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Introduction: ALCHEMY group

A Brief History...

I A Quick look backward:
I 20 years ago: 80486 (1.2 M trans., 25 MHz, 8 kB cache)
I 10 years ago: Pentium 4 (42 M trans., 1.4 GHz, 256 kB cache, SSE)
I 7 years ago: Pentium 4EE (169 M trans., 3.8 GHz, 2 Mo cache, SSE2)
I 4 years ago: Core 2 Duo (291 M trans., 3.2 GHz, 4 Mo cache, SSE3)
I 1 years ago: Core i7 Quad (781 M trans., 3.2 GHz, 8 Mo cache, SSE4)

I Memory Wall: 400 MHz FSB speed vs 3+ GHz processor speed
I Power Wall: going multi-core, "slowing" processor speed
I Heterogeneous: CPU(s) + accelerators (GPUs, FPGA, etc.)

Compilers are facing a much harder challenge
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Introduction: ALCHEMY group

Important Issues

I New architecture → New high-performance libraries needed

I New architecture → New optimization flow needed

I Architecture complexity/diversity increases faster than optimization
progress

I Traditional approaches are not oriented towards performance
portability. . .

We need a portable optimization process

ALCHEMY, INRIA Saclay 3



Introduction: ALCHEMY group

Important Issues

I New architecture → New high-performance libraries needed

I New architecture → New optimization flow needed

I Architecture complexity/diversity increases faster than optimization
progress

I Traditional approaches are not oriented towards performance
portability. . .

We need a portable optimization process

ALCHEMY, INRIA Saclay 3



Introduction: ALCHEMY group

The Optimization Problem

Architectural 
characteristics

ALU, SIMD, Caches, ...

Compiler optimization
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for 
architecture 2

Code for 
architecture 1

Code for 
architecture N.........
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Introduction: ALCHEMY group

The Optimization Problem

Architectural 
characteristics

ALU, SIMD, Caches, ...

Compiler optimization 
interaction

GCC has 205 passes...

Domain
knowledge

Linear algebra, FFT, ...

Optimizing
compilation

process

Code for 
architecture 2

Code for 
architecture 1

Code for 
architecture N.........

Our approach: 
build an expressive 

set of program versions

In reality, there is a complex interplay between all components
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Introduction: ALCHEMY group

Iterative Optimization Flow

Input
code Optimization 1 Optimization N.........Optimization 2

High-level transformations

CompilerTarget
code

Program version = result of a sequence of loop transformation
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Introduction: ALCHEMY group

Iterative Optimization Flow

Input
code

CompilerTarget
codeRun

Space 
explorer

Final
code

Set of 
program 
versions

Program version = result of a sequence of loop transformation
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Introduction: ALCHEMY group

Other Iterative Frameworks

I Focus usually on composing existing compiler flags/passes
I Optimization flags [Bodin et al.,PFDC98] [Fursin et al.,CGO06]
I Phase ordering [Kulkarni et al.,TACO05]
I Auto-tuning libraries (ATLAS, FFTW, ...)

I Others attempt to select a transformation sequence
I SPIRAL [Püschel et al.,HPEC00]
I Within UTF [Long and Fursin,ICPPW05], GAPS [Nisbet,HPCN98]
I CHiLL [Hall et al.,USCRR08], POET [Yi et al.,LCPC07], etc.
I URUK [Girbal et al.,IJPP06]

I Capability proven for efficient optimization

I Limited in applicability (legality)

I Limited in expressiveness (mostly simple sequences)

I Traversal efficiency compromised (uniqueness)
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Introduction: ALCHEMY group

Our Approach: Set of Polyhedral Optimizations

What matters is the result of the application of optimizations, not the
optimization sequence

All-in-one approach: [Pouchet et al.,CGO07/PLDI08]
I Legality: semantics is always preserved
I Uniqueness: all versions of the set are distinct
I Expressiveness: a version is the result of an arbitrarily complex

sequence of loop transformation

I Completion algorithm to instantiate a legal version from a partially
specified one

I Dedicated traversal heuristics to focus the search
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Outline: ALCHEMY group

1 The Polyhedral Model

2 Search Space Construction and Evaluation

3 Search Space Traversal

4 Interleaving Selection

5 Conclusions and Future Work
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The Polyhedral Model: ALCHEMY group

The Polyhedral Model
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The Polyhedral Model: ALCHEMY group

The Polyhedral Model vs Syntactic Frameworks

Limitations of standard syntactic frameworks:
I Composition of transformations may be tedious
I Approximate dependence analysis

I Miss optimization opportunities
I Scalable optimization algorithms

The polyhedral model:

I Works on executed statement instances, finest granularity

I Model arbitrary compositions of transformations

I Requires computationally expensive algorithms
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The Polyhedral Model: ALCHEMY group

A Three-Stage Process

1 Analysis: from code to model

→ Existing prototype tools (some developed during this thesis)
I PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
I URUK, Omega, Loopo, . . .

→ GCC GRAPHITE (now in mainstream)

→ Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model

→ Build and select a program transformation

3 Code generation: from model to code

→ "Apply" the transformation in the model

→ Regenerate syntactic (AST-based) code
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The Polyhedral Model: ALCHEMY group

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
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The Polyhedral Model: ALCHEMY group

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra

for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...

DS1 =


1 0 0 −1

−1 0 1 0
0 1 0 −1

−1 0 1 0
−1 −1 1 2

 .


i
j
n
1

≥~0
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The Polyhedral Model: ALCHEMY group

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p

for (i=0; i<n; ++i) {
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];

}

fs( ~xS2) =
[

1 0 0 0
]
.

 ~xS2
n
1



fa( ~xS2) =
[

1 0 0 0
0 1 0 0

]
.

 ~xS2
n
1



fx( ~xS2) =
[

0 1 0 0
]
.

 ~xS2
n
1


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The Polyhedral Model: ALCHEMY group

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p
I Data dependence between S1 and S2: a subset of the Cartesian

product of DS1 and DS2 (exact analysis)

for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;

}

DS1δS2 :



1 −1 0 0
1 0 0 −1

−1 0 0 3
0 1 0 −1
0 −1 0 3
0 0 1 −1
0 0 −1 3


.


iS1
iS2
jS2
1

 = 0

≥~0

i

S1 iterations

S2 iterations
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The Polyhedral Model: ALCHEMY group

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)
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The Polyhedral Model: ALCHEMY group

Program Transformations

Distribute loops

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 1 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
for (k = 0; k < n; ++k)
C[i-n][j] += A[i-n][k]*

B[k][j];

I All instances of S1 are executed before the first S2 instance
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The Polyhedral Model: ALCHEMY group

Program Transformations

Distribute loops + Interchange loops for S2

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 0
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I The outer-most loop for S2 becomes k
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The Polyhedral Model: ALCHEMY group

Program Transformations

Illegal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (k = 0; k < n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k]*

B[k][j];
for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i-n][j] = 0;

I All instances of S1 are executed after the last S2 instance
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The Polyhedral Model: ALCHEMY group

Program Transformations

A legal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

I Delay the S2 instances
I Constraints must be expressed between ΘS1 and ΘS2
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The Polyhedral Model: ALCHEMY group

Program Transformations

Implicit fine-grain parallelism

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 = ( 1 0 0 0 ) .

 i
j
n
1



Θ
S2.~xS2 = ( 0 0 1 1 0 ) .


i
j
k
n
1



for (i = 0; i < n; ++i)
pfor (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
pfor (j = 0; j < n; ++j)

pfor (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I Number of rows of Θ ↔ number of outer-most sequential loops
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The Polyhedral Model: ALCHEMY group

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

( 1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

( 1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

( i j i j k n n 1 1 )T

~p
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The Polyhedral Model: ALCHEMY group

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

( 1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

( 1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

( i j i j k n n 1 1 )T

0 0

~ı

0 0 0

~p

0

c

0
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The Polyhedral Model: ALCHEMY group

Program Transformations

Representing a schedule
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B[k][j];

}

Θ
S1.~xS1 =

( 1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Transformation Description

~ı
reversal Changes the direction in which a loop traverses its iteration range
skewing Makes the bounds of a given loop depend on an outer loop counter

interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation

~p fusion Fuses two loops, a.k.a. jamming
distribution Splits a single loop nest into many, a.k.a. fission or splitting

c peeling Extracts one iteration of a given loop
shifting Allows to reorder loops
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The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal 
Distinct 
Schedules

Affine 
Schedules
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The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal 
Distinct 
Schedules

Affine 
Schedules

- Causality condition

Property (Causality condition for schedules)

Given RδS, θR and θS are legal iff for each pair of instances in dependence:

θR(~xR) < θS(~xS)

Equivalently: ∆R,S = θS(~xS)−θR(~xR)−1≥ 0
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The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal 
Distinct 
Schedules

Affine 
Schedules

- Causality condition

- Farkas Lemma

Lemma (Affine form of Farkas lemma)

Let D be a nonempty polyhedron defined by A~x+~b≥~0. Then any affine function f (~x)
is non-negative everywhere in D iff it is a positive affine combination:

f (~x) = λ0 +~λT(A~x+~b), with λ0 ≥ 0 and~λ≥~0.

λ0 and ~λT are called the Farkas multipliers.
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Example: Semantics Preservation (1-D)

Legal 
Distinct 
Schedules

Affine 
Schedules

- Causality condition

- Farkas Lemma

Valid 

Farkas

Multipliers
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The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal 
Distinct 
Schedules

Affine 
Schedules

- Causality condition

- Farkas Lemma

Valid 

Farkas

Multipliers

Many to one
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The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal 
Distinct 
Schedules

Affine 
Schedules

- Causality condition

- Farkas Lemma

Valid 

Farkas

Multipliers

- Identification

θS(~xS)−θR(~xR)−1 = λ0 +~λT
(

DR,S

(
~xR

~xS

)
+~dR,S

)
≥ 0


DRδS iR : λD1,1 −λD1,2 +λD1,3 −λD1,4

iS : −λD1,1 +λD1,2 +λD1,5 −λD1,6

jS : λD1,7 −λD1,8

n : λD1,4 +λD1,6 +λD1,8

1 : λD1,0
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The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal 
Distinct 
Schedules

Affine 
Schedules

- Causality condition

- Farkas Lemma

Valid 

Farkas

Multipliers

- Identification

θS(~xS)−θR(~xR)−1 = λ0 +~λT
(

DR,S

(
~xR
~xS

)
+~dR,S

)
≥ 0


DRδS iR : −t1R = λD1,1 −λD1,2 +λD1,3 −λD1,4

iS : t1S = −λD1,1 +λD1,2 +λD1,5 −λD1,6

jS : t2S = λD1,7 −λD1,8

n : t3S − t2R = λD1,4 +λD1,6 +λD1,8

1 : t4S − t3R −1 = λD1,0
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The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Legal 
Distinct 
Schedules

Affine 
Schedules

- Causality condition

- Farkas Lemma

Valid 

Farkas

Multipliers

- Identification

- Projection

I Solve the constraint system
I Use (purpose-optimized) Fourier-Motzkin projection algorithm

I Reduce redundancy
I Detect implicit equalities
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The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Valid 

Transformation 

Coefficients

Legal 
Distinct 
Schedules

Affine 
Schedules

- Causality condition

- Farkas Lemma

Valid 

Farkas

Multipliers

- Identification

- Projection
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The Polyhedral Model: ALCHEMY group

Example: Semantics Preservation (1-D)

Valid 

Transformation 

Coefficients

Legal 
Distinct 
Schedules

Affine 
Schedules

- Causality condition

- Farkas Lemma

Valid 

Farkas

Multipliers

Bijection

- Identification

- Projection

I One point in the space ⇔ one set of legal schedules
w.r.t. the dependences

I These conditions for semantics preservation are not new! [Feautrier,92]
I But never coupled with iterative search before
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The Polyhedral Model: ALCHEMY group

Generalization to Multidimensional Schedules

p-dimensional schedule is not p × 1-dimensional schedule:
I Once a dependence is strongly satisfied ("loop"-carried), must be

discarded in subsequent dimensions
I Until it is strongly satisfied, must be respected ("non-negative")

→ Combinatorial problem: lexicopositivity of dependence satisfaction

A solution:
I Encode dependence satisfaction with decision variables [Feautrier,92]

ΘS
k(~xS)−ΘR

k (~xR)≥ δ, δ ∈ {0,1}
I Bound schedule coefficients, and nullify the precedence constraint when

needed [Vasilache,07]
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The Polyhedral Model: ALCHEMY group

Legality as an Affine Constraint

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1 (1)

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S, (2)

Θ
S
p(~xS)−Θ

R
p (~xR)≥−

p−1

∑
k=1

δ
DR,S
k .(K.~n+K)+δ

DR,S
p

→ Note: schedule coefficients must be bounded for Lemma to hold

→ Severe scalability challenge for large programs
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Search Space Construction and Evaluation

ALCHEMY, INRIA Saclay 17



Search Space Construction and Evaluation: ALCHEMY group

Objectives for the Search Space Construction

I Provide scalable techniques to construct the search space

I Adapt the space construction to the machine specifics (esp. parallelism)

I Search space is infinite: requires appropriate bounding

I Expressiveness: allow for a rich set of transformations sequences

I Compiler optimization heuristics are fragile, manage it!

ALCHEMY, INRIA Saclay 18



Search Space Construction and Evaluation: ALCHEMY group

Overview of the Proposed Approach

1 Build a convex set of candidate program versions
I Affine set of schedule coefficients
I Enforce legality and uniqueness as affine constraints

2 Shape this set to a form which allows an efficient traversal
I Redundancy-less Fourier-Motzkin elimination algorithm
I Force FM-property by applying Fourier-Motzkin elim. on the set

3 Traverse the set
I Exhaustively, for performance analysis
I Heuristically, for scalability

ALCHEMY, INRIA Saclay 19



Search Space Construction and Evaluation: ALCHEMY group

Search Space Construction

Principle: Feautrier’s + coefficient bounding
Output: 1 independent polytope per schedule dimension

Algorithm

Init: Set all dependencies as unresolved
1 k = 1
2 Set Tk as the polytope of valid schedules with all unresolved

dependencies weakly satisfied (i.e., set δ = 0)
3 For each unresolved dependence DR,S:

1 build SDR,S the set of schedules strongly satisfying DR,S (i.e., set δ = 1)

2 T ′

k = Tk
T

SDR,S

3 if T ′

k 6= /0, Tk = T ′

k . Mark DR,S as resolved

4 If unresolved dependence remains, increment k and go to 1

ALCHEMY, INRIA Saclay 20



Search Space Construction and Evaluation: ALCHEMY group

Some Properties of the Algorithm

I Without bounding, equivalent to Feautrier’s genuine scheduling
algorithm

I With bounding, sensitive to the dependence traversal order
I Heuristics to select the dependence order: pairwise interference, traffic

ranking, etc.
I May also search for different orders

I May not minimize the schedule dimensionality
I Outer dimensions (i.e., outer loops) are more constrained
I Inner dimensions tend to be parallel, if possible (SIMD friendly)
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Search Space Construction and Evaluation: ALCHEMY group

Search Space Size

I Bound each coefficient between [−1,1] to avoid complex control
overhead and drive the search

Benchmark #Inst. #Dep. #Dim. dim 1 dim 2 dim 3 dim 4 Total

compress 6 56 3 20 136 10857025 n/a 2.9×1010

edge 3 30 4 27 54 90534 43046721 5.6×1015

iir 8 66 3 18 6984 > 1015 n/a > 1019

fir 4 36 2 18 52953 n/a n/a 9.5×107

lmsfir 9 112 2 27 10534223 n/a n/a 2.8×108

mult 3 27 3 9 27 3295 n/a 8.0×105

latnrm 11 75 3 9 1896502 > 1015 n/a > 1022

lpc-LPC_analysis 12 85 2 63594 > 1020 n/a n/a > 1025

ludcmp 14 187 3 36 > 1020 > 1025 n/a > 1046

radar 17 153 3 400 > 1020 > 1025 n/a > 1048

Figure: Search Space Statistics
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Search Space Construction and Evaluation: ALCHEMY group

Performance Distribution for 1-D Schedules [1/2]
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Figure: Performance distribution for matmult and locality
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Search Space Construction and Evaluation: ALCHEMY group

Performance Distribution for 1-D Schedules [2/2]
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Figure: The effect of the compiler
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Search Space Construction and Evaluation: ALCHEMY group

Quantitative Analysis: The Hypothesis

Extremely large generated spaces: > 1050 points

→ we must leverage static and dynamic characteristics to build traversal
mechanisms

Hypothesis: [Pouchet et al,SMART08]
I It is possible to statically order the impact on performance of

transformation coefficients, that is, decompose the search space in
subspaces where the performance variation is maximal or reduced

I First rows of Θ are more performance impacting than the last ones
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Search Space Construction and Evaluation: ALCHEMY group

Observations on the Performance Distribution
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Performance distribution - 8x8 DCT
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Worst for (i = 0; i < M; i++)
for (j = 0; j < M; j++) {
tmp[i][j] = 0.0;
for (k = 0; k < M; k++)
tmp[i][j] += block[i][k] *

cos1[j][k];
}

for (i = 0; i < M; i++)
for (j = 0; j < M; j++) {
sum2 = 0.0;
for (k = 0; k < M; k++)
sum2 += cos1[i][k] * tmp[k][j];
block[i][j] = ROUND(sum2);

}

I Extensive study of 8x8 Discrete Cosine Transform (UTDSP)
I Search space analyzed: 66×19683 = 1.29×106 different legal

program versions
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Observations on the Performance Distribution
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I Extensive study of 8x8 Discrete Cosine Transform (UTDSP)
I Search space analyzed: 66×19683 = 1.29×106 different legal

program versions
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Observations on the Performance Distribution
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I best
I average
I worst

I Take one specific value for the first row
I Try the 19863 possible values for the second row

I Very low proportion of best points: < 0.02%
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Observations on the Performance Distribution
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I Take one specific value for the first row
I Try the 19863 possible values for the second row
I Very low proportion of best points: < 0.02%
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Observations on the Performance Distribution
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I Performance variation is large for good values of the first row

I It is usually reduced for bad values of the first row
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Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10  20  30  40  50  60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst Small performance variation

I Performance variation is large for good values of the first row
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Search Space Construction and Evaluation: ALCHEMY group

Scanning The Space of Program Versions

The search space:
I Performance variation indicates to partition the space:~ı >~p > c

I Non-uniform distribution of performance

I No clear analytical property of the optimization function

→ Build dedicated heuristic and genetic operators aware of these static
and dynamic characteristics
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Search Space Traversal
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Search Space Traversal: ALCHEMY group

Objectives for Efficient Traversal

Main goals:
I Enable feedback-directed search
I Focus the search on interesting subspaces

Provide mechanisms to decouple the traversal:
I Leverage our knowledge on the performance distribution
I Leverage static properties of the search space
I Completion mechanism, to instantiate a full schedule from a partial one
I Traversal heuristics adapted to the problem complexity

I Decoupling heuristic: explore first iterator coefficients (deterministic)
I Genetic algorithm: improve further scalability (non-deterministic)
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Search Space Traversal: ALCHEMY group

Some Results for 1-D Schedules
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Figure: Comparison between random and decoupling heuristics
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Search Space Traversal: ALCHEMY group

Inserting Randomness in the Search

About the performance distribution:
I The performance distribution is not uniform
I Wild jump in the space: tune~ı coefficients of upper dimensions
I Refinement: tune~p and~c coefficients

About the space of schedules:
I Highly constrained: small change in~ı may alter many other

coefficients
I Rows are independent: no inter-dimension constraint
I Some transformations (e.g., interchange) must operate between rows

ALCHEMY, INRIA Saclay 31



Search Space Traversal: ALCHEMY group

Genetic Operators

Mutation
I Probability varies along with evolution
I Tailored to focus on the most promising subspaces
I Preserves legality (closed under affine constraints)

Cross-over
I Row cross-over( )

+
( )

=
( )

I Column cross-over( )
+

( )
=

( )

I Both preserve legality
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Search Space Traversal: ALCHEMY group

Dedicated GA Results
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I GA converges towards the maximal space speedup
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Search Space Traversal: ALCHEMY group

Experimental Results [1/2]
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Search Space Traversal: ALCHEMY group

Experimental Results [2/2]
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Search Space Traversal: ALCHEMY group

Assessments from Experimental Results

Looking into details (hardware counters+compilation trace):

I Better activity of the processing units

I Best version may vary significantly for different architectures

I Different source code may trigger different compiler optimizations

→ Portability of the optimization process validated w.r.t.
architecture/compiler

I Limitation: poor compatibility with coarse-grain parallelism

Can we reconcile tiling, parallelization, SIMD and iterative search?
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I Best version may vary significantly for different architectures

I Different source code may trigger different compiler optimizations
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Multidimensional Interleaving Selection
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Interleaving Selection: ALCHEMY group

Overview of the Problem

Objectives:
I Achieve efficient coarse-grain parallelization
I Combine iterative search of profitable transformations for tiling

→ loop fusion and loop distribution

Existing framework: tiling hyperplane [Bondhugula,08]

I Model-driven approach for automatic parallelization + locality
improvement

I Tiling-oriented

I Poor model-driven heuristic for the selection of loop fusion (not portable)

I Overly relaxed definition of fused statements
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Interleaving Selection: ALCHEMY group

Our Strategy in a Nutshell...

1 Introduce the concept of fusability

2 Introduce a modeling for arbitrary loop fusion/distribution combinations
1 Equivalence 1-d interleaving with total preorders
2 Affine encoding of total preorders
3 Generalization to multidimensional interleavings
4 Pruning technique to keep only semantics-preserving ones

3 Design a mixed iterative and model-driven algorithm to build
optimizing transformations
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Interleaving Selection: ALCHEMY group

Fusability of Statements

I Fusion ⇔ interleaving of statement instances
I Two statements are fused if their timestamp overlap

ΘR
k (~xR)≤ΘS

k(~xS)∧ΘS
k(~xS

′)≤ΘR
k (~xR

′)

I Better approach: at most c instances are not fused (approximation)

Definition (Fusability restricted to non-negative schedule coefficients)

Given two statements R,S such that R is surrounded by dR loops, and S by dS

loops. They are fusable at level p if, ∀k ∈ {1 . . .p}, there exists two
semantics-preserving schedules ΘR

k and ΘS
k such that:

(i) ∀k ∈ {1, . . . ,p}, −c < Θ
R
k (~0)−Θ

S
k(~0) < c

(ii)
dR

∑
i=1

θ
R
k,i > 0,

dS

∑
i=1

θ
S
k,i > 0

Exact solution is hard: may require Ehrart polynomials for general case
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Interleaving Selection: ALCHEMY group

Affine Encoding of Total Preorders
Principle: [Pouchet,PhD10]

I Model a total preorder with 3 binary variables
pi,j : i < j si,j : i > j ei,j : i = j

I Enforce totality and mutual exclusion
I Enforce all cases of transitivity through affine inequalities connecting

some variables. Ex: ei,j = 1∧ ej,k = 1⇒ ei,k = 1

O =

 0≤ pi,j ≤ 1
0≤ ei,j ≤ 1
0≤ si,j ≤ 1

 constrained to: O =



0≤ pi,j ≤ 1
}

Variables are
binary0≤ ei,j ≤ 1

pi,j + ei,j ≤ 1
}

Relaxed mutual
exclusion

∀k ∈]j,n] ei,j + ei,k ≤ 1+ ej,k
}

Basic transitivity
on eei,j + ej,k ≤ 1+ ei,k

∀k ∈]i, j[ pi,k +pk,j ≤ 1+pi,j

}
Basic transitivity
on p

∀k ∈]j,n] ei,j +pi,k ≤ 1+pj,k
 Complex

transitivity
on p and e

ei,j +pj,k ≤ 1+pi,k
∀k ∈]i, j[ ek,j +pi,k ≤ 1+pi,j

∀k ∈]j,n] ei,j +pi,j +pj,k ≤ 1+pi,k + ei,k

 Complex
transitivity
on s and p
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Search Space Statistics
Pruning for semantics preservation (F ):

I Start from all total preorders (O)
I Prove when fusability is a transitive relation: equivalent to checking the

existence of pairwise compatible loop permutations
I Check graph of compatible permutations to determine fusable sets,

prune O from non-fusable ones

O F 1

Benchmark #loops #refs #dim #cst #points #dim #cst #points #Tested Time

advect3d 12 32 12 58 75 9 43 26 52 0.82s
atax 4 10 12 58 75 6 25 16 32 0.06s
bicg 3 10 12 58 75 10 52 26 52 0.05s
gemver 7 19 12 58 75 6 28 8 16 0.06s
ludcmp 9 35 182 3003 ≈ 1012 40 443 8 16 0.54s
doitgen 5 7 6 22 13 3 10 4 8 0.08s
varcovar 7 26 42 350 47293 22 193 96 192 0.09s
correl 5 12 30 215 4683 21 162 176 352 0.09s

Figure: Search space statistics
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Optimization Algorithm

I Proceeds level-by-level
I Starting from the outer-most level, iteratively select an interleaving
I For this interleaving, compute an optimization which respects it

I Compound of skewing, shifting, fusion, distribution, interchange, tiling and
parallelization (OpenMP)

I Maximize locality for each partition of statements

I Automatically adapt to the target architecture

I Solid improvement over existing model-driven approach

I Up to 150× speedup on 24 cores, 15× speedup over autopll compiler
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Performance Results for Intel Xeon 24-cores
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Summary of Contributions

We have designed, built and experimented all required blocks to perform
an efficient iterative selection of fine-grain loop transformations in the
polyhedral model.

I Theoretically sound and practical iterative optimization algorithms
I Significant increase in expressiveness of iterative techniques
I Well-designed (but complex) problems
I Extensive experimental analysis of the performance distribution
I Subspace-driven traversal techniques for polytopes

I Theoretical framework for generalized fusion
I Practical solution for machine-dependent parallelization + vectorization

+ locality
I Implementation in publicly available tools: PoCC, LetSee, FM, etc.
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Future Work: Machine Learning

Machine Learning could improve the scalability:
I Currently, no reuse from previous compilation / space traversal
I Efficiency proved on (simpler) compilation problems

Main issues:
I Fine-grain vs. coarse-grain optimization
I Knowledge representation
I Features for similarity computation
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Take-Home Message

Iterative Optimization: the last hope, or a new hope?

I Efficient, more expressive and portable mechanisms can be built

I The polyhedral representation is adaptable to iterative compilation

I Performance-demanding programmers can afford long compilation time

I Still require to execute different codes: not always possible

I Downside of polyhedral expressiveness: algorithmic complexity

Questions:
I Can we increase the accuracy of static models, given the complexity of

modern compilers and chips?
I Can we systematically reach the performance of hand-tuned code with

an automatic approach?

Thank you!

ALCHEMY, INRIA Saclay 48



Conclusions and Future Work: ALCHEMY group

Take-Home Message

Iterative Optimization: the last hope, or a new hope?

I Efficient, more expressive and portable mechanisms can be built

I The polyhedral representation is adaptable to iterative compilation

I Performance-demanding programmers can afford long compilation time

I Still require to execute different codes: not always possible

I Downside of polyhedral expressiveness: algorithmic complexity

Questions:
I Can we increase the accuracy of static models, given the complexity of

modern compilers and chips?
I Can we systematically reach the performance of hand-tuned code with

an automatic approach?

Thank you!

ALCHEMY, INRIA Saclay 48



Supplementary Slides: ALCHEMY group

Supplementary Slides

ALCHEMY, INRIA Saclay 49



Supplementary Slides: ALCHEMY group

Yet Another Completion Algorithm

Principle: [Pouchet et al,PLDI08]
I Rely on a pre-pass to normalize the space (improved full polytope

projection)
I Works in polynomial time w.r.t. the number of constraints in the

normalized space

See also [Li et al,IJPP94] [Griebl,PACT98] [Vasilache,PACT07]...

Three fundamental properties:
1 If v1, . . . ,vk is a prefix of a legal point v, a completion is always found
2 This completion will only update vk+1, . . . ,vdmax , if needed;
3 When v1, . . . ,vk are the~ı coefficients, the heuristic looks for the smallest

absolute value for the~p and c coefficients
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Performance Results for AMD Opteron 16-cores
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Variability for GEMVER
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Future Work: Knowledge Transfer

Current approach:
I Training: 1 program → 1 effective transformation
I On-line: Compute similarities with existing program, apply the same

transformation

→ Does not work well for fine-grain optimization

Proposed approach:
I Don’t care about the sequence, only about properties of the schedule

(parallelism degree, locality, etc.)
I Learn how to prioritize performance anomaly solving instead
I Rely on the polyhedral model to compute a matching optimization
I Some open problems:

I How to compute (polyhedral) features? They are parametric
I How to compute the optimization (combinatorial decision problem)?
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