
Internship Report, jointly EPITA CSI 2006 and UPS Master 2
(March - September 2006)

Louis-Noël Pouchet
<louis-noel.pouchet@inria.fr>

WHEN ITERATIVE OPTIMIZATION MEETS THE POLYHEDRAL
MODEL: ONE-DIMENSIONAL DATE

Under the direction of A. Cohen & C. Bastoul

INRIA Futurs
Parc Club Orsay Université, ZAC des vignes

4 rue Jacques Monod - Bâtiment G
F-91893 Orsay – France

Tel. +33/0 1 72 92 59 40 – Fax +33/0 1 60 19 69 63
http://www-futurs.inria.fr

Ecole pour l’Informatique et les Techniques Avancées
14-16, rue Voltaire – F-94270 Le Kremlin-Bicêtre cedex – France

Tél. +33 1 44 08 01 01 – Fax +33 1 44 08 01 99
http://www.epita.fr

In collaboration with:

Abstract

Emerging micro-processors introduce unprecedented parallel computing capabilities and
deeper memory hierarchies, increasing the importance of loop transformations in optimizing
compilers. Because compiler heuristics rely on simplistic performance models, and because
they are bound to a limited set of transformations sequences, they only uncover a fraction of
the peak performance on typical benchmarks. Iterative optimization is a maturing framework
addressing these limitations, but so far, it was not successfully applied complex loop transfor-
mation sequences because of the combinatorics of the optimization search space.

We focus on the class of loop transformation which can be expressed as one-dimensional
affine schedules. We define a systematic exploration method to enumerate the space of all legal, distinct
transformations in this class This method is based on an upstream characterization, as opposed
to state-of-the-art downstream filtering approaches. Our results demonstrate orders of magni-
tude improvements in the size of the search space and in the convergence speed of a dedicated
iterative optimization heuristic.

Feedback-directed and iterative optimizations have become essential defenses in the fight
of optimizing compilers fight to stay competitive with hand-optimized code: they freshen the
static information flow with dynamic properties, adapting to complex architecture behaviors,
and compensating for the inaccurate single-shot of model-based heuristics. Whether a single
application (for client-side iterative optimization) or a reference benchmark suite (for in-house
compiler tuning) are considered, the two main trends are:

• tuning or specializing an individual heuristic, adapting the profitability or decision model
of a given transformation;

• tuning or specializing the selection and parameterization of existing (black-box) compiler
phases.

This study takes a more offensive position in this fight. To avoid diminishing returns in tun-
ing individual phases or combinations of those, we collapse multiple optimization phases into
a single, unconventional, iterative search algorithm. By construction, the search space we ex-
plore encompasses all legal program transformations in a particular class. Technically, we consider
the whole class of loop nest transformations that can be modeled as one-dimensional schedules, a
significant leap in model and search space complexity compared to state-of-the-art applications
of iterative optimization. We make the following contributions:

• we statically construct the optimization space of all, arbitrarily complex, arbitrarily long
sequences of loop transformations that can be expressed as one-dimensional affine sched-
ules (using a polyhedral abstraction);

• this search space is built free of illegal and redundant transformation sequences, avoiding
them altogether at the very source of the exploration;

• we demonstrate multiple orders of magnitude reduction in the size of the search space,
compared to filtering-based approaches on loop transformation sequences or state-of-the-
art affine schedule enumeration techniques;

• these smaller search spaces are amenable to fast-converging, mathematically founded op-
eration research algorithms, allowing to compute the exact size of the space and to tra-
verse it exhaustively;

2

• our approach is compatible with acceleration techniques for feedback-directed optimiza-
tion, in particular on machine-learning techniques which focus the search to a narrow set
of most promising transformations;

• our source-to-source transformation tool yields significant performance gains on top of a
heavily tuned, aggressive optimizing compiler.

Eventually, we were stunned by the intricacy of the transformed code, which was far be-
yond our expectations; a confirmation that whatever the performance model and whatever the
expertise of the programmer, designing a predictive model for loop transformation sequences
seems out of reach.

Contents

List of Figures 5

List of Algorithms 6

List of Programs 7

1 Technical Report 9
1.1 Introduction . 9
1.2 Motivation . 10
1.3 Related Work . 11
1.4 Polyhedral Representation of Programs . 12

1.4.1 Static Control Parts . 12
1.4.2 Iteration Domain . 14
1.4.3 Dependence Expression . 14
1.4.4 Scheduling a Program . 15
1.4.5 Transformations in the Polyhedral Model 16

1.5 Affine Monodimensional Schedules . 17
1.5.1 Legal Affine Schedules Set . 17

1.6 Legal Transformation Space Computation . 20
1.6.1 The Algorithm . 20
1.6.2 Discussions . 21

1.7 Polyhedral Projections . 22
1.7.1 Fourier-Motzkin Elimination . 23
1.7.2 Redundancy Reduction . 24
1.7.3 Complexity Issues . 27

1.8 Experimental Results . 28
1.8.1 Experimental Protocol . 29
1.8.2 Legal Transformation Space Exploration 29
1.8.3 Performance Distribution . 30
1.8.4 The Compiler as an Element of the Target Platform 30
1.8.5 Discussions . 34
1.8.6 Heuristic Traversal of the Optimization Space 35

1.9 Future Work . 37
1.9.1 Affine Multidimensional Schedules . 37
1.9.2 Exploration of the Legal Transformation Space 38
1.9.3 Improving the Legal Space Computation 38
1.9.4 Projection Algorithm . 38
1.9.5 Scalability and Integration . 38

3

CONTENTS 4

1.9.6 Parallelism . 38
1.10 Conclusion . 38

Bibliography 41

A Affine Form of Farkas Lemma 45

B Complete Experimental Results 47

Glossary 51

Index 52

List of Figures

1.1 Preprocessing for static control examples . 13
1.2 Possible transformations embedded in a one-dimensional schedule 17
1.3 A compound transformation example . 18
1.4 Search space computation . 22
1.5 Globally redundant constraint . 26
1.6 Results for the matmul example . 30
1.7 Compiler specifics . 31
1.8 Performance distribution for matmul, locality, MVT and Gauss (GCC 4 -O2) 32
1.9 Performance distribution for crout and locality (ICC 9 -fast and GCC 4 -O3) . . 33
1.10 Performance distribution for matmul (ICC 9, options -01, -02, -03 and -fast) . 34
1.11 Experiments summary . 34
1.12 Comparison between random and decoupling heuristics (locality, matmul,

mvt examples) . 36
1.13 Heuristic convergence . 37

A.1 Geometric example of Farkas Lemma . 46

B.1 Search Space Computation . 48
B.2 Search Space Statistics . 49

5

List of Algorithms

1.1 Bounded legal transformation space construction 21
1.2 Fourier-Motzkin elimination . 25
1.3 Modified Fourier-Motzkin elimination . 27

6

List of Programs

1.1 A first example . 10
1.2 A first transformation example . 11
1.3 matvect . 14
1.4 multidim . 16
1.5 locality . 20
1.6 matmul . 30
1.7 crout . 33
1.8 MVT . 34

7

LIST OF PROGRAMS 8

Chapter 1

Technical Report

Abstract

Transformation of programs is an incontrovertible compilation step towards the full mining of a
given architecture capabilities. It is a hard task for a compiler or a compilation expert to find or
apply appropriate and effective transformations to a program, due to the complexity of modern
architectures and to the rigidity of compilers. We propose to transpose the problem in the
polyhedral model, where it is possible to transparently apply arbitrarily complex transformations.
We focus on the class of transformation which can be expressed as affine monodimensional
schedules. We combine the definition of this search space to an iterative compilation method,
and propose a systematic exploration of this space in order to find the best transformation. We
present experimental results demonstrating the feasibility of the proposed method and its high
potential for program optimization.

Keywords

Optimization, iterative compilation, polyhedral model, legal transformation space, affine schedul-
ing, Fourier-Motzkin algorithm.

1.1 Introduction

High level optimization consists in transforming a source program to another source program
in order to take advantage of the architecture capabilities (parallelism, memory hierarchy, etc.).
The privileged target for these optimizations are loop nests, where a high proportion of the
execution time is spent. Typically we look for a sequence of transformations to apply to the
program, in order to produce a more effective transformed version where outputs are identical.

Compilers represent programs as Abstract Syntax Trees. This rigid representation makes
extremely difficult or even impossible the application of complex rescheduling transformations.
De facto compilers do not dispose (or in a limited manner) of powerful high level optimization
tools. We are going to transpose the problem in a formal model where the representation and
application of these complex transformations is natural: the polyhedral model. Once the program
is conveniently transformed, we go back to a syntactic representation thanks to a code generation
phase.

9

1.2 Motivation 10

If the polyhedral model makes easier the application of arbitrarily complex transformations,
finding the best transformation is an extremely complex problem. We propose here a practical
iterative compilation method to find the best transformation within a certain class of schedules.

The contribution is threefold: first, we propose an efficient and mathematically founded
method to compute the set of legal affine monodimensional schedules for a program; second
we propose a short study on the Fourier-Motzkin projection algorithm, to improve its efficiency;
third we provide experimental results to underline the high potential of this iterative compila-
tion method for program optimization.

The manuscript is organized as follows. In Section 1.2 we briefly introduce our motivations
on transformation process and parallelization, and we recall some related work in Section 1.3. In
Section 1.4 we introduce the polyhedral model on which relies our method and then in Section
1.5 and 1.6 we formally introduce our method to compute and bound the legal monodimen-
sional affine scheduling space. In Section 1.7 we discuss a slight reformulation of the Fourier-
Motzkin projection algorithm which propose for an approximately identical complexity to re-
move what we define as local redundancy. Various experimental results are discussed in Section
1.8. Finally, short and long term future works are discussed in Section 1.9 before concluding.

1.2 Motivation

If we consider the following trivial example Program 1.1, we can observe a program doing an
m-relaxation of a vector of size n.

Program 1.1 A first example
do i = 0, m

do j = 0, n
S s(j) = s(j) * 0.25

end do
end do

Let us consider a simple memory hierarchy where there is one cache level of size Sc (on a bi-
processor embedded in some system), and Random Access Memory which has a 5 times lower
access speed than the cache memory. The cycles needed to do the operation S is 1 if the data is
in the cache, and 11 if not (we consider a naive caching algorithm which fills the cache to the
maximum, and then removes elements one by one to replace them with new elements loaded
from the RAM).

A run of our program would last m × n cycles if n ≤ Sc. But if n > Sc, m × (n − Sc)
cache-misses would occur. Plus, the statement S does not take any benefit from this bi-processor
architecture, since no parallelism is expressed here.

Applying a single transformation on this program, by interchanging loops i and j would
drastically reduce the cache-misses, by improving data locality (the “distance” between data
used during the program). Also, a simple dependence analysis tells that the dependences be-
tween each execution of S let the program be parallelizable. The Program 1.2 illustrates this.

On this very simple example, we have manually improved the speed of our program by
dividing its execution time by a factor 2 with parallelism, and removed m × (n − Sc) cache-
misses with locality improvement.

Our goal in this study is to try to automatically discover the best transformation for a given
machine. We will consider the whole set of possibilities to legally reschedule the program with

11 Technical Report

Program 1.2 A first transformation example
doall j = 0, n

do i = 0, m
S s(j) = s(j) * 0.25

end do
end doall

affine monodimensional schedules (see Section 1.4.4), representing the composition of transfor-
mations in the polyhedral model.

We also claim that since processor architectures and optimizing compilers have attained
such a level of complexity that it is no longer possible to model the optimization phase in a soft-
ware, we need to consider them as black boxes. We propose an iterative compilation procedure
to take the benefits from those optimizing compilers, and yet do ourselves a part of the work
by detecting parallelism and enabling transformation compositions that those compilers cannot
model at the moment.

We propose an approach to overcome the impossibility to model this processor plus com-
piler combination, by exhaustively testing an accurate subset of transformations on a given
machine and with a given compiler.

The question is: does the expressiveness and algebraic structure of the polyhedral model
contribute to accelerate the convergence of iterative methods and to discover significant oppor-
tunities for performance improvements ?

1.3 Related Work

The growing complexity of architectures became a challenge for compiler designers to achieve
the peak performance for every program. In fact, the term compiler optimization is now biased
since both compiler writers and users know that those program transformations can result in
performance degradation in some scenarii that may be very difficult to understand [9, 11, 40].

Iterative compilation aims at selecting the best parametrization of the optimization chain,
for a given program or for a given application domain. It typically affects optimization flags
(switches), parameters (e.g., loop unrolling, tiling) and the phase ordering. [1, 3, 9, 11, 25, 31].

This paper studies a different search space: instead of relying on the compiler options to
transform the program, we statically construct a set of candidate program versions, consider-
ing the distinct result of all legal transformations in a particular class. Our method is more
tightly coupled with the compiler transformations and is thus complementary to other forms of
iterative optimization. Furthermore, it is completely independent from the compiler back-end.

Because iterative compilation relies on multiple, costly “runs” (including compilation and
execution), the current emphasis is on improving the profile cost of individual program versions
[19, 25], or the total number of runs, using, e.g., genetic algorithms [24] or machine learning [1,
39]. Our meta-heuristic is tuned to the rich mathematical properties of the underlying polyhedral
model of the search space, and exploits the regularity of this model to reduce the number of
runs. Combining it with more generic machine learning techniques seems promising and is the
subject of our ongoing work.

The polyhedral model is a well studied, powerful mathematical framework to represent loop
nests and to remove the main limitations of classical, syntactic loop transformations. Many
studies have tried to assess a predictive model characterizing the best transformation within
this model, mostly to express parallelism [17, 26] or to improve locality [30, 36, 46]. We present

1.4 Polyhedral Representation of Programs 12

experimental results showing that such models, although associated with optimal strategies,
fail to scratch the complexity of the target architecture and the interactions with the back-end
compiler, yielding far from optimal results even on simple kernels.

Iterative compilation associated to the polyhedral model is not a very common combina-
tion. To the best of our knowledge, only Long et al. tried to define a search space based on
this model [27, 28], using the Unified Transformation Framework [23] and targeting Java appli-
cations. Long’s search space includes a potentially large number of redundant and/or illegal
transformations, that need to be discarded after a legality check, and the fraction of distinct and
legal transformations decreases exponentially to zero with the size of program to optimize. On
the contrary, we show how to build and to take advantage of a search space which, by construc-
tion, contains no redundant and no illegal transformation.

The polyhedral model makes easier the composition of transformations and the legality
check, but it is also possible to characterize the whole set of legal transformations of a program.
When Feautrier defined a method to express the set of legal affine positive monodimensional
schedules, in order to minimize an objective function [16], he implicitly proposed a method
powerful enough to compute and explore the set of legal transformations. The drawbacks were
the limitation to positive schedules and the poor scalability of the method. The expression of the
set of legal schedules we use was first formalized by Bastoul and Feautrier [6, 8] but was never
used for exploration. Feautrier proposed several ways to improve scalability, including his re-
cent paper about modular scheduling [18]; but we propose here a very simple and yet powerful
method to compute this legal transformation set with a full scalability and no criterion on the
dependence graph walk.

1.4 Polyhedral Representation of Programs

In the following section we describe the needed notions of the polyhedral model, its applica-
tions and its essential workaround.

1.4.1 Static Control Parts

The polyhedral model does not aim to model loop nests in general, but a widely used subclass
called Static Control Parts (SCoP). A SCoP is a maximal set of instruction such that:

• the only allowed control structures are the for loops and the if conditionals,

• loop bounds and conditionals are affine functions of the surrounding parameters and the
global parameters.

At first glance this definition may seem restrictive, but many programs which does not re-
spect those conditions directly can thus be expressed as SCoPs. A preprocessing stage (typi-
cally inside a compiler architecture) can ease the automatic discovery of SCoPs. The Figure 1.1,
grabbed from [6], brings out some automatic processing for SCoP discovery.

Another key concept is the idea of static references. A reference is said to be static when it
refers to an array cell by using an affine subscript function that depends only on outer loop
counters and parameters [6]. Pointers arithmetic is thus forbidden, and function calls have to
be inlined (which, as said earlier, is a step that can be done inside a preprocessing stage).

It is worth noting that many scientific codes does respect the SCoP and static reference con-
ditions, at least on hot spots of the code. A survey in [21] brings out the high proportion of SCoP
in these codes. An empiric well-known constatation is that 80% of the processor time is spent on

13 Technical Report

n = 10
do i=1, m

do j=n*i, n*m
S1

do i=1, m
do j=10*i, 10*m

S1

original non-static loop target static loop

(a) Constant propagation example

i = 1
while (i<=m)

S1
i = i + 1

do i=1, m
S1

original non-static loop target static loop

(b) While-loop to do-loop conversion

do i=1, m
do j=i, n, 2

S1

do i=1, m
do jj=1, (n-i+2)/2

S1(j = 2*jj - 2 + i)

original static loop target static loop

(c) Loop normalization example

do i=1, m
function(i,m)

do i=1, m
do j=1, n

S1

original non-static loop target static loop

(d) Inlining example

ind = 0
do i=1, 100

do j=1, 100
ind = ind + 2
a(ind) = a(ind)

+ b(j)
c(i) = a(ind)

do i=1, 100
do j=1, 100

a(200*i+2*j-200)
= a(200*i+2*j-200)

+ b(j)
c(i) = a(200*i)

original non-static loop target static loop

(e) Induction variable substitution example

Figure 1.1: Preprocessing for static control examples

less than 20% of the code, yielding the need to optimize these small code segments. These code
segments are most of the time in loop nests, and we refer to them as kernels. The polyhedral
model aims at modeling these kernels (under the SCoP and static reference conditions), and to

1.4 Polyhedral Representation of Programs 14

be able to perform transformations (meaning changing the execution order but keep the output
order) on these kernels.

1.4.2 Iteration Domain

In the polyhedral model, program information is represented as Z-polyhedra. Let us consider
the example Program 1.3 (matvect).

Program 1.3 matvect

do i = 0, n
R s(i) = 0

do j = 0, n
S s(i) = s(i) + a(i,j) * x(j)

end do
end do

The statement R is surrounded by one loop, with iterator i. Its iteration vector ~xR is (i). The
iterator i takes values between 0 and n, so the polyhedron containing all the values taken by i is
DR : {i | 0 ≤ i ≤ n}. Intuitively, to each point of the polyhedron correspond an execution of the
statement R (an instance), where the loop iterator i has the point coordinates in the polyhedron
as value. With a similar reasoning we can express the iteration domain of statement S: ~xS =

(
i
j

)
.

The polyhedron representing its iteration domain is DS : {i, j | 0 ≤ i ≤ n, 0 ≤ j ≤ n}.
In the remainder of this study, we use matrix form in homogeneous coordinates to express

polyhedra. For instance, for the iteration domain of R, we get :

DR :
[

1
−1

]
. (i) +

(
0
n

)
=
[

1 0 0
−1 1 0

]
.

(
i
n
1

)
≥ ~0

1.4.3 Dependence Expression

In order to describe a program, it is mandatory to know the sequential order of the execution of
instructions. Such an order is constrained by the dependence graph of the program. If we consider
the preceding example, data-flow analysis gives two dependences : statement S depends on R
(R produces values used by S), and we note D1 : RδS; similarly we have D2 : SδS.

The dependence D1 doesn’t occur for each value of ~xR and ~xS , it occurs only when iR = iS .
We can then define a dependence polyhedron, being a subset of the Cartesian product of the
iteration domains, containing all the values of iR, iS and jS for which the dependence exists.
We can write this polyhedron in matrix form (the first line represents the equality iR = iS) :

DD1 :



1 −1 0 0 0

1 0 0 0 0
−1 0 0 1 0

0 1 0 0 0
0 −1 0 1 0
0 0 1 0 0
0 0 −1 1 0


.


iR
iS
jS

n
1

 = 0
≥ ~0

The exact matrix construction of the affine constraints of the dependence polyhedron we use
was formalized by Bastoul and Feautrier [6, 8], and is recalled in the following.

15 Technical Report

Definition 1 A statement R depends on a statement S (written SδR) if there exists an operation S(xS)
and R(xR) and a memory location m such that:

1. S(xS) and R(xR) refer to the same memory location m, and at least one of them writes to that
location,

2. xS and xR belongs to the iteration domain of R and S,

3. in the original sequential order, S(xS) is executed before R(xR).

It is so possible to define a dependence polyhedron with affine (in)equalities, where each (in-
tegral) point of the polyhedron will represent an instance of the statement S and R where the
dependence exists. This polyhedron will be a subset of the Cartesian product of S and R itera-
tion domains. It can be constructed as the following:

1. Same memory location: assuming m is an array location, this constraint is the equality of the
subscript functions of a pair of references to the same array: FS~xS + aS = FR~xR + aR.

2. Iteration domains: both S and R iteration domains can be described using affine inequali-
ties, respectively AS~xS + cS ≥ 0 and AR~xR + cR ≥ 0.

3. Precedence order: this constraint can be separated into a disjunction of as many parts as
there are common loops to both S and R. Each case corresponds to a common loop depth,
and is called a dependence level. For each dependence level l, the precedence constraints
are the equality of the loop index variables at depth lesser to l: xR,i = xS,i for i < l and
xR,l > xS,l if l is less than the common nesting loop level. Otherwise, there is no additional
constraint and the dependence only exists if S is textually before R. Such constraints can
be written using linear inequalities: PS~xS − PR~xR + b ≥ 0.

Thus, the dependence polyhedron for SδR at a given level l and for a given pair of references
p can be described as follows:

DSδR,l,p :

D

(
~xS

~xR

)
+ d =

 FS −FR

AS 0
0 AR

PS −PR

(~xS

~xR

)
+

aS − aR

cS

cR

b

 = 0
≥ ~0

A simple algorithm for dependence analysis (which was implemented in the Candl tool) is
to build the polyhedron DSδR,l,p for each S, R, l and p of the program, and to check if there is
a point in the polyhedron (with for example the PipLib tool [14, 15]). If so, an edge between R
and S is added in the dependence graph, labeled by the DSδR,l,p polyhedron.

1.4.4 Scheduling a Program

A schedule is a function which associates a timestamp to each execution of each statement.
This function is constrained by the dependence graph. Indeed, when there is a dependence
D1 : RδS, the execution date of S has to be greater than the execution date of R, for each value
of ~xS and ~xS where the dependence exists, enforcing S to be executed after R.

Two executions having the same date can be executed in parallel. This date can be either a
scalar (we will talk of monodimensional schedules), or a vector (multidimensional schedules).
A monodimensional schedule, if it exists, express the program as a single sequential loop, possi-
bly surrounding one or more parallel loops. A multidimensional schedule express the program
as one or more nested sequential loops, possibly surrounding one or more parallel loops.

1.4 Polyhedral Representation of Programs 16

In the polyhedral model, we use affine functions to schedule programs. A schedule of an
instruction S will be an affine combination of the iteration vector ~xR and the global parameters
~n. It can be written (T is a constant matrix, and a constant row matrix in the monodimensional
case):

θS(~xS) = T
(

~xS
~n
1

)
Schedules are chosen affine in order to be able to generate the target code, with efficient code

generation algorithms. Plus, this is the only case where we are able to exactly decide the legality
of a transformation [6].

The schedule of a program will be the set of the schedule functions of each statement.
The “original” schedule of a program can be seen as the identity matrix. But we need to be

able to express sequential orders inside loop nests. Let us consider the example Program 1.4.

Program 1.4 multidim

do i = 1, n
do j = 1, n

R x(i) = x(i - 1)
S x(i) = x(i) * 2

end do
end do

If we set for R θR(~xR) =
[

1 0
0 1

]
.
(

i
j

)
and for S θS(~xS) =

[
1 0
0 1

]
.
(

i
j

)
we apply the original

lexicographic order on the iteration domains of R and S but we do not capture the sequentiality
between R and S (R has to be executed before S). The two executions can have the same date,
so they could be executed in parallel, which is false.

A possible and elegant method is to add an extra column in the instance vector (the vec-
tor exactly representing the timestamp of the instance of the instruction) to specify the static
statement ordering inside the loop nest, as described in [21].

But the problem can be solved without this formulation. Instead, if we use θR(~xR) =[
1 0
0 2

]
.
(

i
j

)
and θS(~xS) =

[
1 0
0 2

]
.
(

i
j

)
+
(
0
1

)
we ensure the two instructions will always have

different execution dates and the condition θR(~xR) ≺ θS(~xS) will be respected. In fact, it is
always possible to impose a sequential order for the statements inside a loop nest only with the
T matrix.

The schedule of a program must be legal, that is, must not violate the dependence graph.
The following definition holds:

Definition 2 (Legal schedule) A legal schedule for a given dependence graph labeled by dependence
polyhedra, and a given set of operations Ω is a function θ : Ω → Zn such that:

∀R,S ∈ Ω, ∀ ~xs × ~xR ∈ DRδS

RδS ⇒ θS(~xs) � θR(~xR) + 1

Where n is the dimension of the schedule, � is the lexicographic order on vectors, and 1 is the null-
vector of size n with 1 on its last column.

1.4.5 Transformations in the Polyhedral Model

Finding a legal transformation of a program consists in finding values for the matrix T in order
to let the schedule of the program be legal with respect to the dependence graph.

17 Technical Report

One of the strength of the polyhedral model is to be able to express in a natural way an
arbitrarily complex composition of transformations.

If we consider, for instance, loop permutation (interchange), the transformation (i becomes j
and j becomes i) can be expressed θ

(
i
j

)
=
[

0 1
1 0

]
.
(

i
j

)
. If we consider reversal transformation (i

becomes −i), it can be expressed likewise by θ
(

i
j

)
=
[

−1 0
0 1

]
.
(

i
j

)
.

Composing these two transformations consists in multiplying the two transformation ma-
trices, yielding a unique and identically sized matrix representing the equivalent compound
transformation. The Figure 1.3 illustrate this composition.

Expressing constraints on the coefficients of this matrix is equivalent to express constraints on
the result of a composition of transformations, which can be an arbitrarily complex compound of
transformations.

In this study, we focus on affine one-dimensional schedules: T is a constant row matrix. Such
a representation is much more expressive than sequences of primitive transformations, since a
single one-dimensional schedule may represent a potentially intricate and long sequence of any
of the transformations shown in Figure 1.2.

Figure 1.2: Possible transformations embedded in a one-dimensional schedule
Transformation Description
reversal Changes the direction in which a loop traverses its iteration range
skewing Makes the bounds of a given loop depend on an outer loop counter

interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation
peeling Extracts one iteration of a given loop

index-set splitting Partitions the iteration space between different loops
shifting Allows to reorder loops
fusion Fuses two loops, a.k.a. jamming

distribution Splits a single loop nest into many, a.k.a. fission or splitting

There exist robust and scalable algorithms and tools to reconstruct a loop nest program from
a polyhedral representation (i.e., from a set of affine schedules) [5, 22, 35]. We will thus generate
transformed versions of each SCoP by exploring its legal, distinct affine schedules, regenerating
a loop nest program every time we need to profile its effective performance.

1.5 Affine Monodimensional Schedules

In the following section, we present a method to compute the set of legal monodimensional
schedules of a program, in the polyhedral model.

1.5.1 Legal Affine Schedules Set

Let R and S be two statements. If there is a dependence D1 : RδS, then each (integral) point
of the dependence polyhedron DD1 represents a value of the iteration vectors ~xR and ~xS where
the dependence needs to be satisfied. It is possible to express the set of affine, non-negative
functions over DD1 thanks to the affine form of the Farkas lemma [37] (a geometric intuition of
the Lemma is shown in Appendix A):

1.5 Affine Monodimensional Schedules 18

Interchange Transformation
The transformation matrix is the identity with a permutation of two rows.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

1 2 3

4 5 6

0 1 2 3 4 5 6 i’0
1
2
3

j’

=⇒

264 1 0
−1 0

0 1
0 −1

375 „
i
j

«
+

0B@−1
2

−1
3

1CA ≥ ~0

„
i
′

j
′

«
=

h
0 1
1 0

i „
i
j

« 264 0 1
0 −1
1 0

−1 0

375 „
i
′

j
′

«
+

0B@−1
2

−1
3

1CA ≥ ~0

(a) original polyhedron (b) transformation function (c) target polyhedron
A~x + ~a ≥ ~0 ~y = T~x (AT−1)~y + ~a ≥ ~0

Reversal Transformation
The transformation matrix is the identity with one diagonal element replaced by−1.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

5

4

6 1

2

3

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

264 1 0
−1 0

0 1
0 −1

375 „
i
j

«
+

0B@−1
2

−1
3

1CA ≥ ~0

„
i
′

j
′

«
=

h−1 0
0 1

i „
i
j

« 264−1 0
1 0
0 1
0 −1

375 „
i
′

j
′

«
+

0B@−1
2

−1
3

1CA ≥ ~0

(a) original polyhedron (b) transformation function (c) target polyhedron
A~x + ~a ≥ ~0 ~y = T~x (AT−1)~y + ~a ≥ ~0

Coumpound Transformation
The transformation matrix is the composition of an interchange and reversal

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

3

6

2

5

1

4

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

264 1 0
−1 0

0 1
0 −1

375 „
i
j

«
+

0B@−1
2

−1
3

1CA ≥ ~0

„
i
′

j
′

«
=

h
0 −1
1 0

i „
i
j

« 264 0 −1
0 1
1 0

−1 0

375 „
i
′

j
′

«
+

0B@−1
2

−1
3

1CA ≥ ~0

(a) original polyhedron (b) transformation function (c) target polyhedron
A~x + ~a ≥ ~0 ~y = T~x (AT−1)~y + ~a ≥ ~0

Figure 1.3: A compound transformation example

19 Technical Report

Lemma 1 (Affine form of Farkas lemma) Let D be a nonempty polyhedron defined by the inequali-
ties A~x +~b ≥ ~0. Then any affine function f(~x) is non-negative everywhere in D iff it is a positive affine
combination:

f(~x) = λ0 + ~λT (A~x +~b), with λ0 ≥ 0 and ~λ ≥ ~0.

λ0 and ~λT are called the Farkas multipliers.

In order to satisfy the dependence (to force S to be executed after R), the schedules have to
satisfy θR(~xR) < θS(~xS), for each point of DD1 . So one can state that:

∆R,S = θS(~xS)− θR(~xR)− 1

Must be non-negative everywhere in DD1 . Since we can express the set of affine non-negative
functions over DD1 , the set of legal schedules satisfying the dependence D1 is given by the
relation:

θS(~xS)− θR(~xR)− 1 = λ0 + ~λT

(
DD1

(
~xR

~xS

)
+ ~dD1

)
≥ 0

Let us go back to our example (matvect). The two prototype affine schedules for R and S are:

θR(~xR) = t1R
.iR + t2R

.n + t3R
.1

θS(~xS) = t1S
.iS + t2S

.jS + t3S
.n + t4S

.1

Using the previously defined dependence representation, we can directly split the system
into as many inequalities as there are independent variables, and equate the coefficients in both
sides of the formula (λD1,x is the Farkas multiplier attached to the xth constraint of DD1):

D1 iR : −t1R
= λD1,1 − λD1,2 + λD1,7

iS : t1S
= λD1,3 − λD1,4 − λD1,7

jS : t2S
= λD1,5 − λD1,6

n : t3S
− t2R

= λD1,2 + λD1,4 + λD1,6

1 : t4S
− t3R

− 1 = λ0

In order to get the constraints on the schedule coefficients, we need to solve the system,
with for example the Fourier-Motzkin projection algorithm [4, 16]. It is worth noting that, since
all Farkas multipliers are positive, the system is sized enough to be computable. If there is no
solution, then no affine monodimensional schedule is possible to solve this dependence.

If we build then solve with Fourier-Motzkin algorithm the system for the dependence D1,
we obtain a polyhedron D1

t , being the projection of the λ constraints on the t dimensions (of R
and S). This polyhedron represents the set of legal values for the schedule coefficients, in order
to satisfy the dependence. To build the set of legal schedule coefficients for the whole program,
we have to build the intersection of each polyhedron obtained for each dependence.

One may note that we do not impose any specification for the dependence graph, neither
any heuristic to walk it. We instead store in a global polyhedron Dt, with as many dimensions
as there are schedule coefficients for the SCoP, the intersection of the constraints obtained for
each dependence. With this method, the transitivity of the dependence relation is preserved in
the global solution but all systems are built and solved for one dependence at a time. In fact, the
computation of the legal space can be done simultaneously with the dependence analysis. The
intersection operation implicitly extends the dimensionality of polyhedra to the dimensionality
of Dt, and sets the missing dimensions to 0.

So we have for k dependences:
Dt =

⋂
k

Dk
t

1.6 Legal Transformation Space Computation 20

The resulting polyhedron Dt represents the set of acceptable coefficients values for the pro-
gram. Intuitively, to each (integral) point of Dt corresponds a different schedule for the pro-
gram. If Dt is empty, then there is no possible affine monodimensional schedule for this pro-
gram.

1.6 Legal Transformation Space Computation

1.6.1 The Algorithm

Bounding the Legal Transformation Space

The previous formulation gives a practical method to compute the (possibly infinite) set of legal
monodimensional schedules for a program. We need to bound Dt into a polytope in order to
make achievable an exhaustive search of the transformation space. The bounds are given by
considering a side-effect of the used code generation algorithm [5]: higher the transformation
coefficients, the more likely the generated code to be ineffective.

We use an heuristic to enable different bounds for the transformation coefficients, regarding
their type (coefficients of iterators, parameters or constant). The iterator coefficients gives the
“general form” of the schedule. We can, for instance, represent classical loop transformations
like reversal, skewing, etc. only with these coefficients. Their values directly imply the com-
plexity of the control bounds, and may generate modulo operations in the produced code; and
bounds between −1 and 1 are accurate most of the time. On the other hand, parameter coef-
ficients may have a hidden influence on locality. Let us consider the example of Program 1.5
(locality).

Program 1.5 locality

do i = 0, n
do j = 0, n

R b(j) = a(j)
S c(j) = a(j + m)

end do
end do

One can note that the parameter m, which is in no initial loop bound, influences on locality.
If m < n, then a subset of the a array is read by both R and S statements. So the schedule
of these statements should be the same for the corresponding subset of the iteration domains
(m ≤ jR ≤ n and 0 ≤ jS ≤ n−m), to maximize the data reuse of a. It implies the m parameter
has to be considered in the loop bounds of the transformation.

Had we used Feautrier’s method to compute positive affine schedules by applying Farkas
lemma also on schedule functions [16], we would have missed the bounds on m, since it is not
involved in any loop bound (no Farkas multiplier is attached to it, its schedule coefficient would
always have been 0).

The Algorithm

We can now propose an algorithm to compute a polytope of legal affine monodimensional
schedules for a program.

The proposed algorithm does an intensive use of the Fourier-Motzkin projection algorithm.
This algorithm is known to be super-exponential, and to generate redundant constraints [4, 37].

21 Technical Report

Algorithm 1.1 Bounded legal transformation space construction

1. Build the initial Dt polytope, by adding sup and inf bounds for each variable.

2. For each dependence k

(a) Build the system:

• equate the coefficients between the Farkas multipliers of the dependence (λ) and
the schedule coefficients (t)

• add the positivity constraints on the Farkas multipliers

(b) Solve the system with the Fourier-Motzkin projection algorithm, and keep only Dk
t

the polyhedron on the t dimensions.

(c) Intersect the obtained polyhedron Dk
t with Dt.

We use a specific implementation of this algorithm, which reduces the number of redundant
inequalities, for an approximately identical complexity (see Section 1.7). In addition to that,
the polyhedral intersection operation, which is known to be exponential, was adapted: it is
done only on sets of constraints generated by our implementation of the projection algorithm,
yielding a quadratic operation for the intersection itself. We delayed to the exploration phase
the emptiness test of the resulting polyhedron, since we deal with non-simplified polyhedra.
Experiments have shown that this approach is suitable even for an exhaustive exploration of
the polytope.

1.6.2 Discussions

Size of the Problems

It is worth noting that the size of the systems to solve can be easily expressed. For each statement
S, there is exactly:

SS = dS + |n|+ 1

Schedule coefficients, where dS is the depth of the statement S and |n| is the number of
structure parameters. An empirical fact is that the domain of a statement S is defined by 2.dS

inequalities. Since the dependence polyhedron is a subset of the Cartesian product of statements
domains, the number of Farkas multipliers for the dependence (one per row in the matrix, plus
λ0) is:

SDR,S
= 2.dR + 2.dS + p + s + 1

Where p is size of the precedence constraints (at most min(dR, dS)− 1) and s is the subscript
equality.

So the dimension of the computed systems are at most:

R,S ∈ Ω, RδS
Ssyst = SR + SS + SDR,S

= 3.dR + 3.dS + 2.|n|+ min(dR, dS) + 4

Since dR, dS , and |n| are in practice very small integers, it is noticeable that computed input
systems are small and tractable. They contain dR + dS + |n|+ 1 equalities and SDR,S

positivity
constraints for the Farkas multipliers, yielding a system sized enough to be computed. The

1.7 Polyhedral Projections 22

projection operation consists in projecting a space of size Ssyst on a space of size SR + SS (or a
space of size Ssyst − dS on a space of size SS if considering a self-dependence SδS).

The dimension of Dt is exactly:

S =
∑
S∈Ω

(dS + |n|+ 1)

Accuracy of the Method

Had we applied Feautrier’s method to compute the set of legal values for the Farkas multipli-
ers of the schedules, and explore this (infinite) space, we would have faced the problem that
the function giving the schedule coefficients from the schedule Farkas multipliers is not injec-
tive (many points of the obtained polyhedron can give the same schedule). This method, under
contrary, is very well suited for an exploration of the different legal schedules since every (inte-
gral) point in Dt is a different schedule.

Some other methods (see Long et al.[27], for instance) define heuristics to explore the schedul-
ing space of a program for a given combination of transformation (that is, a subset of the sched-
ule space). These methods apply a legality test for the transformation, to ensure the respect of
the dependence graph. It is merely impossible to exhaustively explore a search space of sched-
ules, and then for each point test if the transformation is possible. Under contrary, exhaustive
search of (an accurate subset of) the legal affine monodimensional schedule space is possible.

Figure 1.4 emphasizes the size of the computed search space, and the time to compute it. We
compare, for a given example (with #Dependences and #Statements), the number of different
Schedules to the number of Legal different schedules, with the same bounds for the schedule
coefficients. These results and all the following are computed on a Pentium 4 Xeon, 3.2GHz.

Figure 1.4: Search space computation

Test #Dep #St Bounds #Sched #Legal Time
matvect 5 2 −1, 1 37 129 0.024

locality 2 2 −1, 1 310 6561 0.022

matmul 7 2 −1, 1 39 912 0.029

Gauss 18 2 −1, 1 310 506 0.047

CRout 26 4 −3, 3 717 798 0.046

1.7 Polyhedral Projections

There are many methods to solve a system of linear inequalities, some of them giving one so-
lution, or simply deciding if a solution exists (see [37] for a comprehensive survey). In the
polyhedral model we deal with parametrized Z-polyhedra (also called lattice-polyhedra). But
it is a well-known fact that most of the Parametrized Integer Programming algorithms are NP-
complete [37]. We chose to extend the computation of polyhedral projections to Q-polyhedra,
and then to consider only the integer part (the intersection between the polyhedron and the in-
teger lattice of the same dimension) of the computed polyhedron. The following method holds
for reals, and so for rationals.

23 Technical Report

Also, we need to express the solution set of a system, and not only one solution. Since we
need to express this set (and implicitly do a polyhedral projection operation) we chose to use
the Fourier-Motzkin algorithm as a basis of our work.

In this section we first recall in detail the Fourier-Motzkin elimination method, then we
propose a reformulation of the algorithm to heavily reduce the number of redundant cons-
traints. Finally, complexity issues are discussed.

1.7.1 Fourier-Motzkin Elimination

Since the elimination method works well to solve a system of linear equalities, it was natural
to investigate a similar method to solve linear inequalities. Fourier first designed the method,
which was rediscovered and studied several times, including by Motzkin in 1936 and Dantzig
[13].

Practical Formulation

The principle is as follows, and is dragged from [4].
Given a system of linear inequalities:

m∑
i=1

aijxi ≤ cj (1 ≤ j ≤ n) (1)

Where aij and cj are rational constants. To solve this system, we eliminate the variables one
at a time in the order xm, xm−1, ..., x1. The elimination consist in a projection of the polyhedron
represented by (1) on the polyhedron being the union of the constraints of dimension m−1 and
less, and the projection of the constraints of dimension m to dimension m− 1. This polyhedron
is represented by:

m−1∑
i=1

tijxi ≤ qj (1 ≤ j ≤ n′) (2)

(a) Sort The first step is to rearrange the system (1) such that inequalities where amj is positive
come first, then those where amj is negative, an those where amj is 0. We find integers n1 and
n2 (which will later ease the computation) such that:

amj =


> 0 if 1 ≤ j ≤ n1,

< 0 if n1 + 1 ≤ j ≤ n2,

= 0 if n2 + 1 ≤ j ≤ n,

(3)

1.7 Polyhedral Projections 24

(b) Normalize For 1 ≤ j ≤ n2, divide the jth inequality by |amj |, to get:

m−1∑
i=1

tijxi + xm ≤ qj (1 ≤ j ≤ n1)

m−1∑
i=1

tijxi + xm ≥ qj (n1 + 1 ≤ j ≤ n2)

Where (for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n2){
tij = aij/|amj |
qj = cj/|amj |

(4)

From (4) we derive −
∑m−1

i=1 tijxi + qj , an upper bound for xm for 1 ≤ j ≤ n1, and a lower
bound for xm for n1 + 1 ≤ j ≤ n2. It is so possible to define respectively bm, the “lower bound
ball”, and Bm the “upper bound ball” as:

bm(x1, ..., xm−1) = max
n+1≤j≤n2

(
−

m−1∑
i=1

tijxi + qj

)

Bm(x1, ..., xm−1) = min
1≤j≤n1

(
−

m−1∑
i=1

tijxi + qj

) (5)

We define bm = −∞ if n1 = n2 (no lower bound) and Bm = ∞ if n1 = 0 (no upper bound).
So we can express the range of xm:

bm(x1, ..., xm−1) ≤ xm ≤ Bm(x1, ..., xm−1) (6)

The equation (6) is a description of the solution set for xm.

(c) Create projection We now have the solution set for xm, and we need to build the constraints
for the xm−1 dimensions. In addition to the constraints where amj = 0, we simply linearly add
each constraints where amj > 0 to each constraints where amj < 0, and add the obtained
constraint to the system. One may note that we add n1(n2 − n1) inequalities, and the new
system has n′ = n − n2 + n1(n2 − n1) inequalities for m − 1 variables. The original system (1)
has a solution iff this new system has a solution, and so on from m to 1. If during this step, a
contradiction occurs (0 ≤ qj with qj < 0) then the system has no solution.

Once the algorithm terminated (and did not yield an unsolvable system), it is possible to
build the set of solutions by simply computing, for k = 1 to k = m, the values of bk and Bk

(yielding the bounds of acceptable values for xk).

The Algorithm

From the previous formulation, we can derive the simple Algorithm 1.2.

1.7.2 Redundancy Reduction

The major drawback of the Fourier-Motzkin elimination algorithm is the strong possibility to
generate redundant constraints during the step 4 of the algorithm. A constraint is redundant if
it is implied by (an)other constraint(s) of the system. One may note that removing a redundant

25 Technical Report

Algorithm 1.2 Fourier-Motzkin elimination
Input: A system of n linear inequalities of the form
m∑

i=1

aijxi ≤ cj (1 ≤ j ≤ n)

Output: The solution set of the input system

• for k = m to 1 do

1. Sort the system regarding the sign of akj , ∀j. Compute n1 the number of inequalities
where akj > 0, n2 the number of inequalities where akj < 0.

2. Normalize the system, by dividing each inequalities where akj 6= 0 by |akj |, ∀j.

3. Store bk and Bk the lower and upper bound inequalities for xk.

4. Create the system for xk−1, by adding each inequality where akj < 0 to each one
where akj > 0 (use n1 and n2 to find bounds for j). If a contradiction occurs, stop: no
solution. Add the inequalities where akj = 0. If the system is empty, stop: finished.

constraint can make the other redundant constraints irredundant, so it is not generally possible
to remove them all at the same time.

Definition of Redundancy

We propose to distinguish two types of redundancy. We differentiate the local redundancy,
where the redundancy can be observed between two constraints, and the global redundancy
where a constraint has to be checked against the whole system.

Definition 3 (Local redundancy) Given two constraints:
C :

∑n
i=1 cixi ≤ q

D :
∑n

i=1 dixi ≤ q′

C is said to be locally redundant with D if one of the following holds:

(i) ∀k, ck = dk and q′ ≤ q (parallel hyperplanes)

(ii) ∃k, ck 6= 0, C/|ck| = D/|dk| (coefficients equality)

The three following examples bring to light local redundancy.

• x + y ≥ 2 is redundant with x + y ≥ 1
(The two constraints define parallel hyperplanes.)

• 2x + 2y ≥ 2 is redundant with x + y ≥ 1
(The two constraints are equal when normalized.)

• 2x + 2y ≥ 2 is redundant with x + y ≥ 0
(The two constraints define parallel hyperplanes.)

1.7 Polyhedral Projections 26

Definition 4 (Global redundancy) A constraint is said to be globally redundant if it is not locally
redundant with any other constraint of the system, and the system defines the same polyhedron if we
remove this constraint.

An intuition of globally redundant constraints is given in Figure 1.5. A sure way to detect
globally redundant constraints is to replace the constraint in the system by its opposite, and to
check if there is a solution (with for example the Simplex algorithm). If so, then the constraint
is irredundant.

Figure 1.5: Globally redundant constraint

Reformulation of the Algorithm

The Fourier-Motzkin projection algorithm can be modified to guarantee the elimination of local
redundancy. In addition to that, we can also reduce the complexity by using six smaller sets
of constraints instead of one (their cumulative size is at most the same as the original set), as
shown in Algorithm 1.3.

The benefits of this formulation is twofold: first, the sort step is removed, since it has been
replaced by a simple test and three different sets; second, the STORE operation is done only on
normalized constraints.

The STORE operation is the core of the local redundancy elimination. We assure by construc-
tion that we only store normalized constraints (let us recall that this normalization step was
already mandatory to the projection algorithm). To detect if a constraint C :

∑m
i=1 cixi ≤ qc is

locally redundant we only have to check, with each constraint D already present in the set, if
∀i, ci = di. If so, we check if qd ≤ qc. A very simple hash function for the constraints helps the
redundancy check to be fast.

Related Work

The study of eliminating redundant constraints is a long-term issue, and was treated by various
authors. Let us cite Chernikov’s work [10, 29] who produced the reduced convolution method,
which relies on the concept of linear-dependence of the vectors generating a cone. Let us
also recall the work of Pugh [34] on the Omega Test, a practical method to solve integer linear
programs; and Sehr et al. [38] who worked on redundancy reduction heuristics based on the
Chernikov criterion. We may also note the work of Weispfenning [44] who produced a derived
of the Fourier-Motzkin elimination with an exponential worst case upper bound complexity.

27 Technical Report

Algorithm 1.3 Modified Fourier-Motzkin elimination
Input: A system of n linear inequalities of the form
m∑

i=1

aijxi ≤ cj (1 ≤ j ≤ n)

Output: The solution set of the input system

• ∀j where amj 6= 0, Normalize the constraint by |amj |. Apply the following rule:

(i) if amj > 0 STORE the inequality in S+

(ii) if amj < 0 STORE the inequality in S−

(iii) if amj = 0 STORE the inequality in S0

• Bm = S−, bm = S+

• For k = m - 1 to 1 do

1. ∀s+, s− ∈ S+×S−, C = s++s−. If a contradiction occurs, stop: no solution. ∀s0 ∈ S0

where s0k−1 6= 0, C = s0. If k > 1, ∀C, normalize C on the k − 1th variable.

(i) if ck−1 > 0 STORE the inequality in S′+
(ii) if ck−1 < 0 STORE the inequality in S′−

(iii) if ck−1 = 0 STORE the inequality in S′0

2. If S′+ = ∅ ∧ S′− = ∅ ∧ S′0 = ∅ ∧ S0 = ∅ stop: finished
If k > 1, Bk = S−, bk = S+

If k = 1, Bk = max(S+), bk = min(S−)
S+ = S′+, S− = S′−, S0 = S′0

1.7.3 Complexity Issues

The Fourier-Motzkin projection algorithm is known to be super-exponential. We proposed a
slight reformulation, which obviously solves the input system (it is possible to go back to the
original, proved formulation of the Fourier-Motzkin algorithm from this formulation only by
reordering the algorithm steps).

Complexity of the Original Fourier-Motzkin Algorithm

The total number of polynomials in the output of the Fourier-Motzkin algorithm is bounded in
the worst case by (|S| is the size of the original system) [44]:

m∑
i=1

|S|2(i−1)

22i−1
+

|S|2m

2(2m+1−2)

And hence, more roughly if |S| ≥ 2, by

(m + 1)
(
|S|
2

)2m

At each elimination step k of the algorithm (the elimination of a variable of dimension k),
we can approximate the number of operations done, for n inequalities in the system:

1.8 Experimental Results 28

• The sort step can be done in n operations.

• The normalize step can be done in k operations per line, so k × n operations.

• The create projection step can be done in, at worse, n2

4 × k operation (there is exactly n
2

positive constraints and n
2 negative ones to add to each other).

So the total count of operations can be approximately bounded in the worst case by:

1∑
k=m

(
nk + k

(
nk +

n2
k

4

))
Where nk = n2

k−1
4 , nm = n

Complexity of the Modified Fourier-Motzkin Algorithm

The modified Fourier-Motzkin algorithm obviously has the same worst bound complexity for
polynomials output (the input system may at worse never produce locally redundant con-
straint, and so the algorithm behaves like the original formulation).

At each elimination step k of the modified algorithm, we can approximate the number of
operations done, for n inequalities in the system:

• The normalize step can be done in k operations per line, so k × n operations.

• The create projection step can be done in, at worse, n2

4 × k operation (there is exactly n
2

positive constraints and n
2 negative ones). There will be n2

4 store operations.

The complexity of the store operation can be bounded in the worst case by St = k × n2

4 , but
we provide an implementation empirically shown to have a St = k log n2

4 complexity.
So the total count of operations can be approximately bounded in the worst case by:

1∑
k=m

(
k

(
nk +

n2
k

4
.

(
1 + log

(
n2

k

4

))))
Where nk = n2

k−1
4 , nm = n

Which is a small complexity overhead with regards to the original formulation. Let us recall
that it is a worst case bound, and we do not take in account the huge advantage of local redun-
dancy elimination. We experimentally noticed systems where the local redundancy elimination
can reduce by a factor 2 the number of constraints at each variable elimination step, yielding a
2m reduction of the polynomials output.

1.8 Experimental Results

We aim here at computing the performance distribution of a set of legal schedules for a given
program. In the following section we present the experimental protocol we used, and discuss
the obtained results.

29 Technical Report

1.8.1 Experimental Protocol

We implemented three separated tools for this protocol, all in C: Candl, a dependence analyzer
in the polyhedral model; FM, a fast and redundancy-reduced implementation of the Fourier-
Motzkin projection algorithm; and LetSee, the Legal Transformation SpacE Explorator which
implements the algorithm of Section 1.1 for the legal space construction, and a polytope ex-
plorer.

The LeTSeE software aims at computing the legal transformation space of a program, given a
matrix representation of the iteration domains of all statements, the dependence graph labeled
by the dependence polyhedra, and the bounds of the transformation coefficients. Once the
legal transformation polytope is computed, it is exhaustively explored, generating one CLooG 1

formatted file (containing the schedule and all the necessary information to generate the kernel
code) per point in the polytope.

The whole test protocol respects the following:

• Use LeTSeE to generate a CLooG formatted file per transformation.

• For each generated file:

– Generate the kernel code with CLooG (with by default options).

– Post-treatment of the generated code, to add measure tools and kernel input initial-
ization.

– Compile and run, for various compilers and compiler options.

• Collect and format the results.

The measure tools count the number of cycles used by the program. In order to limit inter-
ferences with other programs, we set the scheduler for the tested program as FIFO.

In order to be consistent, the original code is included in the test protocol, as the identity
transformation (it may be a multidimensional transformation in this case, to respect the exact
original form of the program).

1.8.2 Legal Transformation Space Exploration

The LeTSeE software implements a naive recursive polytope explorer. In order to achieve a
fast computation of the legal transformation polytope we built a non-simplified polytope, we
only assure by construction that there are no locally redundant constraints. In fact, it is even
possible to have contradictory constraints generating an empty set of legal monodimensional
schedules. As said earlier, the emptiness test is delayed to the exploration phase. For the sake
of simplicity, and since it is not of a critical matter, we implemented an exhaustive recursive
polytope explorer.

It is thus possible to simplify Dt with for example the PolyLib, a state-of-the-art polyhedral
computation library.

Transformations are named with the exploration point number. The exploration is done
dimension by dimension, from the inner to the outer most dimension (the inner most dimension
corresponds to the last statement coefficient – the 1 coefficient, while the outer most corresponds
to the first statement’s first iterator coefficient).

1Chunky Loop Generator, freely available at http://www.cloog.org

1.8 Experimental Results 30

1.8.3 Performance Distribution

In the following we compare the performance distributions for some known examples, empha-
sizing the variation regarding the compiler, the compiler options or the parameters size. Let us
recall that this study does not aim to compare compilers themselves.

1.8.4 The Compiler as an Element of the Target Platform

Our iterative optimization scheme is independent from the compiler and may be seen as a
higher level to classical iterative compilation. In the same way as a given program transforma-
tion may better exploit a feature of a given processor, it also may enable more aggressive options
of a given compiler. Because production compilers have to generate a target code in any case in
a reasonable amount of time, their optimizations are very fragile, i.e. a slight difference in the
source code may enable or forbid a given optimization phase.

To study this behavior and estimating how a higher level iterative optimization scheme
may lead to better performances, we achieved a exhaustive scan of our search space for various
programs and compilers with aggressive optimization options. We illustrate our results in Fig-
ure B.2, and with more details in Figure 1.6 for the matrix-multiply kernel shown in Figure 1.6,
a very classic computational kernel. This kernel benchmark has been extensively studied, and
is a typical target of aggressive optimizations of production compilers.

Program 1.6 matmul

do i = 1, n
do j = 1, n

S1 C(i,j) = 0
do k = 1, n

S2 C(i,j) = A(i,k) * B(k,j)
end do

end do
end do

We tested the whole set of legal schedules within the bounds −1, 1 for all coefficients (912
points), and checked the speedup for various compilers with aggressive optimizations enabled.
Matrices are double arrays of size 250 × 250. We compared, for a given compiler, the number
of cycles the original code took (Original) to the number of cycles the best transformation took
(Best) (results are in millions of cycles).

Figure 1.6: Results for the matmul example
Compiler Option Original Best Schedule Speedup

GCC 3.4.2 -O3 1076 686
θS1(~xS1) = −i + j − n− 1
θS2(~xS2) = k + n + 1

57%

GCC 4.1.1 -O3 958 643
θS1(~xS1) = −i + n− 1
θS2(~xS2) = k + n + 1

49%

ICC 9.0.1 -fast 465 72
θS1(~xS1) = −i + n
θS2(~xS2) = k + 1

645%

PathCC 2.5 -Ofast 228 79
θS1(~xS1) = j − n− 1
θS2(~xS2) = k

308%

31 Technical Report

Figure 1.6 shows significant speedups achieved by the best transformations for each back-
end compiler. Such speedups are not uncommon when dealing with the matrix-multiplication
kernel. The important point is that we do not perform any tiling (it requires multi-dimensional
schedules), contrary to nearly all other works (see [2, 47] for useful references). It was pos-
sible to check using PathScale EKOPath that many optimization phases have been enabled or
disabled, depending on the version generated from our exploration tool. Nevertheless it is tech-
nically hard to know precisely the contribution of the one-dimensional schedule (which has a
high potential, by itself, as an optimizing transformation) with respect to the enabled compiler
optimizations. But another striking result is the high variation of the best schedules depending
on the compiler. For instance the lack of the j iterator in θS1(~xS1) for GCC or the lack of the n
parameter θS2(~xS2) for ICC.

These results, which are consistent with the other tested programs, emphasize the need of
a compiler-dedicated transformation to achieve the best possible performance. One possible
explanation is the difference between optimization phases in the different back-end compilers.
Compilers have attained such a level of complexity that it is no longer possible to model the
effects of downstream phases on upstream ones. Yet it is mandatory to rely on the downstream
phases of a back-end compiler to achieve a decent performance, especially those which cannot
be embedded naturally in the polyhedral model.

Let us note that we do not perform any tiling or Index Set Splitting, and we consider only
monodimensional schedules to the contrary of other well-known works (see [46] for instance).

We can also emphasize the transformation specificity for each different compiler, by com-
paring the speedup of the best obtained transformation for a given compiler when runned on
another compiler (and compare it to the speedup attained by the best transformation found
specifically for this compiler). The result is shown in Figure 1.7.

Figure 1.7: Compiler specifics

Comp. GCC 3.4.2 GCC 4.0.1 ICC 9.0.1
GCC 3.4.2 – −1, 8% −3, 2%
GCC 4.0.1 −0, 3% – −3, 2%
ICC 9.0.1 −1, 5% −1, 2% –

Variation Between Compiler Options

Experiments have shown a dependence between the best transformation and the compiler op-
tions used. For instance, in the matmul case with the ICC 9 compiler used with the aggressive
-fast option, the best transformation obtained yields a 4.5% speeddown when this transfor-
mation is compiled with -O2 and compared to the best one found for this compiler option. This
behavior was observed on all the tested programs.

Importance of Parameters Sizes

Another observed behavior is the consistency of the best transformation among parameters
sizes. Most of the performance obtained comes from locality improvements, that is, a better
use of the different processor cache levels. It seems obvious that when the program uses a
memory footprint larger than the cache size, increasing the memory footprint will not influence
on the choice of the best transformation. But we also observed an approximate consistency of

1.8 Experimental Results 32

the ranking of transformations with small memory footprints. This observation comes from the
fact (as shown in distributions of Figure 1.8 and 1.9) that an important rate of legal schedules are
highly ineffective regarding the original code. And these schedules are of course also ineffective
on small inputs.

A possible exploration heuristic could be to run the whole set of legal transformations on
very small inputs (so the time per explored point would be reduced) in order to eliminate some
ineffective schedules. Then, on the remaining set of possibly good schedules, the exploration
is runned again with an accurate memory footprint regarding the memory hierarchy of the
machine.

Notes on the Distribution

An exhaustive exploration of a legal transformation space let us be able to print and observe
the performance distribution among this space. Figure 1.8 shows this distribution for the mat-
mul and the locality example. We can observe that for the matmul example, many schedules
have a similar performance with the best one while in the locality example it is opposite. If the
distribution for matmul could seem chaotic (except the regularity for the good schedules), un-
der contrary we can observe many regularities for locality (especially two clouds of ineffective
points). The very small set of good schedules for locality (≈ 30/6500) let us claim inefficiency of
a random exploration method, at least for this example.

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 2.2e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

(M
)

Transfo. ID

matxmat

Original

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 1000 2000 3000 4000 5000 6000 7000

C
yc

le
s

(M
)

Transfo. ID

locality

Original

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 1.1e+09

 1.2e+09

 1.3e+09

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
yc

le
s

(M
)

Transfo. ID

matvecttransp

Original

 5.68e+09

 5.7e+09

 5.72e+09

 5.74e+09

 5.76e+09

 5.78e+09

 5.8e+09

 0 100 200 300 400 500 600

C
yc

le
s

(M
)

Transfo. ID

gauss

Original

Figure 1.8: Performance distribution for matmul, locality, MVT and Gauss (GCC 4 -O2)

The shape of the distribution can be even more emphasized with the crout example (see
Program 1.7), as shown in Figure 1.9.

The differences in the distribution regarding the compiler option is emphasized in Figure
1.10. We compare, for an identical original program, the shape of the distribution on GCC 4,
with the -01, -02, -03 and -fast options on the locality example.

33 Technical Report

Program 1.7 crout

do j = 1, n
do i = 1, j

do l = 1, i
S1 K(i,j) = K(i,j) - K(l,i) * K(l,j)

end do
end do
do i = 1, j

S2 T(i) = K(i,j)
S3 K(i,j) = T(i) / K(i,i)
S4 K(j,j) = K(j,j) - T(i) * K(i,j)

end do
end do

 1.26e+09

 1.27e+09

 1.28e+09

 1.29e+09

 1.3e+09

 1.31e+09

 1.32e+09

 1.33e+09

 1.34e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

(M
)

Transfo. ID

crout

Original

 1.26e+09

 1.28e+09

 1.3e+09

 1.32e+09

 1.34e+09

 1.36e+09

 1.38e+09

 1.4e+09

 1.42e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

(M
)

Transfo. ID

crout

Original

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 1.1e+09

 0 1000 2000 3000 4000 5000 6000 7000

C
yc

le
s

(M
)

Transfo. ID

locality

Original

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 1000 2000 3000 4000 5000 6000 7000

C
yc

le
s

(M
)

Transfo. ID

locality

Original

Figure 1.9: Performance distribution for crout and locality (ICC 9 -fast and GCC 4 -O3)

More Experimental Results

The table of Figure 1.13 summarize performance improvements obtained for some of the exam-
ples we tested. We give the speedup obtained with ICC 9.0.1 -fast (S. ICC) and with GCC

4.0.1 -O3 (S. GCC). The MVT sample is the computation of a vector by a matrix, and another
vector with the transpose of this matrix (see Program 1.8). All input data are long double.
The reader is encouraged to report to Appendix B for an exhaustive survey of the obtained
results.

1.8 Experimental Results 34

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 2.2e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

(M
)

Transfo. ID

matxmat

Original

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

(M
)

Transfo. ID

matxmat

Original

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

(M
)

Transfo. ID

matxmat

Original

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

(M
)

Transfo. ID

matxmat

Original

Figure 1.10: Performance distribution for matmul (ICC 9, options -01, -02, -03 and -fast)

Program 1.8 MVT

do i = 1, n
S1 x1(i) = 0
S2 x2(i) = 0

do j = 1, n
S3 x1(i) = x1(i) + A(i,j) * y1(j)
S4 x2(i) = x2(i) + A(j,i) * y2(j)

end do
end do

Figure 1.11: Experiments summary

Test #Dep #St Bounds #Sched #Legal S. ICC S. GCC
locality 2 2 −1, 1 310 6561 51% 28%
matmul 7 2 −1, 1 39 912 23% 49%
Gauss 18 2 −1, 1 310 506 2% 1%
Crout 26 4 −3, 3 717 798 0.5% 1.3%
MVT 14 4 −1, 1 314 16641 26% 30%

1.8.5 Discussions

The polyhedral model aims at parallelism detection and modelisation. We chose to empha-
size here the benefits of our method only on single processor machines, to show how program

35 Technical Report

rescheduling can generate performance improvements. All the programs we tested have at least
one degree of parallelism, not exploited in our experiments. It is worth noting that the observed
speedup should increase had we taken benefits from the parallelism we implicitly expressed,
especially on multi-core chips.

We may also note that many observed best transformations have a weird shape, and would
seem inaccurate at first glance to a compiler specialist. This comes from the conjunction of the
schedule, the code generator and the compiler. The code generator applies a first optimization
phase, embedded in the code generation algorithm [5, 41]. Then, the compiler applies its own
optimization phases, yielding a complex and multiple transformation process for the schedule.
This led us to observe potentially ineffective code (that is, with too much complex controls)
produced by the code generator be able to trigger optimizations in the compiler the original
code would not.

1.8.6 Heuristic Traversal of the Optimization Space

Since it is unpractical to explore the whole search space on real-world benchmarks, we propose
a heuristic to enumerate only a high-potential sub-space, using the properties of the polyhedral
model to characterize the highest potential and narrowest one.

Decoupling Heuristic

We represent the schedule coefficients of a statement as a three component vector:

θS(~xS) = (~ı ~p c)

~xS

~n
1


Where~ı represents the iterators coefficients, ~p the parameters coefficients and c the constant

coefficient.
In this search space representation, two neighbor points may represent a very different gen-

erated code, since a minor change in the~ı part can drastically modify the compound transforma-
tion (a program where interchange and fusion are applied can be the neighbor of a program with
none of these transformations). The most significant impact on the generated code is caused
by iterator coefficients, and we intuitively assume their impact on performance will be equally
important. Conversely, modifying parameters or constant coefficients is less critical (especially
when one-dimensional schedules are considered). Hence it is relevant to propose an exploration
heuristic centered on the enumeration of the possible combinations for the~ı coefficients.

The proposed heuristic is window-search based. It decouples iterator coefficients from the
others, enabling a systematic exploration of all the possible combinations for the ~ı part. At
first, we do not care about the values for the ~p and c part (they can be chosen arbitrarily in
the search space, as soon as they are compatible with the ~ı sequence). The resulting subset of
program versions is then filtered with respect to effective performance, keeping the top points
only. Then, we repeat the systematic exploration of the possible combination of values for the ~p
and c coefficients to refine the program transformation sequence.

The heuristic can be sketched in 5 steps.

1. Build the set of all different possible combinations of coefficients for the~ı part of the sched-
ule, inside the set of all legal schedules. Choose ~p and c at random in the space, according
to the~ı part.

1.8 Experimental Results 36

2. For each schedule in this set, generate and instrument the corresponding program version
and run it.

3. Filter the set of schedules by removing those associated with a run time more than x%
slower than the best one (combined with a bound on the limit of selected schedules).

4. For each schedule in the remaining set, explore the set of possible values for the ~p and c
part (inside the set of all legal schedules) while the~ı part is left unchanged.

5. Select the best schedule and generated program in this set.

Discussion

Figure 1.12 details a run of our decoupling heuristic, and compares it with a plain random
search for some of our kernel benchmarks. It shows the relative percentage of the best speedup
achieved as a function of the number of iterative runs.

 65

 70

 75

 80

 85

 90

 95

 100

 0 20 40 60 80 100 120 140

R1
H1

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100 120 140 160 180

R1
H1

 92

 93

 94

 95

 96

 97

 98

 99

 100

 0 5 10 15 20 25 30

H1
R1

Figure 1.12: Comparison between random and decoupling heuristics (locality, matmul, mvt
examples)

A fast convergence of the decoupling heuristic is attained on some examples like crout or
locality, where regularities in the distribution can be observed. On these tested examples,
more than 95% of the maximum speedup can be achieved with an order of magnitude reduction
of the number of runs, compared to an exhaustive scan.

On the other hand, we observed a suboptimal behavior of the heuristic comparatively to a
full random driven approach, as Figure 1.12 shows for the matmul kernel. Not surprisingly, as
soon as the density of interesting transformations is large, a random space scan may converge
faster than our enumeration-based method.

37 Technical Report

A more important problem is the scalability to larger SCoPs. To prevent the possibly large
set of legal values for the~ı coefficients, it is possible to:

1. impose a static or dynamic limit to the number of runs, which should be coupled to an
exploration strategy starting with coefficients as close as possible to 0 (remember 0 may
not correspond to any legal schedule);

2. to replace an exhaustive enumeration of the ~ı combinations by a limited set of random
draws in the~ı space.

The choice between the exhaustive, limited or random exploration of the~ı space can be heuris-
tically determined with regards to the size of the original SCoP (this size gives a good intuition
of the order of magnitude of the size of the search space).

The table of Figure 1.13 summarizes the obtained results of the heuristic comparatively to a
full random driven one. The filtering level is 5%.

Figure 1.13: Heuristic convergence

Example #Schedules Heuristic. #Runs %Speedup
locality 6561 Rand 125 96.1%

DH 123 98.3%
matmul 912 Rand 170 99.9%

DH 170 99.8%
mvt 16641 Rand 30 93.3%

DH 31 99.0%

1.9 Future Work

In the following section we describe some short and long term objectives of our research.

1.9.1 Affine Multidimensional Schedules

It is always possible to find a multidimensional affine schedule to a SCoP, while a monodi-
mensional schedule may not exists. But the generalization of our method to multidimensional
schedules lead us to a combinatorial barrier: if there is exactly one way to choose the set of de-
pendences to satisfy in the monodimensional case (they must all be satisfied in one dimension,
i.e. in one set), there is a combinatorial way to choose the sets as soon as there is more than one
dimension. Feautrier proposed a greedy algorithm to solve the maximal set of dependences at a
given depth, and increment the depth if unresolved dependences remain [17]. This would give
us the minimal sequential depth of the schedule [43], but the combinatorial remains if we want
to explore all the possibilities to satisfy the dependences. We are currently investigating non-
exhaustive space construction, including a method implying correction of monodimensional
schedules to multidimensional schedules, thanks to the correction of violated dependences [42].
We also investigate the expression of equivalences between transformations.

1.10 Conclusion 38

1.9.2 Exploration of the Legal Transformation Space

There are many possible ways to explore the legal transformation space. We are currently in-
vestigating elimination of subsets of the space (we can anticipate inefficiency of the code with
regards to the code generation phase), and different exploration heuristics regarding the type
of the dimensions (iterators, parameters or constant). We also plan to evaluate efficiency of
stochastic methods to estimate the space distribution.

1.9.3 Improving the Legal Space Computation

To the contrary of many improvements proposed by Feautrier, we do not simplify the systems
computed for each dependence. More, we claim to compute a non simplified polyhedron of
legal schedules. We are investigating the reduction of each computed system thanks to a Gaus-
sian elimination to reduce the complexity. We are also looking for a local (which means to stop
needing to store a global solution polyhedron) definition of the legal transformation space, by
using the properties of the dependence graph. This would let us be able to reconstruct a global
and yet simplified solution polyhedron.

1.9.4 Projection Algorithm

The work initiated on the Fourier-Motzkin projection algorithm lead us to a practical and yet
general reformulation of the algorithm. We plan to use some geometric properties of the legal
transformation space to make an ad-hoc version of the algorithm, which would get rid of global
redundancy for a small complexity overhead.

1.9.5 Scalability and Integration

One of the drawback of the polyhedral model is to be known as a highly costly computational
model, mainly due to the complexity of algorithms on parametrized integer linear program-
ming. Many important works have been done to make the model be able to handle real-life
programs in real-life compilers [7, 21], and the method we propose aims at being integrated in
the Polyhedral Loop Optimization part of GCC (see [32, 33] for some recent work about it).

The iterative compilation domain is in constant progress thanks to the popularity of the
model, and integrating these methods in production compilers (see [20] for instance) are a hot
topic today. Our method, which at the moment is at the prototype status, has to take benefits
from these researches before being integrated in a production compiler.

1.9.6 Parallelism

The polyhedral model is designed to express in a natural way parallelism inside loop nests.
Our study was only applied to mono-processor machines, but it is a short term assignment
to exploit this parallelism with a state-of-the-art parallel library like OpenMP [12]. We simply
need to hardly modify the code generation phase in order to generate an OpenMP equipped C
code.

1.10 Conclusion

Iterative and empirical search techniques are one of our last hope to harness the complexity
of modern processors and compilers. Unfortunately, all approaches published so far rely on a

39 Technical Report

separate legality checking to filter any illegal candidate program transformation.
The proposed method express the whole set of legal affine monodimensional schedules for a

program, that is the expression of all the possible combination of transformations for this class of
schedules. Our first experimental results bring to light the capability of the method to discover
the best transformation for a program thanks to an exhaustive exploration of that space, for a
given compiler, architecture and dataset. To our knowledge, this is the first time such a space is
explored.

It is expectable that the systematic exploration process will not be doable on large programs,
or with multidimensional schedules. But our study let us do observations on the performance
distributions in the transformation space. We plan to extract this knowledge in order to general-
ize our method to multidimensional schedules and then to be able to scale to real-life programs.

1.10 Conclusion 40

Bibliography

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thomson, M. Tou-
ssaint, and C. K. I. Williams. Using machine learning to focus iterative optimization. In
CGO ’06: Proceedings of the International Symposium on Code Generation and Optimization,
pages 295–305, Washington, DC, USA, 2006. IEEE Computer Society.

[2] J. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan Kaufmann
Publishers, 2002.

[3] L. Almagor, K. Cooper, A. Grosul, T. Harvey, S. Reeves, D. Subramanian, L. Torczon, and
T. Waterman. Finding effective compilation sequences. In Languages, Compilers, and Tools
for Embedded Systems (LCTES), pages 231–239, New York, 2004.

[4] Utpal Banerjee. Loop Transformations for Restructuring Compilers, the Foundations. Kluwer
Academic Publishers, 1993.

[5] C. Bastoul. Code generation in the polyhedral model is easier than you think. In PACT’13
IEEE International Conference on Parallel Architecture and Compilation Techniques, pages 7–16,
Juan-les-Pins, september 2004.

[6] C. Bastoul. Improving Data Locality in Static Control Programs. PhD thesis, University Paris
6, Pierre et Marie Curie, december 2004.

[7] C. Bastoul, A. Cohen, A. Girbal, S. Sharma, and O. Temam. Putting polyhedral loop trans-
formations to work. In LCPC’16 International Workshop on Languages and Compilers for Par-
allel Computers, LNCS 2958, pages 209–225, College Station, october 2003.

[8] Cédric Bastoul and Paul Feautrier. Adjusting a program transformation for legality. Parallel
processing letters, 15(1):3–17, March 2005.

[9] F. Bodin, T. Kisuki, P. M. W. Knijnenburg, M. F. P. O’Boyle, and E. Rohou. Iterative com-
pilation in a non-linear optimisation space. In Workshop on Profile and Feedback Directed
Compilation, Paris, October 1998.

[10] S.N. Chernikov. The convolution of finite systems of linear inequalities. Zh. vychisl. Mat.
mat. Fiz., 5:3 – 20, 1969.

[11] K. Chow and Y. Wu. Feedback-directed selection and characterization of compiler opti-
mizations. In 2nd Workshop on Feedback-Directed Optimization, Israel, November 1999.

[12] Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for
shared-memory programming. IEEE Comput. Sci. Eng., 5(1):46–55, 1998. See
http://www.openmp.org.

41

BIBLIOGRAPHY 42

[13] George B. Dantzig and B. Curtis Eaves. Fourier-motzkin elimination and its dual. J. Comb.
Theory, Ser. A, 14(3):288–297, 1973.

[14] P. Feautrier, J. Collard, and C. Bastoul. Solving systems of affine (in)equalities. Technical
report, PRiSM, Versailles University, 2002.

[15] Paul Feautrier. Parametric integer programming. RAIRO Recherche opérationnelle,
22(3):243–268, 1988.

[16] Paul Feautrier. Some efficient solutions to the affine scheduling problem. I. One-
dimensional time. Int. J. Parallel Program., 21(5):313–348, 1992.

[17] Paul Feautrier. Some efficient solutions to the affine scheduling problem. Part II. Multidi-
mensional time. Int. J. Parallel Program., 21(5):389–420, 1992.

[18] Paul Feautrier. Scalable and modular scheduling. In Andy D. Pimentel and Stamatis Vas-
siliadis, editors, SAMOS, volume 3133 of Lecture Notes in Computer Science, pages 433–442.
Springer, 2004.

[19] Grigori Fursin, Albert Cohen, M. O’Boyle, and Olivier Temam. A practical method for
quickly evaluating program optimizations. In Intl. Conf. on High Performance Embedded
Architectures and Compilers (HiPEAC’05), number 3793 in LNCS, pages 29–46, Barcelona,
November 2005. Springer-Verlag.

[20] Grigori Fursin, Albert Cohen, Michael F. P. O’Boyle, and Olivier Temam. Quick and prac-
tical run-time evaluation of multiple program optimizations. Trans. on High Performance
Embedded Architectures and Compilers, 1(1):13–31, 2006.

[21] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc
Sigler, and Olivier Temam. Semi-automatic composition of loop transformations for deep
parallelism and memory hierarchies. Intl. J. of Parallel Programming, 2006. Accepted for
publication.

[22] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In Frontiers’95
Symposium on the frontiers of massively parallel computation, McLean, 1995.

[23] Wayne Kelly and William Pugh. A framework for unifying reordering transformations.
Technical report, College Park, MD, USA, 1993.

[24] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho, David Whalley, Jack
Davidson, Mark Bailey, Yunheung Paek, and Kyle Gallivan. Finding effective optimiza-
tion phase sequences. In LCTES ’03: Proceedings of the 2003 ACM SIGPLAN conference on
Language, compiler, and tool for embedded systems, pages 12–23, San Diego, California, USA,
2003. ACM Press.

[25] Prasad A. Kulkarni, Stephen R. Hines, David B. Whalley, Jason D. Hiser, Jack W. David-
son, and Douglas L. Jones. Fast and efficient searches for effective optimization-phase
sequences. ACM Trans. Archit. Code Optim., 2(2):165–198, 2005.

[26] Amy W. Lim and Monica S. Lam. Maximizing parallelism and minimizing synchroniza-
tion with affine transforms. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 201–214, New York, NY, USA, 1997.
ACM Press.

43 BIBLIOGRAPHY

[27] Shun Long and Grigori Fursin. A heuristic search algorithm based on unified transforma-
tion framework. In ICPPW ’05: Proceedings of the 2005 International Conference on Parallel
Processing Workshops (ICPPW’05), pages 137–144, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[28] Shun Long and Grigori Fursin. Systematic search within an optimisation space based on
unified transformation framework, 2006.

[29] A.V. Lotov, V.A. Bushenkov, and G.K. Kamenev. Feasible Goals Method – Search for Smart
Decisions. Computing Centre RAS, Moscow, 2001.

[30] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality with loop
transformations. ACM Trans. Program. Lang. Syst., 18(4):424–453, 1996.

[31] Antoine Monsifrot, Franćois Bodin, and Rene Quiniou. A machine learning approach to
automatic production of compiler heuristics. In AIMSA ’02: Proceedings of the 10th Inter-
national Conference on Artificial Intelligence: Methodology, Systems, and Applications, pages
41–50, London, UK, 2002. Springer-Verlag.

[32] Sébastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, P. Jouvelot, G.-A. Silber, and
N. Vasilache. GRAPHITE: Loop optimizations based on the polyhedral model for GCC. In
Proc. of the 4th GCC Developper’s Summit (to appear), Ottawa, Canada, June 2006.

[33] Sébastian Pop, Albert Cohen, P. Jouvelot, and G.-A. Silber. The new framework for loop
nest optimization in GCC: from prototyping to evaluation. In Proc. of the 12th Workshop
Compilers for Parallel Computers (CPC’06), A Coruña, Spain, January 2006.

[34] William Pugh. The omega test: a fast and practical integer programming algorithm for
dependence analysis. In Supercomputing ’91: Proceedings of the 1991 ACM/IEEE conference
on Supercomputing, pages 4–13, New York, NY, USA, 1991. ACM Press.

[35] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of efficient nested loops from poly-
hedra. International Journal of Parallel Programming, 28(5):469–498, october 2000.

[36] Robert Schreiber and Gilles Villard. Lattice-based memory allocation. IEEE Trans. Comput.,
54(10):1242–1257, 2005. Member-Alain Darte.

[37] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1986.

[38] G. Stehr, H. Graeb, and K. Antreich. Analog performance space exploration by fourier-
motzkin elimination with application to hierarchical sizing. In ICCAD ’04: Proceedings of
the 2004 IEEE/ACM International conference on Computer-aided design, pages 847–854, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[39] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly. Meta opti-
mization: improving compiler heuristics with machine learning. SIGPLAN Not., 38(5):77–
90, 2003.

[40] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I. August.
Compiler optimization-space exploration. In CGO ’03: Proceedings of the international sym-
posium on Code generation and optimization, pages 204–215, Washington, DC, USA, 2003.
IEEE Computer Society.

BIBLIOGRAPHY 44

[41] Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. Polyhedral code generation in the
real world. In Proceedings of the International Conference on Compiler Construction (ETAPS
CC’06), LNCS, pages 185–201, Vienna, Austria, March 2006. Springer-Verlag.

[42] Nicolas Vasilache, Cédric Bastoul, Sylvain Girbal, and Albert Cohen. Violated dependence
analysis. In Proceedings of the ACM International Conference on Supercomputing (ICS’06),
Cairns, Australia, june 2006. ACM.

[43] Frédéric Vivien. On the optimality of Feautrier’s scheduling algorithm. In Euro-Par ’02:
Proceedings of the 8th International Euro-Par Conference on Parallel Processing, pages 299–308,
London, UK, 2002. Springer-Verlag.

[44] V. Weispfenning. Parametric linear and quadratic optimization by elimination. Number
MIP-9404. 1994.

[45] T. Wiegand, G. Sullivan, and A. Luthra. Itu-t rec. h.264 – iso/iec 14496-10 avc - final draft.
Technical report, Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, May 2003.

[46] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In PLDI ’91:
Proceedings of the ACM SIGPLAN 1991 conference on Programming language design and imple-
mentation, pages 30–44, New York, NY, USA, 1991. ACM Press.

[47] M. Wolfe. High performance compilers for parallel computing. Addison-Wesley Publishing
Company, 1995.

Appendix A

Affine Form of Farkas Lemma

(This appendix is grabbed verbatim from C. Bastoul PhD Thesis)

Farkas Lemma is fundamental to the theory of polyhedra; it was proved by the Hungarian
physicist and mathematician Gyula Farkas in 1901. There exists many forms of this Lemma.
The affine form is of a particular interest for affine schedule purpose since it allows to solve
the dependence constraints (see section 1.6 or [16]). More generally it may be used to linearize
non-affine constraints.

Lemma 2 (Affine form of Farkas Lemma [37]) Let D be a nonempty polyhedron defined by the inequali-
ties A~x +~b ≥ ~0. Then any affine function f(~x) is nonnegative everywhere in D iff it is a positive affine
combination:

f(~x) = λ0 + ~λT (A~x +~b), with λ0 ≥ 0 and ~λT ≥ ~0,

where λ0 and ~λT are called Farkas multipliers.

As an illustration, let us consider an affine function f(x) = ax + b, supposed to be non-
negative everywhere in the domain [1, 3]. To find the constraints that a and b have to satisfy is
geometrically simple: if a > 0 then every function f(x) = ax + b with b ≥ −a is non-negative in
[1, 3], and if a < 0 then we must have b ≥ −3a (see Figure A.1). We can use Farkas Lemma to
find these constraints algebraically. The domain D is defined by the following inequalities

D :
{

x − 1 ≥ 0
−x + 3 ≥ 0

Thus according to the Lemma, f(x) is nonnegative everywhere in this domain if and only if
f(x) = λ0 + λ1(x − 1) + λ2(3 − x) where λ0 ≥ 0, λ1 ≥ 0 and λ2 ≥ 0. The we can equate the
coefficients of the components of f(x) and build the constraint system:

λ1 − λ2 = a
λ0 − λ1 + 3λ2 = b
λ0 ≥ 0

λ1 ≥ 0
λ2 ≥ 0

Then we can use the Fourier-Motzkin elimination method to remove the λi from the constraint
system as described in Section 1.7. First, we eliminate λ0:

45

46

1
0

2 3
b=−a

b=−3a

a>0 => b>=−a

a<0 => b>=−3a

f(x)

x

Figure A.1: Geometric example of Farkas Lemma


λ1 − λ2 = a
λ1 − 3λ2 ≥ −b
λ1 ≥ 0

λ2 ≥ 0

then we eliminate λ1:  λ2 ≥ −a
−2λ2 ≥ −a− b

λ2 ≥ 0

hence the range of the last variable is

a + b ≥ 2λ2 ≥ max(0,−2a)

we deduce that the constraint on a and b is a + b ≥ max(0,−2a) which is clearly equivalent to
the result of our geometric reasoning.

Appendix B

Complete Experimental Results

We made several tests to compare our approach, taking into account only the legal schedules,
to considering every schedules and filter legal ones thanks to a legality check, as Long et al.
suggests [27]. We used different compute-intensive kernel benchmarks coming from various
origins and listed in Figure B.1. h264 is a fractional sample interpolation of the H.264 stan-
dard [45]. fir and fft are DSP kernels extracted from UTDSP benchmark suite [45]. lu,
gauss, crout and matmul are well known mathematical kernels corresponding to LU factor-
ization, Gaussian elimination, Crout matrix decomposition and matrix-matrix multiply. MVT is
a kernel including two matrix-vector multiplies, one matrix being the transposition of the other.
locality is an hand-written memory access intensive kernel.

These kernels are typically small, from 2 to 17 statements. They are quite well adapted to the
present study since first, they should not challenge present production compiler optimization
schemes, and second, they will make it possible to achieve an exhaustive visit of our search
space which is necessary to evaluate the potential of the method and to design heuristic tech-
niques. Dealing with larger benchmarks presents some technical difficulties. First, every SCoP
do not have a one-dimensional schedule and some preprocessing (such as using a single as-
signment form) may be necessary. We still not have tools to apply such preprocessing or even
to extract useful program informations automatically (iteration domains, subscript functions,
etc.) from the source code. The GRAPHITE framework inside GCC should soon provide such
a facility and allow us to enlarge our benchmark set [32].

The results of our study on the search spaces are summarized in Figure B.1. The first column
presents the various kernel benchmarks; the second one labeled #Dep. precises the number of
dependence sets for the corresponding kernel; ~ı-Bounds gives the iterator coefficient bounds
used for search space bounding; ~p-Bounds gives the parameter coefficient bounds; c-Bounds
gives the constant coefficient bounds; #Schedules gives the total number of schedules, includ-
ing illegal ones; #Legal gives the number of actual schedules in our space, i.e. the number of
legal schedules; lastly Time precises the search space computation time on a Pentium 4 Xeon,
3.2GHz.

Results shows the very high benefit to work directly on a space including only legal trans-
formations since it lowers the number of considered transformations by one to many orders of
magnitude for a quite acceptable computation time. On the contrary, these results shows that
without such a politic, achieving an exhaustive search is not possible even for small kernels.
While these results shows profitability, it is not a demonstration of scalability, in the following
we will propose to actually visit the search space exhaustively or using an heuristic way.

Our iterative optimization scheme is independent from the compiler and may be seen as a

47

48

Kernel Benchmark #Dep. ~ı-Bounds ~p-Bounds c-Bounds #Schedules #Legal Time
h264 15 −1, 1 −1, 1 0, 4 3165 360 0.011

fir 12 −1, 1 −1, 1 −1, 1 4.78× 106 432 0.004

fft 36 −2, 2 −2, 2 0, 6 5.8× 1025 804 0.079

lu 14 0, 1 0, 1 0, 1 3.2× 104 1280 0.005

gauss 18 −1, 1 −1, 1 −1, 1 5.9× 104 506 0.021

crout 26 −3, 3 −3, 3 −3, 3 2.3× 1014 798 0.027

matmult 7 −1, 1 −1, 1 −1, 1 19683 912 0.003

MVT 10 −1, 1 −1, 1 −1, 1 4.7× 106 16641 0.001

locality 2 −1, 1 −1, 1 −1, 1 59049 6561 0.001

Figure B.1: Search Space Computation

higher level to classical iterative compilation. In the same way as a given program transforma-
tion may better exploit a feature of a given processor, it also may enable more aggressive options
of a given compiler. Because production compilers have to generate a target code in any case in
a reasonable amount of time, their optimizations are very fragile, i.e. a slight difference in the
source code may enable or forbid a given optimization phase.

To study this behavior and estimating how a higher level iterative optimization scheme
may lead to better performances, we achieved a exhaustive scan of our search space for vari-
ous programs and compilers with aggressive optimization options. We illustrate our results in
Figure B.2.

We implemented tools for dependence analysis, legal transformation space construction and
scanning. We used for that purpose external publicly available tools as PipLib, a linear algebra
tool [15] and CLooG, a code generator in the polyhedral model [5]. We designed our tools to be
able to use them as a plugin in the future GRAPHITE GCC’s polyhedral framework [32].

We ran our experiments on an Intel workstation based on Xeon 3.2GHz, 8KB L1, 512KB L2
caches. We used four different compilers: GCC 3.4.2, GCC 4.1.1, Intel ICC 9.0.1 and PathScale
EKOPath 2.5. We used hardware counters to measure the number of cycles used by various
programs. In order to avoid interferences with other programs and the system, we set the
system scheduler policy to FIFO for every test.

Because our search space is only based on legal solutions, the acceptable number of solutions
for our various kernel benchmarks makes it possible to achieve an exhaustive search in a rea-
sonable amount of time. Figure B.2 summarizes our results. The Benchmark column states the
input original program; the Compiler column shows the compiler used to build each program
version of the search space (GCC version was 4.1.1); the Options column precises the compiler
options; the Parameters column gives the values of the global parameters (for instance the
array sizes); the Improved column shows the number of transformations that achieves a better
performance than the original program (the total number of versions is shown in Figure B.1);
the ID best gives the “number” of the best solution; lastly, the Speedup column gives the
speedup achieved by the best solution with respect to the original program performance.

49 Complete Experimental Results

Benchmark Compiler Options Parameters #Improved ID best Speedup
h264 PathCC -Ofast none 11 352 36.1%
h264 GCC -O2 none 19 234 13.3%
h264 GCC -O3 none 26 250 25.0%
h264 ICC -O2 none 27 290 12.9%
h264 ICC -fast none 0 N/A 0%
fir PathCC -Ofast N=150000 240 72 6.0%
fir GCC -O2 N=150000 259 192 15.2%
fir GCC -O3 N=150000 119 289 13.2%
fir ICC -O2 N=150000 420 242 18.4%
fir ICC -fast N=150000 315 392 3.4%
fft PathCC -O2 N=256 M=256 O=8 21 267 7.2%
fft GCC -O2 N=256 M=256 O=8 10 285 0.9%
fft GCC -O3 N=256 M=256 O=8 11 289 1.8%
fft ICC -O2 N=256 M=256 O=8 17 260 6.9%
fft ICC -fast N=256 M=256 O=8 20 112 6.4%
lu PathCC -Ofast N=1000 100 224 6.5%
lu GCC -O2 N=1000 321 339 1.6%
lu GCC -O3 N=1000 330 337 3.9%
lu ICC -O2 N=1000 281 770 9.0%
lu ICC -fast N=1000 262 869 8.7%
gauss PathCC -Ofast N=150 212 4 3.1%
gauss GCC -O2 N=150 204 2 1.7%
gauss GCC -O3 N=150 52 2 0.01%
gauss ICC -O2 N=150 63 288 0.05%
gauss ICC -fast N=150 15 39 0.03%
crout PathCC -Ofast N=150 0 N/A 0%
crout GCC -O2 N=150 132 638 3.6%
crout GCC -O3 N=150 56 628 1.7%
crout ICC -O2 N=150 37 625 0.5%
crout ICC -fast N=150 63 628 2.9%
matmul PathCC -Ofast N=250 402 283 308.1%
matmul GCC -O2 N=250 318 284 38.6%
matmul GCC -O3 N=250 345 270 49.0%
matmul ICC -O2 N=250 390 311 56.6%
matmul ICC -fast N=250 318 641 645.4%
MVT PathCC -Ofast N=2000 5652 4934 27.4%
MVT GCC -O2 N=2000 3526 13301 18.0%
MVT GCC -O3 N=2000 3601 13320 21.2%
MVT ICC -O2 N=2000 5826 14093 24.0%
MVT ICC -fast N=2000 5966 4879 29.1%
locality PathCC -Ofast N=10000, M=2000 6069 5430 47.7%
locality GCC -O2 N=10000, M=2000 30 5494 19.0%
locality GCC -O3 N=10000, M=2000 589 4332 6.0%
locality ICC -O2 N=10000, M=2000 3269 2956 38.4%
locality ICC -fast N=10000, M=2000 4614 3039 54.3%

Figure B.2: Search Space Statistics

50

Glossary

C

Candl Chunky Analyzer for Dependences in Loops library.

F

FIFO Firt In First Out (scheduler policy).

FM Fourier-Motzkin library.

I

integer lattice The ordered set of all integer vectors of dimension n.

L

LetSee LEgal Transformation SpacE Explorator library.

P

polyhedron A set of affine inequalities representing a convex (possibly finite) set of dimension
n of points (points may be in Z, R, Q, . . .). A polyhedron can be parameterized.

projection Polyhedral operation which consists in geometrically projecting a space of dimen-
sion n to a space of dimension m where m ≤ n.

S

statement Atomic element handled in the polyhedral model. It is described by a number of
executions and which (array) elements are read and written. There is no particular
informations on which operations are actually executed.

51

Index

C
Complexity

Fourier-Motzkin . 27
Legal space computation 21
Modified Fourier-Motzkin.28

D
Dependence . 14

Definition . 14
Dependence polyhedron 14

Distribution . 17

F
Farkas Lemma . 19, 45
Fourier-Motzkin . 23

Base algorithm . 24
Formal description . 23
Modified algorithm 26

Fusion . 17

H
Heuristic . 35

Decoupling heuristic 35
Random heuristic . 36

I
Index-Set Splitting . 17
Interchange . 17
Iteration domain . 14

L
Legal space

Construction algorithm 20
Distribution . 32
Formal definition . 17

LetSee . 29

P
Peeling . 17
Polyhedral model . 12

Polyhedral projection . 22
Global redundancy . 25
Local redundancy . 25

R
References see Static references
Reversal . 17

S
Schedule . 15

Affine schedule . 15
Legal schedule . 16
Multidimensional schedule 15, 16, 37
One-dimensional schedule 15, 17

Shifting . 17
Skewing . 17
Static Control Parts . 12
Static references . 12

T
Transformation . 16

U
Unimodular transformation see

Transformation

52

	List of Figures
	List of Algorithms
	List of Programs
	1 Technical Report
	1.1 Introduction
	1.2 Motivation
	1.3 Related Work
	1.4 Polyhedral Representation of Programs
	1.4.1 Static Control Parts
	1.4.2 Iteration Domain
	1.4.3 Dependence Expression
	1.4.4 Scheduling a Program
	1.4.5 Transformations in the Polyhedral Model

	1.5 Affine Monodimensional Schedules
	1.5.1 Legal Affine Schedules Set

	1.6 Legal Transformation Space Computation
	1.6.1 The Algorithm
	1.6.2 Discussions

	1.7 Polyhedral Projections
	1.7.1 Fourier-Motzkin Elimination
	1.7.2 Redundancy Reduction
	1.7.3 Complexity Issues

	1.8 Experimental Results
	1.8.1 Experimental Protocol
	1.8.2 Legal Transformation Space Exploration
	1.8.3 Performance Distribution
	1.8.4 The Compiler as an Element of the Target Platform
	1.8.5 Discussions
	1.8.6 Heuristic Traversal of the Optimization Space

	1.9 Future Work
	1.9.1 Affine Multidimensional Schedules
	1.9.2 Exploration of the Legal Transformation Space
	1.9.3 Improving the Legal Space Computation
	1.9.4 Projection Algorithm
	1.9.5 Scalability and Integration
	1.9.6 Parallelism

	1.10 Conclusion

	Bibliography
	A Affine Form of Farkas Lemma
	B Complete Experimental Results
	Glossary
	Index

