an affine loop transformation algorithm
that is driven by the characteristics of codelets.(2) Unlike most
previous approaches that focus on a single loop of a loop-nest
for vectorization, it develops an approach that performs integrated
analysis over a multi-dimensional iteration space for optimizing the
vector-SIMD code. (3) It represents the first demonstration of how
high-level polyhedral transformation technology can be effectively
integrated with back-end codelet optimization technology through a
model-driven approach, with significant performance improvement
over production and research compilers.

This paper is organized as follows. Sec. 2 gives a high-level
overview of our approach, and Sec. 3 defines the concept of vec-
torizable codelets, the interface between a high-level loop transfor-
mation engine and a low-level ISA-specific SIMD code generator.
Sec. 4 details our new framework for automatically extracting max-
imal codelets. Sec. 5 details the framework for ISA-specific SIMD
code generation. Experimental results are presented in Sec. 6, and
related work is discussed in Sec. 7.



2. Overview
The key to our approach to vectorization is a separation of tasks
between a high-level program restructuring stage and an ISA-
specific SIMD code generation stage. High-level program trans-
formation frameworks such as the polyhedral/affine framework
excel at finding loop transformation sequences to achieve high-
level, cost-model-based objectives. Examples such as maximizing
data locality [7], maximizing parallelism (fine-grain or coarse-grain
[11, 16, 29]) and possibly balancing the two [33, 34] illustrate the
ability of the polyhedral framework to aggressively restructure pro-
grams. On the other hand, SIMD-specific concerns such as ISA-
specific vector instruction selection, scheduling, and register pro-
motion have been implemented using frameworks that depart sig-
nificantly from classical loop transformation engines [15, 28, 30].

In this work we formalize the interface between these two opti-
mization stages — the vectorizable codelet: a tile of code with spe-
cific, SIMD-friendly properties. We develop a novel and complete
system to generate and optimize vectorizable codelets.

High-level overview of algorithm The data locality optimization
algorithm in a system like Pluto [11] is geared towards exposing
parallelism and tilability for the outer-most loops first, through
aggressive loop fusion. This is critical for achieving good L1 cache
data locality through tiling, as well as coarse-grained multi-core
parallelization. However, for L1-resident code, those objectives are
often detrimental: for effective exploitation of vector-SIMD ISA’s,
we need inner-most parallel loops, and the addressing of stride
and alignment constraints. Other work has looked at the impact
of unroll-and-jam for SIMD vectorization [12], but they do not
consider the problem of restructuring programs to maximize the
applicability of unroll-and-jam, nor any access stride constraint.

In this work, we develop an integrated system aimed at recon-
ciling the different considerations in optimizing for coarse-grain
parallelism and cache data locality versus effective SIMD vector-
ization. Our end-to-end strategy is as follows.
1. Transform the program for cache data locality (see Sec. 4.2),

using: (1) a model-driven loop transformation algorithm for
maximizing data locality and tilability [11]; (2) a parametric
tiling method to tile all tilable loops found [5]; and (3) an
algorithm to separate partial tiles and full tiles [1].

2. For each full tile, transform it to expose maximal vectorizable
codelets (see Sec. 4), using: (1) a new polyhedral loop trans-
formation algorithm for codelet extraction; (2) unroll-and-jam
along permutable loops to increase data reuse potential in the
codelet(s); and (3) an algorithm for abstract SIMD vectoriza-
tion, addressing hardware alignment issues.

3. For each vectorizable codelet, generate high-performance ISA-
specific SIMD code (see Sec. 5), using a specialcodelet com-
piler akin to FFTW’sgenfft or the SPIRAL system. Further,
use instruction statistics or runtime measurements to autotune
the codelets if alternative implementations exist.

3. Vectorizable Codelets
the original program, which satisfy some specific properties that
enable effective SIMD code to be synthesized for it using an ISA-
specific back-end code generator. In order to illustrate the proper-
ties, we proceed backwards by first describing the process of ab-
stract SIMD vectorization on a code satisfying those properties.

3.1 Abstract SIMD Vectorization

We use the term abstract SIMD vectorization for the generation
of ISA-independent instructions for a vectorizable innermost loop.
The properties to be satisfied by this inner-most loop are summa-
rized in the following definition:

DEFINITION 1 (Line codelet).A line codelet is an affine inner-
most loop with constant trip count such that:
1. there is no loop-carried dependence,
2. all array references are stride-1 (fastest varying array dimen-

sion increments by one w.r.t. the innermost loop) or stride-0 (in-
nermost loop absent from array index expressions),

3. unaligned load/stores are avoided whenever possible.

To illustrate the process of abstract SIMD vectorization, Fig. 1
shows a code example which satisfies the above requirements.
It is the transformed output of a sample full tile by our codelet
exposure algorithm, to be discussed later. Fig. 3 shows its abstract
vector variant, after performing a basic unroll-and-jam as shown
in Fig. 2. The abstract vector code generation involves peeling
the vectorizable loop with scalar prologue code so the first store
(and all subsequent ones) will be aligned moduloV, the vector
length. Similarly, an epilogue with scalar code is peeled off. All
arithmetic operators are replaced by equivalent vector operations,
stride-0 references are replicated in a vector by “splatting”, stride-1
references are replaced by vload/vstore calls, and the vectorized
loop has its stride set to the vector lengthV. The arrays in this
example, and the remainder of this paper, are assumed to be padded
to make each row a multiple of the vector lengthV.

for (i = lbi; i < ubi; ++i)
for (j = lbj; j < ubj; ++j) {

R: A[i-1][j] = B[i-1][j];
S: B[i][j] = C[i]*A[i-1][j];

}

Figure 1. After transfo.
for codelet exposure

for (i = lbi; i < ubi; i += 2)
for (j = lbj; j < ubj; ++j) {

R: A[i-1][j] = B[i-1][j];
S: B[i][j] = C[i]*A[i-1][j];
R: A[i][j] = B[i][j];
S: B[i+1][j] = C[i+1]*A[i][j];

}

Figure 2. After unroll-
and-jam 2×1

for (i = lbi; i < ubi; i += 2)
// Prolog: peel for alignment.
lbj2 = &(A[i-1][j]) % V
for (j = lbj; j < lbj + lbj2; ++j) {

A[i-1][j] = B[i-1][j];
B[i][j] = C[i]*A[i-1][j];

}
// Body: codelet (abstract vectorization)
ubj2 = (lbj2 - ubj) % V
for (j = lbj2; j < ubj - ubj2; j += V) {

vstore(A[i-1][j], vload(B[i-1][j]));
vstore(B[i][j], vmul(vsplat(C[i]),

vload(A[i-1][j]));
vstore(A[i][j], vload(B[i][j]));
vstore(B[i+1][j], vmul(vsplat(C[i+1]),

vload(A[i][j]));
}
// Epilog: peel for multiple of V.
for (j = ubj - ubj2; j < ubj; ++j) {

A[i-1][j] = B[i-1][j];
B[i][j] = C[i]*A[i-1][j];

}

Figure 3. After abstract SIMD vect.

Our objective in this work is to automatically transform full tiles
into code fragments satisfying Definition 1 (i.e., Fig. 1), possibly
interleaved with other code fragments not matching those require-
ments. Each vectorizable inner-loop is avectorizable codelet. We
show in Sec. 4 how to leverage the restructuring power of the poly-
hedral transformation framework to automatically reshape the loop
nests to satisfy the requirements when possible.

3.2 Vectorizable Codelet Extraction

Efficient vector code generation requires to exploit data reuse po-
tential. Specifically, given a program segment that is L1-resident,
we should maximize the potential for register reuse while increas-
ing the number of vector computations in the codelet. To do so we
use register tiling, or unroll-and-jam, which amounts to unrolling
outer loops and fusing the unrolled statements together.

Our framework is well suited to perform this optimization:
the polyhedral framework can restructure a loop nest to maxi-
mize the number ofpermutable loops, along which unroll-and-jam
can be applied. Arbitrarily complex sequences of fusion/distribu-
tion/skewing/shifting may be required to make unroll-and-jam pos-
sible, and we show in Sec. 4 how to automatically generate effec-
tive sequences for a given program to maximizes the applicability
of unroll-and-jam. As a result of our framework, the innermost vec-
torizable loops (the line codelets) will contain an increased number



of vector operations and operands for the ISA-specific synthesizer
to optimize. Definition 2 lists the various optimization objectives
that drive the high-level transformation engine to ensure the cre-
ation of good (i.e. large) candidate vector codelets.

DEFINITION 2 (Maximal Codelet Extraction).Given a program
P, maximal codelets are obtained by applying polyhedral loop
transformations on P to obtain a program P′ such that:
1. the number of innermost loop(s) iterations which are parallel is

maximized;
2. the number of references in P′ which are not stride-0 or stride-1

is minimized;
3. the number of permutable dimensions is maximized.
4. the number of unaligned stores is minimized;
5. the number of unaligned loads is minimized;

In this work, we apply maximal codelet extraction on each full
tile in the program. We then apply unroll-and-jam on all permutable
loops, apply abstract SIMD vectorization on all candidate codelets,
before synthesizing ISA-specific SIMD code for each of them.

4. Framework for Codelet Extraction
We now present our high-level framework to automatically trans-
form the program to extract candidate vectorizable codelets.

4.1 Polyhedral Framework

To meet our goal of effectively transforming a program (region) to
expose maximal codelets, we use a powerful and expressive math-
ematical framework for program representation: the polyhedral
model. In the present work, we leverage recent developments on
expressing various optimization constraints (e.g. loop permutabil-
ity, data reuse, parallelism, etc.) into a single optimization problem
that can then be optimally solved using Integer Linear Program-
ming [34, 39]. We first review the basis of program representation
and optimization in the polyhedral model, using the same notation
as in [34].

Background and program representation The polyhedral frame-
work is a flexible and expressive representation for imperfectly
nested loops with statically predictable control flow. Loop nests
amenable to this algebraic representation are calledstatic control
parts(SCoP) [16, 19], roughly defined as a set of consecutive state-
ments such that all loop bounds and conditional expressions are
affine functions of the enclosing loop iterators and variables that
are constant during the SCoP execution (whose values are unknown
at compile-time). Numerous scientific kernels exhibit those proper-
ties; they are found frequently in image processing filters (such as
medical imaging algorithms) and dense linear algebra operations.

Unlike the abstract syntax trees used as internal representation
in traditional compilers, polyhedral compiler frameworks internally
represent imperfectly nested loops and their data dependence infor-
mation as a collection of parametric polyhedra. Programs in the
polyhedral model are represented using four mathematical struc-
tures: each statement has aniteration domain, each memory ref-
erence is described by an affineaccess function, data dependences
are represented usingdependence polyhedraand finally the pro-
gram transformation to be applied is represented using ascheduling
function.

Iteration domains For all textual statements in the program (e.g.
R andS in Fig. 1) the set of its dynamic instances is described by a
set of affine inequalities. When the statement is enclosed by one or
more loops, all iterations of the loops are captured in the iteration
domain of the statement. Each executed instance of the statement
corresponds to a point in the iteration domain; the coordinate of this
point is defined by the value of the surrounding loop iterators when

the statement instance is executed. Parametric polyhedra are used
to capture loop bounds whose values are invariant through loop
execution but unknown at compilation time. These polyhedra use
parametersin the inequalities defining their faces, and are a natural
extension to standard polyhedra. For instance, in Fig. 1, the iteration
domain ofR is:

DR = {(i, j) ∈ Z
2 | lbi≤ i < ubi∧lbj≤ j < ubj}.

We denote by~xR the vector of the surrounding loop iterators; forR
it is (i, j) and takes values inDR.

Access functions They represent the location of the data accessed
by the statement, in the form of an affine function of the iteration
vector. For each point inDR, the access functionFR

A (~xR) returns the
coordinate of the cell ofA accessed by this instance of the memory
reference. We restrict ourselves to subscripts of the form of affine
expressions which may depend on surrounding loop counters and
global parameters. For instance, the subscript function for the read
referenceA[i-1][j] of statementR is FA

R (i, j) = (i−1, j).

Data dependences The sets of statement instances between which
there is a producer-consumer relationship are modeled as equalities
and inequalities in adependence polyhedron. Dependences are de-
fined at the reference granularity of an array element. If two in-
stances~xR and~xS refer to the same array cell and one of these
references is a write, a data dependence exists between them. To
respect program semantics, the producer instance must be executed
before the consumer instance. Given two statementsR andS, a de-
pendence polyhedron, writtenDR,S, contains all pairs of dependent
instances〈~xR,~xS〉. Multiple dependence polyhedra may be required
to capture all dependent instances, at least one for each pair of array
references accessing an array (scalars being a particular case of ar-
ray). It is possible to have several dependence polyhedra per pair of
textual statements, as they may contain multiple array references.

Program transformation Program transformations in the polyhe-
dral model are represented by a scheduling function. This function
is used to reorder the points in the iteration domain, and the corre-
sponding source code can be generated using polyhedral code gen-
eration [6]. A scheduling function captures, in a single step, what
may typically correspond to a sequence of several tens of basic loop
transformations [19]. It takes the form of a scheduling matrixΘR,
whose coefficients drive the program restructuring to be performed.

DEFINITION 3 (Affine multi-dimensional schedule).Given a state-
ment R, an affine scheduleΘR of dimension m is an affine form of
the d loop iterators (denoted~xR) and the p global parameters (de-
noted~n). ΘR ∈ Z

m×(d+p+1) can be written as:

ΘS(~xR) =







θ1,1 . . . θ1,d+p+1
...

...
θm,1 . . . θm,d+p+1






.





~xR
~n
1





The scheduling functionΘR maps each point inDR to a mul-
tidimensional time-stamp (a vector) of dimensionm. In the trans-
formed code, the instances ofR defined inDR will be executed
in lexicographic order of their associated time-stamp. Multidimen-
sional timestamps can be seen as logical clocks: the first dimension
similar to days (most significant), the next one to hours (less signif-
icant), etc.

The optimization of a full program requires a collection of
affine schedules, one for each syntactic program statement. Even
seemingly non-linear transformations like loop tiling (also known
as blocking) and unrolling can be modeled [19].



4.2 Program Transformation for L1-resident Blocking

Tiling for locality involves grouping points in an iteration space
into smaller blocks (tiles) [43], enabling reuse in multiple direc-
tions when the block fits in a faster level of the memory hierarchy
(registers, L1, or L2 cache). Tiling for coarse-grained parallelism
partitions the iteration space into tiles that may be executed concur-
rently on different processors with a reduced frequency and volume
of inter-processor communication. A tile is atomically executed on
a processor, with communication required only before and after ex-
ecution. The tiling hyperplane method [11] is an effective approach
for tiling of imperfectly nested affine loops. However, it can only
generate tiled code for tile sizes that are fixed at compile-time. Al-
ternatively,parametric tiling[5, 22], used in the present work, en-
ables run-time selection of tile sizes. It has the advantage that tile
sizes can be adapted to the problem size and machine used without
recompiling the code.

The first stage of our optimization flow is as follows. Given an
input program, we first apply a model-driven optimization geared
towards maximizing the applicability of tiling [11]. Then parallel
parametric tiling is applied, followed by full-tile separation. The
process of separating full tiles leads to rectangular blocks of code
whose loop bounds are functions of the tile sizes (which are run-
time parameters). Each full tile is a potential candidate for effec-
tive SIMD execution using the codelet extraction and synthesis ap-
proach detailed below. We note that the codelet extraction and syn-
thesis techniques are not limited to tilable programs. However, in
our experiments in Sec. 6 we use benchmarks which can be pro-
cessed by parallel parametric tiling.

The downside of parametric tiling is the generation of very com-
plex loop bounds for the loops iterating on the various blocks (inter-
tile loops), typically involving complex compositions ofceil(),
f loor() andround() expressions. Current production compilers of-
ten fail to successfully analyze the dependences in such loops, and
therefore are unable to automatically generate the best SIMD code
for the full tiles. This leads to significant performance loss in the
generated program. However, using the information extracted by
the polyhedral compilation framework, full tiles can be manipu-
lated, transformed and vectorized using our proposed approach.

4.3 Convex Set of Semantics-Preserving Transformations

A key reason for the power and effectiveness of the polyhedral
transformation framework is the ability to formulate, with a single
set of (affine) constraints, a set ofsemantics-preserving (affine)
program transformations[34, 39]. An optimization problem whose
solutions are subject to these constraints will necessarily lead to a
semantics-preserving program transformation.

To build such a set of constraints, the reasoning is as follows.
First, we observe that for all pairs of dependent instances〈~xR,~xS〉,
the dependence is strongly satisfied ifΘ(~xR)< Θ(~xS), that is if the
producer is scheduled before the consumer. AsΘ is in practice a
multi-dimensional function, we can more precisely state that the
dependence is strongly satisfied ifΘ(~xR) ≺ Θ(~xS), where≺ is
the lexicographic precedence operator. This can be rewritten as
Θ(~xS)−Θ(~xR) ≻~0. Alternatively, givenΘp, row p of Θ, we have
∀p, Θp(~xS)−Θ(~xR) ≥ δp with δp ∈ {0,1}. We note that once a
dependence has been strongly satisfied at a dimensiond, then it
does not contribute to the semantics constraint and so we have
instead∀p> d, Θp(~xS)−Θp(~xR)≥−∞ (that is, a ”void” constraint
with no impact on the solution space).

The constraints for semantics preservation are summarized in
Def. 4, and are the starting basis for our new optimization algo-
rithm. For each rowp of the scheduling matrixΘ and each de-
pendence polyhedronDR,S, we associate a Boolean decision vari-

ableδDR,S
p ; these decision variables are used to encode semantics-

preserving properties of a schedule so that for each pair of instances
in dependence the source instance will be scheduled necessarily
before the target instance. We bound the coefficients ofΘ to be
in some arbitrary range, so that we can find some arbitrarily large
K ∈ Z such that the form(K.~n+K) is an upper bound of the sched-
ule latency [34], thereforeΘp(~xS)−Θp(~xR)≥−(K.~n+K) is equiv-
alent toΘp(~xS)−Θp(~xR)≥−∞.

DEFINITION 4 (Semantics-preserving affine schedules).Given a
set of affine schedulesΘR,ΘS. . . of dimension m, the program se-
mantics is preserved if the three following conditions hold:

(i) ∀DR,S, ∀p, δDR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δDR,S
p = 1 (1)

(iii) ∀DR,S, ∀p∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈ DR,S, (2)

ΘS
p(~xS)−ΘR

p(~xR)≥−
p−1

∑
k=1

δDR,S

k .(K.~n+K)+δDR,S
p

As Feautrier proposed, the affine form of the Farkas lemma is
used to build the set of all non-negative functions over a polyhedron
[16], a straightforward process as Eq. 2 represents a non-negative
function andDR,S is a polyhedron. As a result, a convex set of
constraints linking the variousθi, j coefficients and theδ variables
is obtained, such that each point in this space is a semantics-
preserving schedule [34].

4.4 Codelet-Specific Cost Functions

We now present the set of additional constraints we use to formu-
late our scheduling optimization problem. The complete schedul-
ing algorithm works in two steps: first we find a schedule for the
program that maximizes parallelism, the number of stride-0/1 ref-
erences, and permutability. Then we apply a second algorithm for
minimizing the number of unaligned load/stores on the transformed
program.

4.4.1 Additional Properties on the Schedule

In the present work, we impose specific properties onΘ: θi, j ∈ N.
Enforcing non-negative coefficients greatly simplifies the process
of finding good schedules. Large coefficients forΘ can lead to
complex code being generated, containing modulo operations [6],
and small values for the coefficients are usually preferred [32].
Our ILP formulation attempts to minimize the value of coefficients,
therefore making them as close to 0 as possible whenθi, j ≥ 0.

In addition, we use the so-called 2d+1 schedule form [19],
which forces the scheduling function to be an interleaving of linear
and constant dimensions. The number of rows ofΘS is set to 2d+1
if S is surrounded byd loops in the original sub-program, and
every odd row ofΘS is made constant (that is,θi, j = 0 for all j
except j = d+n+1). For instance, in this 2d+1 form, the original
schedule of Fig 1 isΘR : (0, i,0, j,0) andΘS : (0, i,0, j,1). Those
are computed simply by building the AST of the sub-program with
loops and statements as nodes, and edges between a parent and its
children in the AST. Edges are labeled by the syntactic order of
appearance of the children, and to compute the original schedule
one simply takes the path from the root to the statement, collecting
the node labels and the edge labels along this path.

While not technically required for this work, the 2d+1 form
provides a standardized notation for the schedules, ensures that at
least one schedule exists in the considered search space (the identity
schedule, as shown above), and tends to simplify the generated
loop bounds when implementing full distribution through the scalar
dimensions.



4.4.2 Minimizing Dependence Distance

The first objective we encode is designed to find solutions with
good data locality. It also helps with other objectives. The mini-
mization finds a function that bounds the dependence distance [11],
for each non-constant scheduling level (the even rows). This func-
tion is a form of the program parameters~n, and requires additional
constraints onΘ: all coefficients associated with the parameters~n
are set to 0. This only removes parametric shifts, and is therefore
not a limiting factor unless there are dependences of parametric dis-
tances in the program, a rare case. This bounding function is defined
as follows, for each rowk of the schedule:

uk.~n+wk ≥ ΘS(~xS)−ΘR(~xR) 〈~xR,~xS〉 ∈ DR,S (3)

uk ∈ N
p,wk ∈ N

Intuitively, the value ofuk.~n+wk is an indicator of an upper
bound on the distance between dependent iterations. To minimize
the distance between dependent iterations, we minimize the value
of uk andwk. If, after minimization,uk.~n+wk = 0, then the depen-
dent iterations are scheduled at exactly the same time for this loop
level, i.e., the loop is parallel.

4.4.3 Maximizing Fine-grain Parallelism

Maximizing fine-grain parallelism requires that no dependences in
the generated code are carried by the innermost loop(s). Feautrier
addressed the problem of maximizing fine-grain parallelism through
an aggressive strategy of strongly satisfying all dependences as
early as possible [16]. We propose a different form: minimization
of the number of dependences to be solved by the schedule di-
mension 2d (e.g., the one corresponding to the inner-most loop),
together with the objective of minimizing the dependence distance
at that level. We use the following optimization objective:

min ∑
DR,S

δDR,S

2d (4)

Indeed, if this sum is equal to 0, and ifu2d.~n+w2d (from the
minimization of the dependence distance at that level) is also equal
to 0, then the inner-most loop is parallel as no dependence is carried
by this loop. Minimizing both objectives at the same time ensures
that we discover inner-most parallel loops whenever possible.

4.4.4 Maximizing Stride-0/1 References

We propose a framework to embed directly, as constraints on the
coefficients ofΘ, the maximization of the number of stride-0/1
references. It is a complex task to model such a constraint as a
convex optimization problem, so that we can use standard solvers
to find coefficients ofΘ. The reader is referred to a technical report
[27] for detailed examples.

Access functions after scheduling In a nutshell, we aim for suf-
ficient conditions for an array reference to be stride-0/1, when the
innermost loop is parallel. These conditions come from properties
of the polyhedral code generation process which builds the ex-
pressions connecting the input iterator symbols (e.g.,i, j) with
the new loop iterators created (e.g.,t2, t4). For instance,ΘR =
(0, i + j,0, j,0) is a valid schedule forR in Fig. 1. Two loops are
created after code generation, and their schedule is given by the
even dimensions ofΘ: t2= i+ j, t4= j. In the accessA[i-1][j],
after loop transformation,i andj are replaced by expressions in
the form of the new loop iteratorst2, t4. This process is done by
constructing a system of equalities between thetX variables and
the original iterators, based on the schedule, and performing Gaus-
sian elimination. Equalities with one original iterator on the left
hand side are then obtained. With the above example, we would get
A[t2-t4-1][t4], which is not a stride-1 reference alongt4, the
inner loop.

Our approach to model sufficient conditions for the stride of a
reference to be 0 or 1 is to reason about the system of equalities built
to create the new references after loop transformations. Specifically,
we want to ensure that the innermost loop iterator (to be vectorized)
appears only in the right-most index function (the Fastest Varying
Dimension, FVD) of an array reference, or does not appear at all in
the reference. Otherwise, the reference is not stride-0/1.

As an illustration of a sufficient condition for stride-1: assuming
the innermost non-constant schedule dimensionp represents a par-
allel loop, then for a reference to be stride-1 it is enough to have (1)
the schedule coefficients for rows less thanp corresponding to the
iterators present in non-FVD functions are non-zero at least once;
(2) for at least one of the iterators present in the FVD function,
the schedule coefficients for rows less thanp corresponding to this
iterator are all zero.

Convex encoding of access stride properties To encode this kind
of property, we resort to two complementary structures in the ILP.
First, a new set of Boolean variablesγi, j is introduced, to help us
model when a schedule coefficientθi, j is 0 or not. There are as
manyγi, j variables as there areθi, j variables, and for each of them
we setγi, j ≤ θi, j . Intuitively, we sum theseγ variables to count
how many schedule coefficients are non-zero. Forγi, j to accurately
capture when a schedule coefficient is non-zero, we maximize∑γR

i, j

so thatγR
i, j is set to 1 as soon asθR

i, j is greater or equal to 1.1

Second, we use an auxiliary representation of the access func-
tions, using a normalized matrixGF for an access functionF . Intu-
itively, it is used to represent which iterators appear in the non-FVD
index functions, and which appear in the FVD with a coefficient of
1. GF has two rows: all iterators appearing in the non-FVD are
represented in the first row, and in the second row iterators appear-
ing in the FVD with a coefficient of 1 are represented. Precisely,
for the access function matrixF of dimensionl × d+ n+ 1, GF

is constructed as follows. (1)GF has 2 rows andd columns. (2)
∀i ∈ {1..l − 1}, ∀ j ∈ {1..d}, if Fi, j 6= 0 thenGF

1, j = 1, GF
1, j = 0

otherwise; (3)∀ j ∈ {1..d}, if Fl , j = 1 thenGF
2, j = 1, GF

2, j = 0 oth-
erwise.

This leads to the following definition [27], wherein besides theγ
variables we also define new Boolean variablesµj

F andν j
F (one pair

per loop surrounding the referenceF), andσF
1 andσF

2 to model this
seemingly non-convex problem in a convex fashion.

DEFINITION 5 (Constraint for Stride-0/1).Given a statement R
surrounded by d loops; a legal scheduleΘR where all loop-carried
dependences have been strongly satisfied before level2d; a memory
reference FAR for an array A of dimension l with stride-0/1 potential;

µj
F , ν j

F , σF
1 andσF

2 , a collection of Boolean decision variables; and
GF the normalized matrix for F. When given semantics-preserving
ΘR with parallel inner-dimension, the following constraints

(

d−1

∑
k=1

g1, j .γ2k, j ≥ g1, j .µ
j
F

)

∧

(

d−1

∑
k=1

g2, j .γ2k, j ≤ (d−1).g2, j .ν
j
F

)

∀ j ∈ {1..d}

(

d

∑
j=1

g1, j .µ
j
F ≥

d

∑
j=1

g1, j .σF
1

)

∧

(

d

∑
j=1

g2, j .ν
j
F ≤

d

∑
j=1

g2, j −σF
2

)

are verified ifσF
1 = 1andσF

2 = 1 (stride-1), or ifσF
1 = 1andσF

2 = 0
(stride-0). Otherwise it is not stride-1/0.

The optimization objective is formulated as follows.

1 As we perform lexicographic optimization, we can place this maxi-
mization as the very last optimization objective to not disrupt the actual
performance-driven optimization objectives.



DEFINITION 6 (Maximization of Stride-0/1 References).The num-
ber of non-stride-0/1 references is minimized by encoding, for each
memory reference F in the program, the constraints of Def. 5, and
optimizing the following objectives:

max∑
F

σF
1 , max∑

F
σF

2

Example To illustrate the above definitions, Fig. 4 shows how
they are applied on a simple program with a single reference. The
stride optimization objectives yield the optimum value ofσ1 = 1
and σ2 = 1. σ1 = 1 implies thatµ2 = 1, which in turn makes
γ2,2 = 1. Thus, in the final scheduleθ2,2 ≥ 1. σ2 = 1 forcesν1 = 0,
which propagates and setsγ2,1 = 0. In the final schedule,θ2,1 = 0
andθ2,2 ≥ 1. This corresponds to making the loopj the outer loop.

for (i = 0; i < M; ++i)
for (j = 0; j < N; ++j)

A[j][i] = 0;
G=

[

0 1
1 0

]

0·µ1+1·µ2 ≥ (0+1) ·σ1 1·ν1+0·ν2 ≤ 1−σ2

0· γ2,1 ≥ 0·µ1 1· γ2,1 ≤ 1·ν1

1· γ2,2 ≥ 1·µ2 0· γ2,2 ≤ 0·ν2

Figure 4. Example of stride-0/1 constraints

4.4.5 Maximizing Permutability

Our approach to maximize permutability is to add constraints to
capture level-wide permutability [11], and maximizing the number
of such dimensions. We first recall the definition of permutable
dimensions.

DEFINITION 7 (Permutability condition).Given two statements
R,S. Given the conditions for semantics-preservation as stated by
Def. 4. Their schedule dimensions are permutable up to dimension
k if in addition:

∀DR,S, ∀p∈ {1, . . . ,k}, ∀〈~xR,~xS〉 ∈ DR,S,

ΘS
p(~xS)−ΘR

p(~xR)≥ δDR,S
p (5)

Enforcing this constraint on all schedule dimensions may lead
to an empty solution set, if not all dimensions are permutable. So,
we need to relax this criterion in order to capturewhenit is true,
while not removing schedules from the solution set. We start by

introducing Boolean decision variables,ρDR,S
p , i.e., oneρ variable

perδ variable, and setδDR,S
p ≥ ρDR,S

p . These variables, when set to 1,
will make Eq. (2) equal to Eq. (5), and will not impact the solution
set when set to 0. This is achieved by replacing Eq. (2) by:

ΘS
p(~xS)−ΘR

p(~xR)≥−
p−1

∑
k=1

(δDR,S

k −ρDR,S

k ).(K.~n+K)+δDR,S
p

When a dependence has been previously satisfied (δDR,S
p = 1 for

somep), instead of nullifying the legality constraint at subsequent
levels, we will attempt to maximize the number of cases where
Eq. (5) holds, with the following optimization objective for a given
dimensionp:

max∑
DR,S

ρDR,S
p

We note that asδ andρ variables are connected by an inequality,
maximizingρ variables implicitly forces the strong satisfaction of
dependences as early as possible.

4.5 Putting It All Together

The above constraints are all embedded into a single optimiza-
tion problem, containing numerous Boolean decision variables, as
well as the schedule coefficients for all statements. We combine
all our optimization objectives into a single optimization problem
that is solved by Integer Linear Programming, by finding the lex-
icographically smallest point in the space. The order of the opti-
mization objectives determines which objective will be maximal-
ly/minimally solved first, with succeeding objectives being opti-
mally solved given the max/min solution of the previous objectives.
Our combined problemP is:

P :







min ∑
DR,S

δDR,S

2d , min u2d.~n+w2d, max∑
F

σF
1 , max∑

F
σF

2 ,

∀k max∑
DR,S

ρDR,S

k , ∀k 6= 2d min uk.~n+wk, max∑
i, j

γi, j







There may still be multiple solutions to this optimization prob-
lem, each satisfying the criteria for extraction of maximal codelets
as per Def. 2. While technically enumerating all optimal solutions
should be performed for best performance, in practice we limit our-
selves to the lexicographically smallest solution of the above prob-
lem. The resulting schedule is then applied to the program, poly-
hedral code generation is performed, and candidate codelets are
detected on the generated code (all parallel innermost loops with
only stride-0/1 references are candidate codelets). Those candidate
codelets are the input to the second stage of our optimization frame-
work, which performs retiming+skewing of statements to minimize
the number of unaligned load/stores. In addition, permutable loops
are detected through dependence analysis on the generated code,
and are marked as candidate loops for unroll-and-jam.

4.6 Minimizing Unaligned Stores and Loads

The final stage of our method to extract valid candidate codelets
for ISA-specific SIMD synthesis is to minimize the number of un-
aligned stores and loads in each candidate codelet found by the pre-
vious loop transformation step. Despite the fact that hardware align-
ment constraints are usually dealt with at a lower compilation level
[15], this task should more naturally belong to the high-level trans-
formation engine, where multidimensional loop transformations as
well as precise array dataflow analysis can be performed.

To achieve this objective, we perform a combination ofstate-
ment retimingat the codelet level, and additional loop skewing for
the unroll-and-jammed loops. Intuitively, we ‘shift’ statements in
the codelet such that (when possible) all array elements which are
referenced by the vectorizable loop become aligned if the first el-
ement being referenced by the loop is aligned. Previous work by
Henretty et al. [23] develops a complete framework for statement
retiming so as to minimize stream alignment conflict on innermost
vectorizable loops. Our candidate codelets fit their definition of vec-
torizable loops, and to find the relevant retiming factor for our op-
timization purpose, we use a slightly adapted version of that algo-
rithm. The main difference is that we add an additional scalar quan-
tity to the shifts found by their algorithm so that stores to different
arrays need the same iteration peeling quantity to ensure alignment
with the technique shown in Sec. 3.1. This is not strictly necessary,
but simplifies the code generation and can reduce the number of
peeled iterations in the scalar prologue/epilogue codes.

Finally, we need to take care of alignment properties in case of
unroll-and-jam of the loops. For this purpose, we resort to skewing
the unroll-and-jammable loops by a positive factor, so that the array
index expression along the FVD is a multiple of the vector length.
Such transformation is always legal, as a positive skew cannot



change the dependence direction. As an illustration, for a Jacobi-
2D example the access function after parametric tiling and full tile
extraction, but before retiming is of the formA[-2t+i][-2t+j].
AssumingV = 4, we apply an additional skew by 2 to unroll-
and-jam alongt, to getA[-4t+i][-4t+j]. In this manner, when
unrolling by any factor alongt and jamming inj, references will
still be vector-aligned inj.

In summary, to minimize store/load alignment even in the pres-
ence of unroll-and-jam, for each candidate codelet we compute an
ad-hoc polyhedral transformation made only of shifts and skews,
and apply this transformation using a polyhedral code generator.
The resulting codelet is then transformed to abstract vector code
using the technique depicted in Sec. 3.1, creating valid inputs to the
next optimization stage: ISA-specific SIMD synthesis of vectoriz-
able codelets, as detailed in Sec. 5.

5. ISA-specific SIMD Generation
In this section we discuss the back-end compilation step that trans-
lates pre-vectorized code into machine-specific high-performance
code. The final high-performance code is structurally similar to the
popular auto-tuning package FFTW [18], the auto-tuning BLAS
package ATLAS [42], and general-size auto-tuning libraries gen-
erated by SPIRAL [35, 41]: the main work is performed in small,
highly optimized code blocks called codelets, which are automat-
ically generated. A higher-level approach (the polyhedral frame-
work to parallelization) breaks down the bigger computation into a
skeleton that performs all the book-keeping and calls the codelets
appropriately. The first important question is how to restructure the
computation to enable the utilization of efficient codelets, which we
discuss in Sec. 4. The remaining problem to solve is how to compile
codelet specifications into highly efficient code, a problem similar
to the role ofgenfft [17] in FFTW.

5.1 Overview

Our line codelet generator takes as input a specification of the tile
code in a LISP-like intermediate representation (a one-to-one trans-
lation is systematically possible from our abstract SIMD form to
this LISP-like form) that captures the necessary amount of informa-
tion needed to generate highly efficient SIMD code. The representa-
tion is designed to convey everything that is known by construction
(alignments, loop trip count properties, aliasing, etc.) without over-
specifying the problem. Our codelet generator then performs vari-
ous platform independent transformations such as common subex-
pression elimination (CSE), array scalarization and strength reduc-
tion. Furthermore more advances optimizations such as converting
unaligned loads into aligned loads or ISA-specific strength reduc-
tion and pattern transformation are performed. Loops are unrolled
in a reuse-conscious way that depends on the problem type. The
output of the codelet generator is highly optimized sequential C
code augmented by ISA-specific intrinsics. The code contains well-
shaped simple loops, large basic blocks in single static assignment
(SSA) form, easily analyzable array index expressions, and explicit
SIMD vector instructions. This code is finally compiled with the
target vendor compiler.

5.2 Line Codelet Specification

The input to our codelet generator is a program in a LISP-like
code representation. The representation enables SIMD architecture-
independent meta programs that construct architecture specific in-
stances when instantiated. Only the information needed for per-
forming the operation is captured in the abstraction, details regard-
ing the hardware and the exact calling convention for the SIMD in-
trinsics are abstracted away using vector primitives that have a type
and a length. During the code generation and optimization process

the codelet generator will translate the polymorphic vector opera-
tions to their exact implementation according to the targeted plat-
form and compiler.

The input language expresses the following operations in an
ISA-independent way: 1) loads and stores that are guaranteed to
be naturally aligned (e.g, in 128-bit SSE a 128-bit vector load for
which the start address is 16-byte aligned), 2) vector splats and
compile-time constants, 3) unaligned loads and stores and their
displacement loop-carried or constant displacement modulo vec-
tor length, 4) in-register transposes across 2, 4,. . . ,V registers (in-
cluding pack/unpack and interleave/deinterleave), and 5) in-register
partial and full reductions (e.g., horizontal adds or a dot-product in-
struction).

We show an illustrative example that is generated by the pre-
vectorization stage below. The SIMD tile meta-program is repre-
sented as a tree data structure, using standard C-like commands
(decl for variable declarations,loop for for loops,assign for
assignments, etc.). Multi-dimensional array access is directly sup-
ported (sv_nth2D_addr), and the meta-program aspect can be seen
in expressions likeisa.vload andisa.vloadu (aligned and un-
aligned load instruction in the current SIMD ISA passed into the
meta-program throughisa). SSA code is supported by constructing
“fresh” variables. The input language including meta-programming
capabilities is extensible and new primitives needed by new types of
kernels or new vector ISAs can be added easily. Our example show
an editorially simplified input to the codelet generator specifying
a 2D Jacobi SIMD vector line codelet. The full example contains
more annotations attached to the variables.

Jacobi2D_tile := isa ->
let(range0 := var.fresh_t(TInt), ...,

vreg0 := var.fresh_t(isa.vtype),...,
func(TInt, "jacobi2d_tile",[loop_bound_aligned_1 ,

loop_bound_aligned_2 , c4, c6, shift_0 , shift_1 , local_c8 , B, A],
decl([range0 ,k0,c8,vreg0 ,vreg1 ,vreg2 ,vreg3 ,...],
chain(
...
assign(vreg1 ,isa.vload(sv_nth2D_addr(A,add(mul(V(-2),

c4),c6),sub(add(mul(V(-2),c4),c8),1),n,1))),
assign(vreg2 ,isa.vloadu(sv_nth2D_addr(A,add(mul(V(-2),

c4),c6),sub(sub(add(mul(V(-2),c4),c8),1),1),n,1))),
...
assign(vreg0 ,mul(0.200000,add(add(add(add(vreg1 ,

vreg2),vreg3),vreg4),vreg5))),
...
assign(deref(tcast(TPtr(datatype),sv_nth2D_addr(A,add(
add(mul(V(-2),c4),c6),sub(0,1)),add(add(mul(V(-2),c4),
add(c8,sub(shift_0 ,shift_1))),sub(0,1)),n,1))),vreg6)

))
));

5.3 Code Generation and Optimization

Our codelet generator is a full-fledged highly aggressive basic block
compiler with very limited support for loops. It instantiates the
generic tile specification for a particular SIMD ISA and then op-
timizes the resulting code, and outputs a C function with compiler
and architecture specific SIMD intrinsics.

Loop unrolling We aggressively unroll loops to produce large
basic blocks. Modern superscalar out-of-order processors have
huge instruction caches, reorder windows, store-to-load forward-
ing, multiple outstanding loads, and many other architectural fea-
tures that are fully exercised in steady state only by basic blocks
with hundreds of instructions. We convert the massive basic blocks
into single static assignment (SSA) form to enable better register
allocation through the compiler. In addition, unrolling a time loop
by a factor of two allows transparently moving between an input
vector and a temporary space, avoiding extra copy operations.

Loop pipelining and blocking The best loop unrolling strategy
depends on the type of code that is underlying the tile codelet. Our
codelet generator at present supports three patterns:

First, stencil and filter-type data flow graphs require software
pipelining and register rotation. This is either supported in hardware



(as on Itanium) or must be done in software through unrolling and
multi-versioning of variables. Proper loop pipelining achieves the
optimal steady state load/store to computation ratio (e.g., one load,
one store and 3 flops per loop iteration for 1D Jacobi). Jacobi or
wavelet filters are examples of this pattern.

Second, dense linear algebra-type data flow graphs have high
arithmetic intensity. This enables register-level double buffering:
on half of the register file a register tile computation is performed
while on the other half of the register file in parallel the results from
the previous register tile are stored and the data for the new register
tile is loaded. The L1 tile of BLAS3 DGEMM is an example of this
pattern [42].

Third, O(N logN)-type data flow graphs require depth first
source code scheduling [17]. This utilizes the available registers
most efficiently and the slow-growing reuse help tolerating a lim-
ited amount of register spilling. FFTW’s codelets, and SPIRAL-
generated fixed-size FFT and DCT kernels as well as, sorting net-
works are examples of this pattern.

Unaligned vector array scalarization Unaligned load operations
following aligned store operations are common in stencil-like codes
and introduce two performance penalties. Firstly, unaligned loads
are substantially more expensive than aligned loads, even on the
latest Intel processors (SandyBridge and Nehalem). Secondly, the
read-after-write dependency introduced by an aligned store fol-
lowed by an unaligned load that touch an overlapping memory area
is costly as it introduces hard barriers for the compiler to reorder in-
structions to hide memory latencies. They also can introduce prob-
lems in write buffers and store-to-load forwarding hardware and
reduce the number of registers that can be used.

Our codelet generator performs an important optimization to
eliminate unaligned load operations. It first unrolls the outer (time)
loop of a stencil to collect the store and load operations from neigh-
boring iterations of the outer loop in the same basic block. Next,
it replaces unaligned loads with aligned loads and in-register per-
mutations (vector shifts). Then, it replaces the ensuing matching
aligned store/load pairs by automatic (register) vector variables, in
effect scalarizing the SIMD vector array. Finally, it performs ISA-
specific strength reduction and common subexpression elimination
on the introduced permutation instructions to minimize their cost.
Often, more than one instruction sequence can be used to imple-
ment the vector shift and carefully choosing the sequences allows
to reuse partial results across multiple iterations of the innermost
loop. The result is a large basic block free of unaligned memory
accesses and thus free of unaligned read-after-write dependencies
that would stall the pipeline. The basic block further can take better
advantage of large register files and fully benefits from super-scalar
out-of-order cores.

Alignment versioning On many SIMD ISAs the instructions
required to shift data within SIMD registers to resolve miss-
alignment take the shift value as immediate and thus require it to
be a compile-time constant. On other ISAs different instruction se-
quences are required for different shift values. The miss-alignment
may be introduced through a loop variable or may vary across
codelet invocations. Finally, there may be multiple arrays that are
independently misaligned.

When necessary our codelet generator performs code special-
ization with respect to unknown array miss-alignment. The largest
scope within the codelet for which the miss-alignment is constant
(usually either the whole codelet or the outermost loop body) be-
comes aswitch statement that contains onecase for each com-
bination of miss-alignments. Eachcase contains specialized code
that inlines the miss-alignment values and the resulting specific
vector shift instruction sequences. The potentially large code size

blowup is usually no problem given the big instruction cache size
and can be compensated through slightly less aggressive unrolling.

Generic optimizations Finally, the codelet generator applies stan-
dard basic block optimizations used by program generators such as
FFTW’s genfft, SPIRAL and ATLAS. This includes copy propa-
gation, constant folding, common subexpression elimination, array
scalarization, and source code scheduling. The codelet generator
also performs simplification of array indexing expression and ex-
presses them using patterns supported by the ISA, and can generate
array-based and pointer-based code.

5.3.1 Quality of the Generated Codelets

Below we show the code generated for an 1D Jacobi tile for Intel
SSSE3. The instruction set operates on 4-way 32-bit float vectors
and supports thepalignr instruction. For readability we extract
the kernel as inline function. In the actual generated code the func-
tion would be inlined. The example code is a partial tile codelet
that does not have a time loop inside and thus unaligned store-to-
load forwarding through unaligned vector array scalarization is not
applied. Nevertheless, all unaligned loads have been replaced by
aligned loads and thepalignr instruction. The codelet generator
implements a software pipeline that for every loop iteration of the
unrolled loop loads one SIMD vector, computes one SIMD vec-
tor result with two vector adds, one vector multiply and two vector
alignment operations, and stores the result.

__m128 __forceinline kernel(__m128 in0 , __m128 in1 , __m128 in2) {
return _mm_mul_ps(_mm_set1_ps (0.333333333) ,

_mm_add_ps(_mm_castsi128_ps(_mm_alignr_epi8(_mm_castps_si128(in0),
_mm_castps_si128(in1), 4)),

_mm_add_ps(in1 ,_mm_castsi128_ps(_mm_alignr_epi8(_mm_castps_si128(in1),
_mm_castps_si128(in2), 12)))));

}

void jacobi1d_tile(__m128 *in, __m128*out , int n) {
__m128 t0, t1, t2, t3, t4, t5, t6, t7 ,..., t17 , t18 , t19;

t0 = in[0]; t1 = in[1];
for (i=1; i<n-1; i+=20) {

t2 = in[i+1]; out[i+0] = kernel(t0, t1, t2);
t3 = in[i+2]; out[i+1] = kernel(t1, t2, t3);
t4 = in[i+3]; out[i+2] = kernel(t2, t3, t4);
...
t18 = in[i+17]; out[i+16] = kernel(t16 , t17 , t18);
t19 = in[i+18]; out[i+17] = kernel(t17 , t18 , t19);
t0 = in[i+19]; out[i+18] = kernel(t18 , t19 , t0);
t1 = in[i+20]; out[i+19] = kernel(t19 , t0, t1);

}
}

Below we show the assembly generated for this function by
the Intel C++ compiler 11.1 in 64-bit mode (EM64T), targeting
a SandyBridge processor supporting the VEX encoding and 3-
operand instructions. We see the compact addressing encoding and
that on this processor the code looks almost perfect.

jacobi1d_tile PROC
; parameter 1(in): rcx
; parameter 2(out): rdx
; parameter 3(n): r8d

vmovaps xmm1 , XMMWORD PTR [rcx]
vmovaps xmm3 , XMMWORD PTR [16+rcx]
mov r8d , 1
mov eax , 16
vmovaps xmm0 , XMMWORD PTR [_2il0floatpacket .287]

.B2.2:: vmovaps xmm4 , XMMWORD PTR [16+rax+rcx]
vpalignr xmm1 , xmm1 , xmm3 , 4
add r8, 20
vpalignr xmm5 , xmm3 , xmm4 , 12
vaddps xmm2 , xmm3 , xmm5
vaddps xmm5 , xmm1 , xmm2
vmulps xmm1 , xmm0 , xmm5
vmovaps XMMWORD PTR [rax+rdx], xmm1
... ; about 300 lines of assembly repeating the last 5 lines
... ; cycling through the 16 XMM registrer
vmovaps xmm3 , XMMWORD PTR [320+rax+rcx]
vpalignr xmm2 , xmm1 , xmm3 , 12
vaddps xmm2 , xmm1 , xmm2
vaddps xmm5 , xmm4 , xmm2
vmulps xmm2 , xmm0 , xmm5
vmovaps XMMWORD PTR [304+rax+rdx], xmm2
add rax , 320
cmp r8, 401
jl .B2.2
ret

_2il0floatpacket .287 DD 03eaaaaabH ,03eaaaaabH ,03eaaaaabH ,03eaaaaabH
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__m128d *A, Ac = A[1],
Al = _mm_shuf_pd(A[0], t2, 0x21),
Ar = _mm_shuf_pd(t2, A[2], 0x12);

__m128 *A, Ac = A[1],
Al = _mm_castsi128_ps(_mm_alignr_epi8(

_mm_castps_si128(A[0]),
_mm_castps_si128(Ac), 12));

Ar = _mm_castsi128_ps(_mm_alignr_epi8(
_mm_castps_si128(Ac),
_mm_castps_si128(A[2]), 4));

__m256d *A,
Ac = _mm256_permute2f128_pd(

A[0],A[1], 0x01);
Al = _mm256_shuffle_pd(

A[0], Ac, 0x05);
Ar = _mm256_shuffle_pd(

Ac, A[1], 0x05);

__m256 *A,
Ac = _mm256_permute2f128_ps(

A[0],A[1], 0x01);
Al = _mm256_shuffle_ps(

_mm256_shuffle_ps(Ac , A[0],
0x1B), Ac, 0xC6);

Ar = _mm256_shuffle_ps(Ac,
_mm256_shuffle_ps( A[1],

Ac, 0x1B), 0x6E);

Figure 5. Extraction of left-shifted (denoted byAl), centered (Ac) and right-shifted (Ar) SIMD vectors from three aligned vectorsA[0],
A[1], andA[2] through permutation instructions. We display the data flow and instruction sequence for shifting on SSE 2-way double and
4-way single, and AVX 4-way double and 8-way single, as supported onIntel’s SandyBridge processors.

One concern is the large size SSE instructions and decoder
limitations, however, post-decoder micro-op caches can alleviate
this problem on high performance processors. In Sec. 6 we will
analyze the tile performance for a collection of kernels, machines
and vector lengths.

5.4 Cost Model

Our codelet generator provides a simple cost model for the gener-
ated codelets to aid codelet (pre-)selection without the need for pro-
filing the code. The line codelets are in steady state run cache resi-
dent (in hot L1 cache). Thus a weighted instruction count is a good
first order metric to predict the relative performance of codelets.
The metric captures the fact that generated codelets run close to
the machine peak and this places a cost on every instruction, even
if executed in parallel. The metric in particular allows to measure
the vectorization overhead (number of arithmetic operations versus
number of all operations). By counting source-level SIMD oper-
ations like_mm_add_ps, _mm_sub_ps, and_mm_unpacklo_ps in-
stead of assembly instructions likemovaps, lea andmov the metric
is more resilient to effects on aggressive superscalar out-of-order
processors like the Intel Core i7. We pick the coefficients for var-
ious operations to provide a relative ordering that favors cheaper
operations over more expensive operations and models the relative
cost of operations in the target micro-architecture. While the met-
ric cannot predict actual execution times it is sufficient to prune the
search space and find good candidates and aids auto-tuning in the
high-level framework.

6. Experimental Results
6.1 Experimental Protocol

We evaluate our framework on a collection of benchmarks where
the core computational part is a SCoP. Specifically, we experiment
with 5 stencil computations that arise in typical image processing
and physical simulation applications, and 3 linear algebra bench-
marks. Problem sizes are selected to be larger than the last level
cache (LLC) size of 8 MB. Each benchmark is evaluated using
single-precision (float) and double-precision (double). Experi-
ments are performed on an Intel SandyBridge i7-2600K (3.4GHz, 4
cores, 32KB L1, 256KB L2, 8MB L3), using either the SSE or AVX
vector instruction set. The testbed runs a native 64-bit Linux distri-
bution. We use Intel ICC 13.0 with-fast -parallel -openmp,
except for the sequential baseline where we use-fast. For AVX
experiments, the flag-xAVX is used.

For each benchmark, we apply the following flow: (1) loop
transformations for parallel parametric tiling with full-tile sep-

aration, and coarse-grain shared-memory parallel execution; (2)
for each full-tile, perform loop transformation to expose maximal
codelets, and perform abstract SIMD vectorization; (3) for each
codelet found, perform ISA-specific SIMD synthesis. This frame-
work is implemented using PolyOpt/C, a polyhedral compiler based
on the LLNL ROSE infrastructure [2]. The SIMD codelet generator
is implemented in the SPIRAL system’s back-end infrastructure. A
web page and codelet generation web service with makefile tie-in
can be found at [3]. On average, our end-to-end framework (not
considering auto-tuning time) takes about 25 seconds to generate
a program version for benchmarks like Jacobi-2d, laplacian-2d, or
correlation; and about 3 minutes for benchmarks like Jacobi-3D,
laplacian-3D, or doitgen.

6.2 Codelet Extraction Statistics

Table 1 reports statistics on the ILP scheduling problem developed
in this paper. We report for some representative benchmarks the
number of dependence polyhedra for array references, the total
number of schedule coefficient variablesθi, j , the total number of
additional variables inserted to model our problem, the total number
of constraints in the system to be solved (this includes the semantics
preserving constraints from dependence polyhedra), and the time to
optimally solve the ILP using PIPLib. More details can be found in
a technical report [27].

Benchmark # deps # refs #θi, j # others # cst. Time (s)
jacobi-2d 20 8 140 486 3559 3.0711

laplacian-2d 20 10 140 502 3591 3.1982
poisson-2d 32 12 140 674 5277 5.8132
correlation 5 9 70 177 640 0.0428
covariance 3 4 70 176 593 0.0415

doitgen 3 4 117 269 911 0.1383

Table 1. ILP statistics

6.3 Tile Codelet Performance

Table 2 summarizes the operation count in steady state for the Ja-
cobi kernels. This establishes the performance of the tile codelets in
a stand-alone fashion. Here each codelet is made L1-resident, and
is the result of unroll-and-jamming multiple loops in the codelet,
leading to multi-loop vectorization in practice. We list the theoret-
ical maximum floating-point operations per cycle and the actually
measured floating-point operations per cycle for SSE and AVX on
the processor described above, and also for a 2.66 GHZ Intel Ne-
halem processor. The SandyBridge processor supports SSE 4.2 and



Problem SandyBridge 3.4 GHz Nehalem 3.3 GHz

SSE 2-way SSE 4-way AVX 4-way AVX 8-way SSE 2-way SSE 4-way

Name + × mem shft peak meas peak meas peak meas peak meas peak meas peak meas

Jacobi 1D 3pt 2 1 2 1-5 3 2.5 6 5.5 4 2.7 8 8.2 3 1.4 6 2.9
Jacobi 2D 5pt 4 1 2 1-5 2.5 2.5 5 4.8 5 4.3 10 7.5 2.5 2.4 5 2.4
Jacobi 3D 7pt 6 1 2 1-5 2.3 1.2 4.6 4.5 4.6 3.8 9.3 8.9 2.3 1.1 4.6 4

Table 2. Cost analysis of the tile codelet specifications and performance (flop/cycle) on two different machines (Intel SandyBridge Core i7
2600K and Intel Nehalem X5680). We provide operation counts in steadystate for adds/subtracts, multiply, vector shifts, loads and stores.

AVX and provides the three-operand VEX encoding for SSE in-
structions, which results in very compact code.

A three-point 1D Jacobi stencil in steady state requires one load,
one store, two additions, one multiplication and two shift opera-
tions. The SandyBridge processor can transfer 48 bytes/cycle be-
tween the L1 cache and the register file, execute one vector (SSE
or AVX) addition and vector multiplication each cycle and can per-
form one shift/permute operation per cycle. The decoder can de-
code 4 to 5 x86 instructions per cycle and caches decoded micro-
ops. The hard limiting factor is the two additions needed per stencil
result and thus the maximum performance is 6 flops/cycle for 4-way
single-precision SSE (one addition every cycle and a multiplication
every other cycle). We achieve 5.5 flops/cycle steady-state L1 per-
formance. In the 2D case the maximum is 5 flop/cycle, which we
achieve. This is a testament to the power of the latest generation of
Intel processors and shows that our tile codelets are very efficient.
The table summarizes further results across kernels and ISAs.

6.4 Full Program Performance

One of the key aspects of our framework is the ability to perform
extensive auto-tuning on a collection of parameters with significant
impact on performance. The two categories of parameters we em-
pirically tune are (1) the tile sizes, so as to partition the computation
in L1-resident blocks; and (2) the unroll-and-jam factor, that affects
the number of operations in a codelet. While technically the param-
eter space is extremely large, it can be greatly pruned based on a
number of observations. (1) We test tile sizes whose footprint is
L1-cache resident. (2) We set the tile size of the vector dimension
to be some multiple of the unrolling factor of this loop by the vec-
tor length, so as to minimize the peeling required for alignment. (3)
We keep only tile sizes where the percentage of total computation
performed by the full tiles is above a given threshold, so as to avoid
tile shapes where a significant fraction of the computation is done
by partial tiles. For 2D benchmarks we use a threshold of 80%, and
a threshold of 60% for 3D benchmarks. (4) We unroll-and-jam all
permutable dimensions, using unrolling factors of 1, 2, 4 and 8.

The auto-tuning is broken into two phases. In the first phase,
approximately 100 tile sizes are tested and the 10 with the most
iteration points in full tiles are selected. This process takes 2-3
minutes. The second phase tests 6-8 codelet optimizations for each
of the 10 tile sizes, taking about 10-15 minutes.

Time breakdown over full/partial tiles and tile codelets To gain
insights into the effectiveness and potential limitations of our
framework, we first present a breakdown of time expended within
tile codelets, within full tiles, and in partial tiles. Table 3 shows the
performance comparison using 3 metrics:ATC, the time spent in
all tile codelets;AFT, the time spent in all full tiles;FP, and the
total time of the full program. We make the following observations:
Peeling is the main reason for loss of performance when moving
from ATC to AFT, and slowdowns can vary between 1.1× and 2×.
The fraction of performance loss depends on the vector length and
unrolling factors used in the FVD. Thus, these two parameters must
be tightly coupled with the FVD tile size while remaining tile sizes

must be relatively small for minimizing the peeling overhead. Also,
partial tiles have a considerable impact on the FP performance. In
general partial tiles can cause between 1.3× to 3× slowdown over
AFT, and they are particularly detrimental for higher dimensional
iteration spaces (e.g. Jacobi-3D and doitgen). In general, bigger tile
sizes improve performance but only up to a certain point, as they
also gradually push more iterations from full tiles into partial tiles,
even reducing the number of tiles that can be executed concurrently.
Finally, the accumulated effect of peeling and partial tiles execution
can yield between 1.4× and 6× slowdown from ATC to FP.

Benchmark SIMD ISA ATC (sec) AFT (sec) FP (sec)

jacobi-2d SSE 0.040 0.046 0.068
jacobi-3d SSE 0.458 0.514 1.113
jacobi-2d AVX 0.036 0.054 0.077
jacobi-3d AVX 0.188 0.354 1.062
laplacian-2d SSE 0.046 0.056 0.071
laplacian-3d SSE 0.482 0.538 1.131
laplacian-2d AVX 0.031 0.042 0.061
laplacian-3d AVX 0.197 0.373 0.993
poisson-2d SSE 0.051 0.064 0.090
poisson-2d AVX 0.029 0.049 0.075
correlation SSE 0.840 0.915 1.179
correlation AVX 0.752 0.917 1.139
covariance SSE 0.846 0.922 1.159
covariance AVX 0.733 0.883 1.121
doitgen SSE 0.191 0.353 0.865
doitgen AVX 0.158 0.308 0.834

Table 3. Time breakdown for kernels: All Tile Codelets
(ATC), All Full Tiles (AFT=ATC+Peeling) and Full Program
(FP=AFT+Partial Tiles)

Overall performance Finally, we report in Table 4 the full-
application performance for the benchmarks. For each benchmark
× vector ISA× data type, we compare our performance in GF/s to
that attained by ICC on the input program (both sequentially and
with automatic parallelization flags) andPTile, the performance of
PTile [5], a state-of-the-art Parallel Parametric Tiling software (tile
sizes have been auto-tuned). The performance achieved using only
the front-end of our framework (transformation for codelet extrac-
tion) is reported in thePrevect columns, i.e., we restructure the
program to expose codelets but simply emit standard C code for the
codelet body and use the C compiler’s vectorizer.SIMD reports the
performance achieved by using our ISA-specific SIMD synthesizer
on each codelet after codelet extraction.

We observe very significant performance improvements over
ICC and PTile, our two reference compilers. Up to 50× improve-
ment is achieved using AVX for the covariance benchmark, for in-
stance. We systematically outperform ICC (both with and without
auto-parallelization enabled) with our complete framework using
AVX (the SIMD/AVX column) since ICC fails to effectively vec-
torize most of the benchmarks. However, we note that due to the
polyhedral model’s limitation of not allowing explicit pointer man-
agement, the stencil codes have an explicit copy-back loop nest
instead of a pointer flip. We note that the stencil benchmarks are



single double

Benchmark PB Size ICC PTile Prevect SIMD ICC PTile Prevect SIMD

seq par SSE AVX SSE AVX seq par SSE AVX SSE AVX
jacobi-2d 20×20002 2.96 3.71 6.24 17.15 13.22 25.39 20.96 1.79 1.86 6.25 13.35 11.80 17.86 15.72
laplacian-2d 20×20002 4.30 4.44 6.29 18.7 17.85 24.86 26.57 2.15 2.23 6.30 13.19 13.13 16.01 18.53
poisson-2d 20×20002 4.23 6.68 17.47 19.56 14.75 31.77 42.23 3.08 3.36 16.86 15.1911.31 20.67 29.77
jacobi-3d 20×2563 4.21 4.70 3.82 5.38 5.04 3.84 5.53 2.22 2.06 4.01 2.70 2.87 2.67 3.41
laplacian-3d 20×2563 4.80 5.44 4.39 6.13 5.67 6.99 6.26 2.55 2.38 4.58 3.34 3.17 4.15 3.98
correlation 20003 0.94 0.81 26.21 18.78 19.89 33.35 52.43 0.64 0.63 14.38 9.56 9.66 21.28 26.29
covariance 20003 0.97 0.99 26.53 18.70 20.08 34.85 55.92 0.65 2.16 13.52 9.66 9.70 21.88 27.23
doitgen 2564 8.63 8.56 14.72 31.35 30.76 41.63 52.66 4.85 4.68 9.14 16.85 16.80 26.45 25.96

Table 4. Performance data in GFLOP/s.

severely memory-bandwidth bounded. Although ICC is able to au-
tomatically parallelize and vectorize the benchmarks, it is unable
to perform time-tiling on the benchmarks and therefore the mem-
ory bandwidth limits the speedup achieved from parallelism. We
also outperform, usually very significantly, the PTile research com-
piler in all but two cases (Jacobi-3D and Laplacian-3D, DP). These
anomalies are due to our criteria of ”good tile sizes” during the
auto-tuning phase: tile sizes are selected based on the percentage
of points that will be executed in full tiles vs. partial tiles. There-
fore, a good configuration for our line codelet is not necessarily the
overall best tile configuration. As explained before, increasing tile
sizes shift iterations from full to partial tiles (which are slower) and
reduce the number of concurrent tiles down to possibly a single one.

We also remark that the Prevect performance does not necessar-
ily follow the vector length (and hence the arithmetic throughput),
nor does it necessarily outperform ICC or PTile. One of the main
reason is the complexity, in terms of number of basic blocks, of
the codelets which are generated. By exploiting large tile sizes and
unroll-and-jam, codelets with hundreds of blocks are generated and
ICC simply cannot process the loop nest without splitting it, there-
fore negating the potential benefit of our approach. In general, we
have observed that despite being in a form that satisfies the vec-
torizability criteria, the C code generated by our high-level frame-
work does not lead to effectively exploited SIMD parallelism by the
compiler, emphasizing the impact from an explicit coupling with a
SIMD synthesizer. In some cases, ICC degrades performance with
automatic parallelization, possibly due to inaccurate profitability
models. PTile can also be slower than ICC parallel, due to com-
plicated loop bound expressions as seen for single precision Jacobi
and Laplacian 3D. The 3D stencils require a careful balance be-
tween maximization of the size of full tiles for high performance
of the codelets, and keeping the size small enough to ensure that
a high percentage of operations are in full tiles. Other tile shapes
such as diamond tiling [4] may be needed for better performance.

7. Related Work
Automatic SIMD vectorization has been the subject of intense re-
search in the past decades, i.e. [15, 26, 28, 30, 43]. These work
are usually focusing on the back-end part, that is the actual SIMD
code generation from a parallel loop [15, 28, 30], or on the high-
level loop transformation angle only [12, 26, 38, 40]. To the best
of our knowledge, our work is the first to address simultaneously
both problems by setting a well-defined interface between a pow-
erful polyhedral high-level transformation engine and a specialized
SIMD code generator. Vasilache et al. also integrated SIMD and
contiguity constraints in a polyhedral framework, in the R-Stream
compiler [40], with similar objectives as ours. However, to the best
of our knowledge, they are not considering the coupling of this
framework with a powerful back-end SIMD code generator as we
do. Other previous work considered inner- and outer-loop vector-

ization [31], our proposed work makes also a step forward by doing
(tiled) loop nestvectorization, as codelets embed in their body up
to all iterations of the surrounding loops.

Program generation (also called generative programming) has
gained considerable interest in recent years [8, 9, 13, 21, 36].
The basic goal is to reduce the development, maintenance, and
analysis of software. Among the key tools for achieving these
goals, domain-specific languages provide a compact representation
that raises the level of abstraction for specific problems and hence
enables the manipulation of programs [10, 20, 24, 37]. Our codelet
generator is an example of such a program generation system.

Automating the optimization of performance libraries is the
goal in recent research efforts on automatic performance tuning,
program generation, and adaptive library frameworks that can offer
high performance with greatly reduced development time. Exam-
ples include ATLAS [42], Bebop/Sparsity [14, 25], and FFTW [18]
for FFTs. SPIRAL [35] automatically generates highly efficient
fixed-size and general-size libraries for signal processing algo-
rithms across a wide range of platforms. SPIRAL and FFTW
provide automatic SIMD vector codelet generation while ATLAS
utilizes contributed hand-written SIMD vector kernels. While our
transformation+synthesis approach bears some resemblance with
those work, we address a much more general problem which re-
quires to combine highly complex program transformations – that
can be modeled effectively only by means of the polyhedral frame-
work – with ISA-specific code generation.

8. Conclusion
Automatic short-vector SIMD vectorization is ubiquitous in mod-
ern production and research compilers. Nevertheless, the task of
automatically generating effective programs — addressing the data
locality, coarse-grain and SIMD parallelism challenges — remains
only partly solved in the vast majority of cases.

We have made a statement about a viable scheme to achieve
this goal, for a class of programs that arises frequently in compute-
intensive programs. We have isolated and formalized program opti-
mizations that can be effectively performed by a high-level loop
transformation engine, from those optimizations that can be ef-
fectively implemented by SIMD code generation. We have used
the power and expressiveness of the polyhedral compilation frame-
work to formalize a series of scheduling constraints so as to form
maximalvectorizable codelets, targeting parallelization, data reuse,
alignment, and the stride of memory references in a single com-
bined problem. As a result, we have unleashed the power of a cus-
tom ISA-specific SIMD code synthesizer, which translates those
codelets into very effective (up to near-peak) SIMD execution. We
have demonstrated the power of our approach on a collection of
benchmarks, providing very significant performance improvement
over an auto-parallelizing production compiler as well as a state-of-
the-art research compiler.
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