lterative Optimization in the Polyhedral Model:

Part I, Multidimensional Time

2

Louis-Noél Pouchet! Cédric Bastoul! Albert Cohen! John Cavazos

' ALCHEMY group, INRIA Saclay / University of Paris-Sud 11, France
2Dept. of Computer & Information Sciences, University of Delaware, USA

June 9, 2008

ACM SIGPLAN 2008 Conference on .
Programming Languages Design and Implementation
Tucson, Arizona

QIR ARCHITECTURE

Introduction: Situation PLDI'08

Motivation

v

New architecture — New high-performance libraries needed

» New architecture — New optimization flow needed

> Architecture complexity/diversity increases faster than optimization
progress
» Traditional approaches lose performance portability. ..

We want a portable optimization process!

INRIA Saclay / U. of Delaware 2/18

Introduction: The Problem PLDIo8
The Optimization Problem
Architectural Compiler optimization Domain
characteristics interaction knowledge
ALU, SIMD, Caches, ... GCC has 205 passes... Linear algebra, FFT, ...
INRIA Saclay / U. of Delaware 3/18

Introduction: The Problem PLDros

The Optimization Problem

Domain
knowledge

Architectural Compiler optimization
characteristics interaction

ALU, SIMD, Caches, ... GCC has 205 passes...

Linear algebra, FFT, ...

locality improvement,
= vectorization,
parallelization, etc...

INRIA Saclay / U. of Delaware 3/18

Introduction: The Problem PLDros

The Optimization Problem

Domain
knowledge

Architectural Compiler optimization
characteristics interaction

ALU, SIMD, Caches, ... GCC has 205 passes...

Linear algebra, FFT, ...

parameter tuning,
= phase ordering,
etc...

INRIA Saclay / U. of Delaware 3/18

Introduction: The Problem PLDros

The Optimization Problem

Architectural Compiler optimization Domain
characteristics interaction knowledge

ALU, SIMD, Caches, ... GCC has 205 passes... Linear algebra, FFT, ...

pattern recognition,
= hand-tuned kernel codes,
etc...

INRIA Saclay / U. of Delaware 3/18

Introduction: The Problem PLDros

The Optimization Problem

Architectural Compiler optimization Domain
characteristics interaction knowledge

ALU, SIMD, Caches, ... GCC has 205 passes... Linear algebra, FFT, ...

= Auto-tuning libraries

INRIA Saclay / U. of Delaware 3/18

Introduction: The Problem PLDros

The Optimization Problem

Architectural Compiler optimization Domain
characteristics interaction knowledge

ALU, SIMD, Caches, ... GCC has 205 passes... Linear algebra, FFT, ...

In reality, there is a complex interplay between all components

Our approach:
build an expressive
set of program versions

INRIA Saclay / U. of Delaware 3/18

Generating Program Versions: Overview PLDI'08

Iterative Optimization Flow

High-level transformations

Optimization 1 Optimization 2 Optimization N

INRIA Saclay / U. of Delaware 4/18

Generating Program Versions: Overview PLDI'08

Iterative Optimization Flow

Set of
program

versions

A

Program version = result of a sequence of loop transformation

INRIA Saclay / U. of Delaware 4/18

Generating Program Versions: Overview PLDI'08

Iterative Optimization Flow

Set of
program
versions

Program version = result of a sequence of loop transformation

INRIA Saclay / U. of Delaware 4/18

Generating Program Versions: Properties PLDI'08

Set of Program Versions

What matters is the result of the application of optimizations, not the
optimization sequence

All-in-one approach:
» Legality: semantics is always preserved
» Uniqueness: all versions of the set are distinct

» Expressiveness: a version is the result of an arbitrarily complex
sequence of loop transformation

INRIA Saclay / U. of Delaware 5/18

Generating Program Versions: The Representation PLDI'08

The Polyhedral Model in a Nutshell

» Arbitrarily complex sequence of loop transformations are modeled in a
single optimization step: new scheduling matrix

» Granularity: each executed instance of each statement

for (i = ...; i < ...; ++i)
L] oy
0:
for (i = ...; i < ...; ++i)
S2(i);

> First row — all outer-most loops

INRIA Saclay / U. of Delaware 6/18

Generating Program Versions: The Representation PLDI'08

The Polyhedral Model in a Nutshell

> Arbitrarily complex sequence of loop transformations are modeled in a
single optimization step: new scheduling matrix

» Granularity: each executed instance of each statement

for (i = ...; i < ...; ++i)

for (3 = ...; J < ...; ++3)
] SL(L,

(O
_ for (i = ...; i < ...; ++i)
for (3 = ...; J < ...; ++3)
S52(i,3);

» Second row — all next outer-most loops

INRIA Saclay / U. of Delaware 6/18

Generating Program Versions: The Representation PLDI'08

The Polyhedral Model in a Nutshell

> Arbitrarily complex sequence of loop transformations are modeled in a
single optimization step: new scheduling matrix

» Granularity: each executed instance of each statement

for (J = ...; j < ...; ++3)
- n o

for (i = ...; i < ...; ++i)

0: for (j = ...; j < ...; ++3)
s2(i,3);

» Minor change — significant impact

INRIA Saclay / U. of Delaware 6/18

Generating Program Versions: The Representation PLDI'08

The Polyhedral Model in a Nutshell

> Arbitrarily complex sequence of loop transformations are modeled in a
single optimization step: new scheduling matrix

» Granularity: each executed instance of each statement

for (j 0 J < Lo +4])

A o
for (i - . ++i)

for (3 = ...; J < ...; ++3)

]
[
A

S2(4,3);
Transformation Description
reversal Changes the direction in which a loop traverses its iteration range
- skewing Makes the bounds of a given loop depend on an outer loop counter
interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation
fusion Fuses two loops, a.k.a. jamming
] distribution Splits a single loop nest into many, a.k.a. fission or splitting
peeling Extracts one iteration of a given loop
shifting Allows to reorder loops

INRIA Saclay / U. of Delaware 6/18

Generating Program Versions: Contributions PLDI'08

Previous Contributions

Previous work (CGO’07, Part I, One-Dimensional Time):
» Focus on Static Control Parts (SCoP)
» SCoP: Consecutive set of statements with affine control flow

Complete framework for one-dimensional schedules
Efficient search space construction, efficient traversal

» Drawbacks in applicability
» Drawbacks in expressiveness

We previously solved a simpler problem...

INRIA Saclay / U. of Delaware 7/18

Generating Program Versions: Contributions PLDI'08

New Contributions

Dealing with multidimensional schedules:
» Applicability on any Static Control Parts

» Increased expressiveness

» Design of scalable traversal methods
» Dedicated genetic algorithm

» Dedicated heuristic

INRIA Saclay / U. of Delaware 8/18

Generating Program Versions: Looking Into Details PLDI'08

Deeper In The Method

Multidimensional schedules: high expressiveness, complex problem

Space Space
construction Set of traversal
program =>
versions

- combinatorial expression of legality - multiple polytopes to traverse

- heuristic needed: greedy selection of - large and expressive spaces
dependences + ordering (up to 10%9)
(see Some Efficient Solutions to the Affine Scheduling
Problem, Part II: Multidimensional Time, Feautrier, 1992) - partial enumeration (mandatory):

completion mechanism+ subspace partitioning
- Code generation friendly bounds on the
schedule coefficients - shape the space:
optimized polytope projection (required)
+ constrained dynamic scan

INRIA Saclay / U. of Delaware 9/18

Traversing the Search Space: Extensive Analysis PLDI'08

Observations on the Performance Distribution

Performance distribution - 8x8 DCT

16 - Average -
orst for (i = 0; i < M; i++)

14 - for (j = 0; j <M; j++) {
_ tmp[i][j] = 0.0;
T 12t - for (k = 0; k < M; kt+)
g tmp[i] [j] += block[i] [k] =
2 cos1[j][k];
£ }
éz‘i for (i = 0; i < M; i++)
g for (j = 0; j <M; j++) {
s sum2 = 0.0;
& for (k = 0; k < M; kt+)

sum2 += cosl[i][k] * tmp([k][j];
block[i] [j] = ROUND (sum2);

L L L
10 20 30 40 50 60
Point index for the first schedule row

» Extensive study of 8x8 Discrete Cosine Transform (UTDSP)

» Search space analyzed: 66 x 19683 = 1.29 x 10° different legal
program versions

INRIA Saclay / U. of Delaware 10/18

Traversing the Search Space: Extensive Analysis PLDI'08

Performance improvement

Observations on the Performance Distribution

Performance distribution - 8x8 DCT

L L L L
20 30 40 50
Point index for the first schedule row

» Extensive study of 8x8 Discrete Cosine Transform (UTDSP)

» Search space analyzed: 66 x 19683 = 1.29 x 10° different legal
program versions

INRIA Saclay / U. of Delaware 10/18

Traversing the Search Space: Extensive Analysis PLDI'08

Observations on the Performance Distribution

Performance distribution - 8x8 DCT

» best
» average
» worst

Performance improvement

L L L
10 20 30 40 50 60
Point index for the first schedule row

» Take one specific value for the first row
» Try the 19863 possible values for the second row

INRIA Saclay / U. of Delaware 10/18

Traversing the Search Space: Extensive Analysis PLDI'08

Observations on the Performance Distribution

Performance distribution - 8x8 DCT Performance distribution (sorted) - 8x8 DCT
' ' ' I i \ \ \ \ I
Best
16 Average - 16 -
Worst

14 F = 14 -
T 12f - 12} -
£
2
3 1
5
g \
8 08 -
e
§
E
£ 06 - -
< b

04 =
02t -
0
10 20 30 40 50 60 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Point index for the first schedule row Point index of the second schedule dimension, first one fixed

» Take one specific value for the first row
> Try the 19863 possible values for the second row
» Very low proportion of best points: < 0.02%

INRIA Saclay / U. of Delaware 10/18

Traversing the Search Space: Extensive Analysis PLDI'08

Observations on the Performance Distribution

Large performance variation

Performance improvement

10 20 30 40 50 60
Point index for the first schedule row

» Performance variation is large for good values of the first row

INRIA Saclay / U. of Delaware 10/18

Traversing the Search Space: Extensive Analysis PLDI'08

Observations on the Performance Distribution

Performance distribution - 8x8 DCT

! ! ! ! \
Best ——

Average

r erage . Small performance variation
14

Performance improvement
o
&

10 20 30 40 50 60
Point index for the first schedule row

» Performance variation is large for good values of the first row
» It is usually reduced for bad values of the first row

INRIA Saclay / U. of Delaware 10/18

Traversing the Search Space: Extensive Analysis PLDI'08

Scanning The Space of Program Versions

The search space:
» Performance variation indicates to partition the space

» Non-uniform distribution of performance

» No clear analytical property of the optimization function

— Build dedicated heuristic and genetic operators aware of these static
and dynamic characteristics

INRIA Saclay / U. of Delaware 11/18

Traversing the Search Space: Heuristic PLDI'08

Dedicated Heuristic

» Multidimensional version of the heuristic presented in Part |

> Discover 80%+ of the performance improvement in less than 50 runs for
small kernels

» Feedback directed, yet deterministic
» Leverages our knowledge about performance distribution

» Relies on the completion algorithm to instantiate the full version

» But unsatisfactory results for larger programs...

INRIA Saclay / U. of Delaware 12/18

Traversing the Search Space: Genetic Operators PLDI'08

Dedicated GA Operators

Mutation
» Performance distribution is not uniform
> Tailored to focus on the most promising subspaces
» Preserves legality (closed under affine constraints)

Cross-over
» Row cross-over
(—) *
]

» Column cross-over

()

—JRie—)

» Both preserve legality

INRIA Saclay / U. of Delaware 13/18

Traversing the Search Space: Genetic Operators PLDI'08
Dedicated GA Results
GA versus Random - 8x8 DCT Performance distribution (sorted) - 8x8 DCT
.] ' , . . .
16} Random - 16} -
14 b - 14 \ -
£ 12 = E 12 -
H § N
g 1 g 1
g g
£ E e
8§ o8 - g osf -
§ §
g £
é 0.6 - £ 06 -
& & h
0.4 - 04 -
02 - 02 -
° 50 100 150 200 250 300 350 400 450 500 ° o 2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of runs Point index of the second schedule dimension, first one fixed
» GA converges towards the maximal space speedup
INRIA Saclay / U. of Delaware 14/18

Traversing the Search Space: Experimental Results PLDI'08

Experimental Results [1/3]

Performance improvement for AMD Athlon64

17,’ Heuristic — |
: GA = |
€ 1.6
(]
€
2 15
o
o
E 14+t
(0]
o
g 13 -
£
e 12 -
[
o
1.1 -
1 v, Z; 4 £ 4 4 P
% S, 4G G b, %. % 3,
Re %@ e /))d‘,/; ‘9/,3) %, € OE\,)) Q%/_ .
% K © G

baseline: gcc -03 -ftree-vectorize -msse2

INRIA Saclay / U. of Delaware 15/18

Traversing the Search Space: Experimental Results PLDI'08

Experimental Results [2/3]

Performance improvement for ST231

1.35 —
’ Heuristic ——
GA =
1.3
<
£
S 125
>
o
Q.
£ 1.2
[}
2 115
©
£
K] 1.1 -
o}
o
1.05 -
1 4 V) 4 2 P4 % 4, -
[b S 2 Z, Q,
v % T T, e
(’4‘ K 0 ?9@

baseline: st200cc -O3 -OPT:alias=restrict -mauto-prefetch

INRIA Saclay / U. of Delaware 16/18

Traversing the Search Space: Experimental Results PLDI'08

Experimental Results [3/3]

Looking into details (hardware counters+compilation trace):
» Better activity of the processing units

» Best version may vary significantly for different architectures
» Different source code may trigger different compiler optimizations

— Our method is a portable optimization process

INRIA Saclay / U. of Delaware 17/18

Conclusion: PLDI08

Conclusion

v

Scalable algorithms (GA and heuristic) to traverse the space, with
dedicated pruning and search strategies

» Part | + Part II: applicability observed on various compilers (GCC, ICC,
Open64) and architectures (x86_32, x86_64, MIPS32, ST231 VLIW)

» Tunable framework: open to other search space construction
strategies

» Take-home message:

> All-in-one: legality, uniqueness, expressiveness
> Generic and portable approach for high-level transformation selection

INRIA Saclay / U. of Delaware 18/18

Conclusion: PLDI08

Tunuing: Distribute and Tile

v

Focus on fuse/distribute legality affine constraints (presented algorithm
with additional constraints)

v

Use PLuTo as a tiling / parallel backend

\ 4

Driven by program versions

v

Excellent performance gains (research report coming soon...)

INRIA Saclay / U. of Delaware 19/18

	Introduction
	Situation
	The Problem

	Generating Program Versions
	Overview
	Properties
	The Representation
	Contributions
	Looking Into Details

	Traversing the Search Space
	Extensive Analysis
	Heuristic
	Genetic Operators
	Experimental Results

	Conclusion

