
Iterative Optimization in the Polyhedral Model

Louis-Noël Pouchet

ALCHEMY group, INRIA Saclay / University of Paris-Sud 11, France

January 18th, 2010

Ph.D Defense

Introduction: ALCHEMY group

A Brief History...

I A Quick look backward:
I 20 years ago: 80486 (1.2 M trans., 25 MHz, 8 kB cache)
I 10 years ago: Pentium 4 (42 M trans., 1.4 GHz, 256 kB cache, SSE)
I 7 years ago: Pentium 4EE (169 M trans., 3.8 GHz, 2 Mo cache, SSE2)
I 4 years ago: Core 2 Duo (291 M trans., 3.2 GHz, 4 Mo cache, SSE3)
I 1 years ago: Core i7 Quad (781 M trans., 3.2 GHz, 8 Mo cache, SSE4)

I Memory Wall: 400 MHz FSB speed vs 3+ GHz processor speed
I Power Wall: going multi-core, "slowing" processor speed
I Heterogeneous: CPU(s) + accelerators (GPUs, FPGA, etc.)

Compilers are facing a much harder challenge

ALCHEMY, INRIA Saclay 2

Introduction: ALCHEMY group

A Brief History...

I A Quick look backward:
I 20 years ago: 80486 (1.2 M trans., 25 MHz, 8 kB cache)
I 10 years ago: Pentium 4 (42 M trans., 1.4 GHz, 256 kB cache, SSE)
I 7 years ago: Pentium 4EE (169 M trans., 3.8 GHz, 2 Mo cache, SSE2)
I 4 years ago: Core 2 Duo (291 M trans., 3.2 GHz, 4 Mo cache, SSE3)
I 1 years ago: Core i7 Quad (781 M trans., 3.2 GHz, 8 Mo cache, SSE4)

I Memory Wall: 400 MHz FSB speed vs 3+ GHz processor speed
I Power Wall: going multi-core, "slowing" processor speed
I Heterogeneous: CPU(s) + accelerators (GPUs, FPGA, etc.)

Compilers are facing a much harder challenge

ALCHEMY, INRIA Saclay 2

Introduction: ALCHEMY group

Important Issues

I New architecture → New high-performance libraries needed

I New architecture → New optimization flow needed

I Architecture complexity/diversity increases faster than optimization
progress

I Traditional approaches are not oriented towards performance
portability. . .

We need a portable optimization process

ALCHEMY, INRIA Saclay 3

Introduction: ALCHEMY group

Important Issues

I New architecture → New high-performance libraries needed

I New architecture → New optimization flow needed

I Architecture complexity/diversity increases faster than optimization
progress

I Traditional approaches are not oriented towards performance
portability. . .

We need a portable optimization process

ALCHEMY, INRIA Saclay 3

Introduction: ALCHEMY group

The Optimization Problem

Architectural
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for
architecture 2

Code for
architecture 1

Code for
architecture N.........

ALCHEMY, INRIA Saclay 4

Introduction: ALCHEMY group

The Optimization Problem

Architectural
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for
architecture 2

Code for
architecture 1

Code for
architecture N.........

 locality improvement,
= vectorization,
 parallelization, etc...

ALCHEMY, INRIA Saclay 4

Introduction: ALCHEMY group

The Optimization Problem

Architectural
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for
architecture 2

Code for
architecture 1

Code for
architecture N.........

 parameter tuning,
= phase ordering,
 etc...

ALCHEMY, INRIA Saclay 4

Introduction: ALCHEMY group

The Optimization Problem

Architectural
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for
architecture 2

Code for
architecture 1

Code for
architecture N.........

 pattern recognition,
= hand-tuned kernel codes,
 etc...

ALCHEMY, INRIA Saclay 4

Introduction: ALCHEMY group

The Optimization Problem

Architectural
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for
architecture 2

Code for
architecture 1

Code for
architecture N.........

= Auto-tuning libraries

ALCHEMY, INRIA Saclay 4

Introduction: ALCHEMY group

The Optimization Problem

Architectural
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for
architecture 2

Code for
architecture 1

Code for
architecture N.........

Our approach:
build an expressive

set of program versions

In reality, there is a complex interplay between all components

ALCHEMY, INRIA Saclay 4

Introduction: ALCHEMY group

Iterative Optimization Flow

Input
code Optimization 1 Optimization N.........Optimization 2

High-level transformations

CompilerTarget
code

Program version = result of a sequence of loop transformation

ALCHEMY, INRIA Saclay 5

Introduction: ALCHEMY group

Iterative Optimization Flow

Input
code

CompilerTarget
code

Set of
program
versions

Program version = result of a sequence of loop transformation

ALCHEMY, INRIA Saclay 5

Introduction: ALCHEMY group

Iterative Optimization Flow

Input
code

CompilerTarget
codeRun

Space
explorer

Final
code

Set of
program
versions

Program version = result of a sequence of loop transformation

ALCHEMY, INRIA Saclay 5

Introduction: ALCHEMY group

Other Iterative Frameworks

I Focus usually on composing existing compiler flags/passes
I Optimization flags [Bodin et al.,PFDC98] [Fursin et al.,CGO06]
I Phase ordering [Kulkarni et al.,TACO05]
I Auto-tuning libraries (ATLAS, FFTW, ...)

I Others attempt to select a transformation sequence
I SPIRAL [Püschel et al.,HPEC00]
I Within UTF [Long and Fursin,ICPPW05], GAPS [Nisbet,HPCN98]
I CHiLL [Hall et al.,USCRR08], POET [Yi et al.,LCPC07], etc.
I URUK [Girbal et al.,IJPP06]

I Capability proven for efficient optimization

I Limited in applicability (legality)

I Limited in expressiveness (mostly simple sequences)

I Traversal efficiency compromised (uniqueness)

ALCHEMY, INRIA Saclay 6

Introduction: ALCHEMY group

Other Iterative Frameworks

I Focus usually on composing existing compiler flags/passes
I Optimization flags [Bodin et al.,PFDC98] [Fursin et al.,CGO06]
I Phase ordering [Kulkarni et al.,TACO05]
I Auto-tuning libraries (ATLAS, FFTW, ...)

I Others attempt to select a transformation sequence
I SPIRAL [Püschel et al.,HPEC00]
I Within UTF [Long and Fursin,ICPPW05], GAPS [Nisbet,HPCN98]
I CHiLL [Hall et al.,USCRR08], POET [Yi et al.,LCPC07], etc.
I URUK [Girbal et al.,IJPP06]

I Capability proven for efficient optimization

I Limited in applicability (legality)

I Limited in expressiveness (mostly simple sequences)

I Traversal efficiency compromised (uniqueness)

ALCHEMY, INRIA Saclay 6

Introduction: ALCHEMY group

Our Approach: Set of Polyhedral Optimizations

What matters is the result of the application of optimizations, not the
optimization sequence

All-in-one approach: [Pouchet et al.,CGO07/PLDI08]
I Legality: semantics is always preserved
I Uniqueness: all versions of the set are distinct
I Expressiveness: a version is the result of an arbitrarily complex

sequence of loop transformation

I Completion algorithm to instantiate a legal version from a partially
specified one

I Dedicated traversal heuristics to focus the search

ALCHEMY, INRIA Saclay 7

Outline: ALCHEMY group

1 The Polyhedral Model

2 Search Space Construction and Evaluation

3 Search Space Traversal

4 Interleaving Selection

5 Conclusions and Future Work

ALCHEMY, INRIA Saclay 8

The Polyhedral Model: ALCHEMY group

The Polyhedral Model

ALCHEMY, INRIA Saclay 9

The Polyhedral Model: ALCHEMY group

The Polyhedral Model vs Syntactic Frameworks

Limitations of standard syntactic frameworks:
I Composition of transformations may be tedious
I Approximate dependence analysis

I Miss optimization opportunities
I Scalable optimization algorithms

The polyhedral model:

I Works on executed statement instances, finest granularity

I Model arbitrary compositions of transformations

I Requires computationally expensive algorithms

ALCHEMY, INRIA Saclay 10

The Polyhedral Model: ALCHEMY group

A Three-Stage Process

1 Analysis: from code to model

→ Existing prototype tools (some developed during this thesis)
I PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
I URUK, Omega, Loopo, . . .

→ GCC GRAPHITE (now in mainstream)

→ Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model

→ Build and select a program transformation

3 Code generation: from model to code

→ "Apply" the transformation in the model

→ Regenerate syntactic (AST-based) code

ALCHEMY, INRIA Saclay 11

The Polyhedral Model: ALCHEMY group

A Three-Stage Process

1 Analysis: from code to model

→ Existing prototype tools (some developed during this thesis)
I PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
I URUK, Omega, Loopo, . . .

→ GCC GRAPHITE (now in mainstream)

→ Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model

→ Build and select a program transformation

3 Code generation: from model to code

→ "Apply" the transformation in the model

→ Regenerate syntactic (AST-based) code

ALCHEMY, INRIA Saclay 11

The Polyhedral Model: ALCHEMY group

A Three-Stage Process

1 Analysis: from code to model

→ Existing prototype tools (some developed during this thesis)
I PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
I URUK, Omega, Loopo, . . .

→ GCC GRAPHITE (now in mainstream)

→ Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model

→ Build and select a program transformation

3 Code generation: from model to code

→ "Apply" the transformation in the model

→ Regenerate syntactic (AST-based) code

ALCHEMY, INRIA Saclay 11

The Polyhedral Model: ALCHEMY group

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)

ALCHEMY, INRIA Saclay 12

The Polyhedral Model: ALCHEMY group

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra

for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...

DS1 =


1 0 0 −1

−1 0 1 0
0 1 0 −1

−1 0 1 0
−1 −1 1 2

 .


i
j
n
1

≥~0

ALCHEMY, INRIA Saclay 12

The Polyhedral Model: ALCHEMY group

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p

for (i=0; i<n; ++i) {
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];

}

fs(~xS2) =
[

1 0 0 0
]
.

 ~xS2
n
1



fa(~xS2) =
[

1 0 0 0
0 1 0 0

]
.

 ~xS2
n
1



fx(~xS2) =
[

0 1 0 0
]
.

 ~xS2
n
1


ALCHEMY, INRIA Saclay 12

The Polyhedral Model: ALCHEMY group

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p
I Data dependence between S1 and S2: a subset of the Cartesian

product of DS1 and DS2 (exact analysis)

for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;

}

DS1δS2 :



1 −1 0 0
1 0 0 −1

−1 0 0 3
0 1 0 −1
0 −1 0 3
0 0 1 −1
0 0 −1 3


.


iS1
iS2
jS2
1

 = 0

≥~0

i

S1 iterations

S2 iterations

ALCHEMY, INRIA Saclay 12

The Polyhedral Model: ALCHEMY group

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

ALCHEMY, INRIA Saclay 13

The Polyhedral Model: ALCHEMY group

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

ALCHEMY, INRIA Saclay 13

The Polyhedral Model: ALCHEMY group

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

ALCHEMY, INRIA Saclay 13

The Polyhedral Model: ALCHEMY group

Program Transformations

Distribute loops

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 1 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
for (k = 0; k < n; ++k)
C[i-n][j] += A[i-n][k]*

B[k][j];

I All instances of S1 are executed before the first S2 instance

ALCHEMY, INRIA Saclay 13

The Polyhedral Model: ALCHEMY group

Program Transformations

Distribute loops + Interchange loops for S2

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 0
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I The outer-most loop for S2 becomes k

ALCHEMY, INRIA Saclay 13

The Polyhedral Model: ALCHEMY group

Program Transformations

Illegal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (k = 0; k < n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k]*

B[k][j];
for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i-n][j] = 0;

I All instances of S1 are executed after the last S2 instance

ALCHEMY, INRIA Saclay 13

The Polyhedral Model: ALCHEMY group

Program Transformations

A legal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

I Delay the S2 instances
I Constraints must be expressed between ΘS1 and ΘS2

ALCHEMY, INRIA Saclay 13

The Polyhedral Model: ALCHEMY group

Program Transformations

Implicit fine-grain parallelism

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 = (1 0 0 0) .

 i
j
n
1



Θ
S2.~xS2 = (0 0 1 1 0) .


i
j
k
n
1



for (i = 0; i < n; ++i)
pfor (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
pfor (j = 0; j < n; ++j)

pfor (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I Number of rows of Θ ↔ number of outer-most sequential loops

ALCHEMY, INRIA Saclay 13

The Polyhedral Model: ALCHEMY group

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

(1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

(i j i j k n n 1 1)T

~p

ALCHEMY, INRIA Saclay 13

The Polyhedral Model: ALCHEMY group

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

(1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

(i j i j k n n 1 1)T

0 0

~ı

0 0 0

~p

0

c

0

ALCHEMY, INRIA Saclay 13

The Polyhedral Model: ALCHEMY group

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Transformation Description

~ı
reversal Changes the direction in which a loop traverses its iteration range
skewing Makes the bounds of a given loop depend on an outer loop counter

interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation

~p fusion Fuses two loops, a.k.a. jamming
distribution Splits a single loop nest into many, a.k.a. fission or splitting

c peeling Extracts one iteration of a given loop
shifting Allows to reorder loops

ALCHEMY, INRIA Saclay 13

The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

ALCHEMY, INRIA Saclay 14

The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

Property (Causality condition for schedules)

Given RδS, θR and θS are legal iff for each pair of instances in dependence:

θR(~xR) < θS(~xS)

Equivalently: ∆R,S = θS(~xS)−θR(~xR)−1≥ 0

ALCHEMY, INRIA Saclay 14

The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Lemma (Affine form of Farkas lemma)

Let D be a nonempty polyhedron defined by A~x+~b≥~0. Then any affine function f (~x)
is non-negative everywhere in D iff it is a positive affine combination:

f (~x) = λ0 +~λT(A~x+~b), with λ0 ≥ 0 and~λ≥~0.

λ0 and ~λT are called the Farkas multipliers.

ALCHEMY, INRIA Saclay 14

The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

ALCHEMY, INRIA Saclay 14

The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

Many to one

ALCHEMY, INRIA Saclay 14

The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

θS(~xS)−θR(~xR)−1 = λ0 +~λT
(

DR,S

(
~xR

~xS

)
+~dR,S

)
≥ 0


DRδS iR : λD1,1 −λD1,2 +λD1,3 −λD1,4

iS : −λD1,1 +λD1,2 +λD1,5 −λD1,6

jS : λD1,7 −λD1,8

n : λD1,4 +λD1,6 +λD1,8

1 : λD1,0

ALCHEMY, INRIA Saclay 14

The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

θS(~xS)−θR(~xR)−1 = λ0 +~λT
(

DR,S

(
~xR
~xS

)
+~dR,S

)
≥ 0


DRδS iR : −t1R = λD1,1 −λD1,2 +λD1,3 −λD1,4

iS : t1S = −λD1,1 +λD1,2 +λD1,5 −λD1,6

jS : t2S = λD1,7 −λD1,8

n : t3S − t2R = λD1,4 +λD1,6 +λD1,8

1 : t4S − t3R −1 = λD1,0

ALCHEMY, INRIA Saclay 14

The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

- Projection

I Solve the constraint system
I Use (purpose-optimized) Fourier-Motzkin projection algorithm

I Reduce redundancy
I Detect implicit equalities

ALCHEMY, INRIA Saclay 14

The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Valid

Transformation

Coefficients

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

- Projection

ALCHEMY, INRIA Saclay 14

The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Valid

Transformation

Coefficients

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

Bijection

- Identification

- Projection

I One point in the space ⇔ one set of legal schedules
w.r.t. the dependences

I These conditions for semantics preservation are not new! [Feautrier,92]
I But never coupled with iterative search before

ALCHEMY, INRIA Saclay 14

The Polyhedral Model: ALCHEMY group

Generalization to Multidimensional Schedules

p-dimensional schedule is not p × 1-dimensional schedule:
I Once a dependence is strongly satisfied ("loop"-carried), must be

discarded in subsequent dimensions
I Until it is strongly satisfied, must be respected ("non-negative")

→ Combinatorial problem: lexicopositivity of dependence satisfaction

A solution:
I Encode dependence satisfaction with decision variables [Feautrier,92]

ΘS
k(~xS)−ΘR

k (~xR)≥ δ, δ ∈ {0,1}
I Bound schedule coefficients, and nullify the precedence constraint when

needed [Vasilache,07]

ALCHEMY, INRIA Saclay 15

The Polyhedral Model: ALCHEMY group

Legality as an Affine Constraint

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1 (1)

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S, (2)

Θ
S
p(~xS)−Θ

R
p (~xR)≥−

p−1

∑
k=1

δ
DR,S
k .(K.~n+K)+δ

DR,S
p

→ Note: schedule coefficients must be bounded for Lemma to hold

→ Severe scalability challenge for large programs

ALCHEMY, INRIA Saclay 16

Search Space Construction and Evaluation: ALCHEMY group

Search Space Construction and Evaluation

ALCHEMY, INRIA Saclay 17

Search Space Construction and Evaluation: ALCHEMY group

Objectives for the Search Space Construction

I Provide scalable techniques to construct the search space

I Adapt the space construction to the machine specifics (esp. parallelism)

I Search space is infinite: requires appropriate bounding

I Expressiveness: allow for a rich set of transformations sequences

I Compiler optimization heuristics are fragile, manage it!

ALCHEMY, INRIA Saclay 18

Search Space Construction and Evaluation: ALCHEMY group

Overview of the Proposed Approach

1 Build a convex set of candidate program versions
I Affine set of schedule coefficients
I Enforce legality and uniqueness as affine constraints

2 Shape this set to a form which allows an efficient traversal
I Redundancy-less Fourier-Motzkin elimination algorithm
I Force FM-property by applying Fourier-Motzkin elim. on the set

3 Traverse the set
I Exhaustively, for performance analysis
I Heuristically, for scalability

ALCHEMY, INRIA Saclay 19

Search Space Construction and Evaluation: ALCHEMY group

Search Space Construction

Principle: Feautrier’s + coefficient bounding
Output: 1 independent polytope per schedule dimension

Algorithm

Init: Set all dependencies as unresolved
1 k = 1
2 Set Tk as the polytope of valid schedules with all unresolved

dependencies weakly satisfied (i.e., set δ = 0)
3 For each unresolved dependence DR,S:

1 build SDR,S the set of schedules strongly satisfying DR,S (i.e., set δ = 1)

2 T ′

k = Tk
T

SDR,S

3 if T ′

k 6= /0, Tk = T ′

k . Mark DR,S as resolved

4 If unresolved dependence remains, increment k and go to 1

ALCHEMY, INRIA Saclay 20

Search Space Construction and Evaluation: ALCHEMY group

Some Properties of the Algorithm

I Without bounding, equivalent to Feautrier’s genuine scheduling
algorithm

I With bounding, sensitive to the dependence traversal order
I Heuristics to select the dependence order: pairwise interference, traffic

ranking, etc.
I May also search for different orders

I May not minimize the schedule dimensionality
I Outer dimensions (i.e., outer loops) are more constrained
I Inner dimensions tend to be parallel, if possible (SIMD friendly)

ALCHEMY, INRIA Saclay 21

Search Space Construction and Evaluation: ALCHEMY group

Search Space Size

I Bound each coefficient between [−1,1] to avoid complex control
overhead and drive the search

Benchmark #Inst. #Dep. #Dim. dim 1 dim 2 dim 3 dim 4 Total

compress 6 56 3 20 136 10857025 n/a 2.9×1010

edge 3 30 4 27 54 90534 43046721 5.6×1015

iir 8 66 3 18 6984 > 1015 n/a > 1019

fir 4 36 2 18 52953 n/a n/a 9.5×107

lmsfir 9 112 2 27 10534223 n/a n/a 2.8×108

mult 3 27 3 9 27 3295 n/a 8.0×105

latnrm 11 75 3 9 1896502 > 1015 n/a > 1022

lpc-LPC_analysis 12 85 2 63594 > 1020 n/a n/a > 1025

ludcmp 14 187 3 36 > 1020 > 1025 n/a > 1046

radar 17 153 3 400 > 1020 > 1025 n/a > 1048

Figure: Search Space Statistics

ALCHEMY, INRIA Saclay 22

Search Space Construction and Evaluation: ALCHEMY group

Performance Distribution for 1-D Schedules [1/2]

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

Transformation identifier

matmult

original

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 1000 2000 3000 4000 5000 6000 7000

C
yc

le
s

Transformation identifier

locality

original

Figure: Performance distribution for matmult and locality

ALCHEMY, INRIA Saclay 23

Search Space Construction and Evaluation: ALCHEMY group

Performance Distribution for 1-D Schedules [2/2]

 1.26e+09

 1.28e+09

 1.3e+09

 1.32e+09

 1.34e+09

 1.36e+09

 1.38e+09

 1.4e+09

 1.42e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

Transformation identifier

crout

original

(a) GCC -O3

 1.26e+09

 1.27e+09

 1.28e+09

 1.29e+09

 1.3e+09

 1.31e+09

 1.32e+09

 1.33e+09

 1.34e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

Transformation identifier

crout

original

original

(b) ICC -fast

Figure: The effect of the compiler

ALCHEMY, INRIA Saclay 24

Search Space Construction and Evaluation: ALCHEMY group

Quantitative Analysis: The Hypothesis

Extremely large generated spaces: > 1050 points

→ we must leverage static and dynamic characteristics to build traversal
mechanisms

Hypothesis: [Pouchet et al,SMART08]
I It is possible to statically order the impact on performance of

transformation coefficients, that is, decompose the search space in
subspaces where the performance variation is maximal or reduced

I First rows of Θ are more performance impacting than the last ones

ALCHEMY, INRIA Saclay 25

Search Space Construction and Evaluation: ALCHEMY group

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst for (i = 0; i < M; i++)
for (j = 0; j < M; j++) {
tmp[i][j] = 0.0;
for (k = 0; k < M; k++)
tmp[i][j] += block[i][k] *

cos1[j][k];
}

for (i = 0; i < M; i++)
for (j = 0; j < M; j++) {
sum2 = 0.0;
for (k = 0; k < M; k++)
sum2 += cos1[i][k] * tmp[k][j];
block[i][j] = ROUND(sum2);

}

I Extensive study of 8x8 Discrete Cosine Transform (UTDSP)
I Search space analyzed: 66×19683 = 1.29×106 different legal

program versions

ALCHEMY, INRIA Saclay 26

Search Space Construction and Evaluation: ALCHEMY group

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst

Θ :




I Extensive study of 8x8 Discrete Cosine Transform (UTDSP)
I Search space analyzed: 66×19683 = 1.29×106 different legal

program versions

ALCHEMY, INRIA Saclay 26

Search Space Construction and Evaluation: ALCHEMY group

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst
I best
I average
I worst

I Take one specific value for the first row
I Try the 19863 possible values for the second row

I Very low proportion of best points: < 0.02%

ALCHEMY, INRIA Saclay 26

Search Space Construction and Evaluation: ALCHEMY group

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Point index of the second schedule dimension, first one fixed

Performance distribution (sorted) - 8x8 DCT

I Take one specific value for the first row
I Try the 19863 possible values for the second row
I Very low proportion of best points: < 0.02%

ALCHEMY, INRIA Saclay 26

Search Space Construction and Evaluation: ALCHEMY group

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst Large performance variation

I Performance variation is large for good values of the first row

I It is usually reduced for bad values of the first row

ALCHEMY, INRIA Saclay 26

Search Space Construction and Evaluation: ALCHEMY group

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst Small performance variation

I Performance variation is large for good values of the first row
I It is usually reduced for bad values of the first row

ALCHEMY, INRIA Saclay 26

Search Space Construction and Evaluation: ALCHEMY group

Scanning The Space of Program Versions

The search space:
I Performance variation indicates to partition the space:~ı >~p > c

I Non-uniform distribution of performance

I No clear analytical property of the optimization function

→ Build dedicated heuristic and genetic operators aware of these static
and dynamic characteristics

ALCHEMY, INRIA Saclay 27

Search Space Traversal: ALCHEMY group

Search Space Traversal

ALCHEMY, INRIA Saclay 28

Search Space Traversal: ALCHEMY group

Objectives for Efficient Traversal

Main goals:
I Enable feedback-directed search
I Focus the search on interesting subspaces

Provide mechanisms to decouple the traversal:
I Leverage our knowledge on the performance distribution
I Leverage static properties of the search space
I Completion mechanism, to instantiate a full schedule from a partial one
I Traversal heuristics adapted to the problem complexity

I Decoupling heuristic: explore first iterator coefficients (deterministic)
I Genetic algorithm: improve further scalability (non-deterministic)

ALCHEMY, INRIA Saclay 29

Search Space Traversal: ALCHEMY group

Some Results for 1-D Schedules

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

M
ax

im
um

 s
pe

ed
up

 a
ch

ie
ve

d
(in

 %
)

Runs

locality

Decoupling
Random

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

M
ax

im
um

 s
pe

ed
up

 a
ch

ie
ve

d
(in

 %
)

Runs

matmult

Decoupling
Random

 65

 70

 75

 80

 85

 90

 95

 100

 2 4 6 8 10 12 14 16 18 20

M
ax

im
um

 s
pe

ed
up

 a
ch

ie
ve

d
(in

 %
)

Runs

mvt

Decoupling
Random

Figure: Comparison between random and decoupling heuristics

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 1000 2000 3000 4000 5000 6000 7000

C
yc

le
s

Transformation identifier

locality

original

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

Transformation identifier

matmult

original

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 1.1e+09

 1.2e+09

 1.3e+09

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
yc

le
s

(M
)

Transfo. ID

matvecttransp

Original

ALCHEMY, INRIA Saclay 30

Search Space Traversal: ALCHEMY group

Inserting Randomness in the Search

About the performance distribution:
I The performance distribution is not uniform
I Wild jump in the space: tune~ı coefficients of upper dimensions
I Refinement: tune~p and~c coefficients

About the space of schedules:
I Highly constrained: small change in~ı may alter many other

coefficients
I Rows are independent: no inter-dimension constraint
I Some transformations (e.g., interchange) must operate between rows

ALCHEMY, INRIA Saclay 31

Search Space Traversal: ALCHEMY group

Genetic Operators

Mutation
I Probability varies along with evolution
I Tailored to focus on the most promising subspaces
I Preserves legality (closed under affine constraints)

Cross-over
I Row cross-over()

+
()

=
()

I Column cross-over()
+

()
=

()

I Both preserve legality

ALCHEMY, INRIA Saclay 32

Search Space Traversal: ALCHEMY group

Dedicated GA Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250 300 350 400 450 500

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Number of runs

GA versus Random - 8x8 DCT

Random
GA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Point index of the second schedule dimension, first one fixed

Performance distribution (sorted) - 8x8 DCT

I GA converges towards the maximal space speedup

ALCHEMY, INRIA Saclay 33

Search Space Traversal: ALCHEMY group

Experimental Results [1/2]

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

dct
edge

iir fir lm
sfir

m
atm

ult

latnrm
lpc ludcm

p

radar
average

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Performance improvement for AMD Athlon64

Heuristic
GA

baseline: gcc -O3 -ftree-vectorize -msse2
ALCHEMY, INRIA Saclay 34

Search Space Traversal: ALCHEMY group

Experimental Results [2/2]

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

dct
edge

iir fir lm
sfir

m
atm

ult

latnrm
lpc ludcm

p

radar
average

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Performance improvement for ST231

Heuristic
GA

baseline: st200cc -O3 -OPT:alias=restrict -mauto-prefetch
ALCHEMY, INRIA Saclay 35

Search Space Traversal: ALCHEMY group

Assessments from Experimental Results

Looking into details (hardware counters+compilation trace):

I Better activity of the processing units

I Best version may vary significantly for different architectures

I Different source code may trigger different compiler optimizations

→ Portability of the optimization process validated w.r.t.
architecture/compiler

I Limitation: poor compatibility with coarse-grain parallelism

Can we reconcile tiling, parallelization, SIMD and iterative search?

ALCHEMY, INRIA Saclay 36

Search Space Traversal: ALCHEMY group

Assessments from Experimental Results

Looking into details (hardware counters+compilation trace):

I Better activity of the processing units

I Best version may vary significantly for different architectures

I Different source code may trigger different compiler optimizations

→ Portability of the optimization process validated w.r.t.
architecture/compiler

I Limitation: poor compatibility with coarse-grain parallelism

Can we reconcile tiling, parallelization, SIMD and iterative search?

ALCHEMY, INRIA Saclay 36

Interleaving Selection: ALCHEMY group

Multidimensional Interleaving Selection

ALCHEMY, INRIA Saclay 37

Interleaving Selection: ALCHEMY group

Overview of the Problem

Objectives:
I Achieve efficient coarse-grain parallelization
I Combine iterative search of profitable transformations for tiling

→ loop fusion and loop distribution

Existing framework: tiling hyperplane [Bondhugula,08]

I Model-driven approach for automatic parallelization + locality
improvement

I Tiling-oriented

I Poor model-driven heuristic for the selection of loop fusion (not portable)

I Overly relaxed definition of fused statements

ALCHEMY, INRIA Saclay 38

Interleaving Selection: ALCHEMY group

Our Strategy in a Nutshell...

1 Introduce the concept of fusability

2 Introduce a modeling for arbitrary loop fusion/distribution combinations
1 Equivalence 1-d interleaving with total preorders
2 Affine encoding of total preorders
3 Generalization to multidimensional interleavings
4 Pruning technique to keep only semantics-preserving ones

3 Design a mixed iterative and model-driven algorithm to build
optimizing transformations

ALCHEMY, INRIA Saclay 39

Interleaving Selection: ALCHEMY group

Fusability of Statements

I Fusion ⇔ interleaving of statement instances
I Two statements are fused if their timestamp overlap

ΘR
k (~xR)≤ΘS

k(~xS)∧ΘS
k(~xS

′)≤ΘR
k (~xR

′)

I Better approach: at most c instances are not fused (approximation)

Definition (Fusability restricted to non-negative schedule coefficients)

Given two statements R,S such that R is surrounded by dR loops, and S by dS

loops. They are fusable at level p if, ∀k ∈ {1 . . .p}, there exists two
semantics-preserving schedules ΘR

k and ΘS
k such that:

(i) ∀k ∈ {1, . . . ,p}, −c < Θ
R
k (~0)−Θ

S
k(~0) < c

(ii)
dR

∑
i=1

θ
R
k,i > 0,

dS

∑
i=1

θ
S
k,i > 0

Exact solution is hard: may require Ehrart polynomials for general case
ALCHEMY, INRIA Saclay 40

Interleaving Selection: ALCHEMY group

Affine Encoding of Total Preorders
Principle: [Pouchet,PhD10]

I Model a total preorder with 3 binary variables
pi,j : i < j si,j : i > j ei,j : i = j

I Enforce totality and mutual exclusion
I Enforce all cases of transitivity through affine inequalities connecting

some variables. Ex: ei,j = 1∧ ej,k = 1⇒ ei,k = 1

O =

 0≤ pi,j ≤ 1
0≤ ei,j ≤ 1
0≤ si,j ≤ 1

 constrained to: O =



0≤ pi,j ≤ 1
}

Variables are
binary0≤ ei,j ≤ 1

pi,j + ei,j ≤ 1
}

Relaxed mutual
exclusion

∀k ∈]j,n] ei,j + ei,k ≤ 1+ ej,k
}

Basic transitivity
on eei,j + ej,k ≤ 1+ ei,k

∀k ∈]i, j[pi,k +pk,j ≤ 1+pi,j

}
Basic transitivity
on p

∀k ∈]j,n] ei,j +pi,k ≤ 1+pj,k
 Complex

transitivity
on p and e

ei,j +pj,k ≤ 1+pi,k
∀k ∈]i, j[ek,j +pi,k ≤ 1+pi,j

∀k ∈]j,n] ei,j +pi,j +pj,k ≤ 1+pi,k + ei,k

 Complex
transitivity
on s and p

ALCHEMY, INRIA Saclay 41

Interleaving Selection: ALCHEMY group

Search Space Statistics
Pruning for semantics preservation (F):

I Start from all total preorders (O)
I Prove when fusability is a transitive relation: equivalent to checking the

existence of pairwise compatible loop permutations
I Check graph of compatible permutations to determine fusable sets,

prune O from non-fusable ones

O F 1

Benchmark #loops #refs #dim #cst #points #dim #cst #points #Tested Time

advect3d 12 32 12 58 75 9 43 26 52 0.82s
atax 4 10 12 58 75 6 25 16 32 0.06s
bicg 3 10 12 58 75 10 52 26 52 0.05s
gemver 7 19 12 58 75 6 28 8 16 0.06s
ludcmp 9 35 182 3003 ≈ 1012 40 443 8 16 0.54s
doitgen 5 7 6 22 13 3 10 4 8 0.08s
varcovar 7 26 42 350 47293 22 193 96 192 0.09s
correl 5 12 30 215 4683 21 162 176 352 0.09s

Figure: Search space statistics

ALCHEMY, INRIA Saclay 42

Interleaving Selection: ALCHEMY group

Optimization Algorithm

I Proceeds level-by-level
I Starting from the outer-most level, iteratively select an interleaving
I For this interleaving, compute an optimization which respects it

I Compound of skewing, shifting, fusion, distribution, interchange, tiling and
parallelization (OpenMP)

I Maximize locality for each partition of statements

I Automatically adapt to the target architecture

I Solid improvement over existing model-driven approach

I Up to 150× speedup on 24 cores, 15× speedup over autopll compiler

ALCHEMY, INRIA Saclay 43

Interleaving Selection: ALCHEMY group

Performance Results for Intel Xeon 24-cores

 0

 1

 2

 3

 4

 5

 6

 7

advect3d

atax
bicg

gem
ver

ludcm
p

doitgen

varcovar

correl

P
er

f.
Im

p
/ i

cc
-p

ar

Performance Improvement - Intel Xeon 7450 (24 threads)

icc-par (baseline)
maxfuse-icc

iter-icc

15.313|

baseline: ICC 11.0 -fast -parallel -fopenmp
ALCHEMY, INRIA Saclay 44

Conclusions and Future Work: ALCHEMY group

Conclusions and Future Work

ALCHEMY, INRIA Saclay 45

Conclusions and Future Work: ALCHEMY group

Summary of Contributions

We have designed, built and experimented all required blocks to perform
an efficient iterative selection of fine-grain loop transformations in the
polyhedral model.

I Theoretically sound and practical iterative optimization algorithms
I Significant increase in expressiveness of iterative techniques
I Well-designed (but complex) problems
I Extensive experimental analysis of the performance distribution
I Subspace-driven traversal techniques for polytopes

I Theoretical framework for generalized fusion
I Practical solution for machine-dependent parallelization + vectorization

+ locality
I Implementation in publicly available tools: PoCC, LetSee, FM, etc.

ALCHEMY, INRIA Saclay 46

Conclusions and Future Work: ALCHEMY group

Future Work: Machine Learning

Machine Learning could improve the scalability:
I Currently, no reuse from previous compilation / space traversal
I Efficiency proved on (simpler) compilation problems

Main issues:
I Fine-grain vs. coarse-grain optimization
I Knowledge representation
I Features for similarity computation

ALCHEMY, INRIA Saclay 47

Conclusions and Future Work: ALCHEMY group

Take-Home Message

Iterative Optimization: the last hope, or a new hope?

I Efficient, more expressive and portable mechanisms can be built

I The polyhedral representation is adaptable to iterative compilation

I Performance-demanding programmers can afford long compilation time

I Still require to execute different codes: not always possible

I Downside of polyhedral expressiveness: algorithmic complexity

Questions:
I Can we increase the accuracy of static models, given the complexity of

modern compilers and chips?
I Can we systematically reach the performance of hand-tuned code with

an automatic approach?

Thank you!

ALCHEMY, INRIA Saclay 48

Conclusions and Future Work: ALCHEMY group

Take-Home Message

Iterative Optimization: the last hope, or a new hope?

I Efficient, more expressive and portable mechanisms can be built

I The polyhedral representation is adaptable to iterative compilation

I Performance-demanding programmers can afford long compilation time

I Still require to execute different codes: not always possible

I Downside of polyhedral expressiveness: algorithmic complexity

Questions:
I Can we increase the accuracy of static models, given the complexity of

modern compilers and chips?
I Can we systematically reach the performance of hand-tuned code with

an automatic approach?

Thank you!

ALCHEMY, INRIA Saclay 48

Supplementary Slides: ALCHEMY group

Supplementary Slides

ALCHEMY, INRIA Saclay 49

Supplementary Slides: ALCHEMY group

Yet Another Completion Algorithm

Principle: [Pouchet et al,PLDI08]
I Rely on a pre-pass to normalize the space (improved full polytope

projection)
I Works in polynomial time w.r.t. the number of constraints in the

normalized space

See also [Li et al,IJPP94] [Griebl,PACT98] [Vasilache,PACT07]...

Three fundamental properties:
1 If v1, . . . ,vk is a prefix of a legal point v, a completion is always found
2 This completion will only update vk+1, . . . ,vdmax , if needed;
3 When v1, . . . ,vk are the~ı coefficients, the heuristic looks for the smallest

absolute value for the~p and c coefficients

ALCHEMY, INRIA Saclay 50

Supplementary Slides: ALCHEMY group

Performance Results for AMD Opteron 16-cores

 0

 1

 2

 3

 4

 5

 6

 7

advect3d

atax
bicg

gem
ver

ludcm
p

doitgen

varcovar

correl

P
er

f.
Im

p
/ i

cc
-p

ar

Performance Improvement - AMD Opteron 8380 (16 threads)

icc-par (baseline)
maxfuse-icc

iter-icc

1414| 1510|

baseline: ICC 11.0 -fast -parallel -fopenmp
ALCHEMY, INRIA Saclay 51

Supplementary Slides: ALCHEMY group

Variability for GEMVER

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t /

 ic
c-

pa
r

Version Index

gemver - Performance Variability

Xeon 7450
Opteron 8380

ALCHEMY, INRIA Saclay 52

Supplementary Slides: ALCHEMY group

Future Work: Knowledge Transfer

Current approach:
I Training: 1 program → 1 effective transformation
I On-line: Compute similarities with existing program, apply the same

transformation

→ Does not work well for fine-grain optimization

Proposed approach:
I Don’t care about the sequence, only about properties of the schedule

(parallelism degree, locality, etc.)
I Learn how to prioritize performance anomaly solving instead
I Rely on the polyhedral model to compute a matching optimization
I Some open problems:

I How to compute (polyhedral) features? They are parametric
I How to compute the optimization (combinatorial decision problem)?

ALCHEMY, INRIA Saclay 53

Supplementary Slides: ALCHEMY group

Future Work: Knowledge Transfer

Current approach:
I Training: 1 program → 1 effective transformation
I On-line: Compute similarities with existing program, apply the same

transformation

→ Does not work well for fine-grain optimization

Proposed approach:
I Don’t care about the sequence, only about properties of the schedule

(parallelism degree, locality, etc.)
I Learn how to prioritize performance anomaly solving instead
I Rely on the polyhedral model to compute a matching optimization
I Some open problems:

I How to compute (polyhedral) features? They are parametric
I How to compute the optimization (combinatorial decision problem)?

ALCHEMY, INRIA Saclay 53

	Introduction
	Outline
	The Polyhedral Model
	Search Space Construction and Evaluation
	Search Space Traversal
	Interleaving Selection
	Conclusions and Future Work
	Supplementary Slides

