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Automatic vectorization is critical to enhancing performance of compute-intensive programs on modern processors. How-
ever, there is much room for improvement over the auto-vectorization capabilities of current production compilers, through
careful vector-code synthesis that utilizes a variety of loop transformations (e.g. unroll-and-jam, interchange, etc.).

As the set of transformations considered is increased, the selection of the most effective combination of transformations
becomes a significant challenge: currently used cost-models in vectorizing compilers are often unable to identify the best
choices. In this paper, we address this problem using machinelearning models to predict the performance of SIMD codes. In
contrast to existing approaches that have used high-level features of the program, we develop machine learning models based
on features extracted from the generated assembly code, The models are trained off-line on a number of benchmarks, and used
at compile-time to discriminate between numerous possible vectorized variants generated from the input code.

We demonstrate the effectiveness of the machine learning modelby using it to guide automatic vectorization on a variety of
tensor contraction kernels, with improvements ranging from 2× to 8× over Intel ICC’s auto-vectorized code. We also evaluate
the effectiveness of the model on a number of stencil computations and show good improvement over auto-vectorized code.

1. INTRODUCTION

With the increasing degree of SIMD parallelism in processors, the effectiveness of automatic vector-
ization in compilers is crucial. Most production compilers, such as Intel’s ICC, GNU GCC, PGI’s
pgcc, IBM’s XL/C etc., perform automatic vectorization. While the automatic vectorization of these
compilers often provides very good performance improvement compared to scalar code, the achieved
performance nevertheless is often far below the peak performance of the processor, even when the
data fits within L1 cache and no cache misses are incurred.

The main reason for the sub-optimal performance of vectorized code from current production com-
pilers is the extreme difficulty of choosing the best among a huge number of possible transformations
of high level loop nests into assembly code. The complex execution pipelines with multiple functional
units in modern processors makes it extremely challenging to develop analytical performance models
to predict the execution time for a sequence of machine instructions. Production compilers therefore
typically use simple heuristics to guide loop transformations and back-end code generation.

Machine learning (ML) models have garnered considerable interest in the compiler community.
ML approaches have been used in numerous situations, for instance to optimize compiler flag settings
[Agakov et al. 2006; Cavazos et al. 2007], choose effective loop unrolling factors [Monsifrot et al.
2002], and optimize tile sizes [Yuki et al. 2010]. However, we are unaware of any prior use of ML
models to assist in optimizing vector code generation. In this paper, we develop such a model.

The present work focuses particularly on the vectorizationof a class of compute-intensive loops
that arise commonly in quantum chemistry codes — tensor contractions. Tensor contractions are es-
sentially generalized higher dimensional matrix-matrix products, where the tensors can have more
than two dimensions and the summations can be performed overseveral dimensions. Various types of
tensor contractions are required in the implementation of high accuracy quantum chemistry models
such as the coupled cluster method [Crawford and Schaefer III 2000]. These codes are vectorized
by current compilers, but the achieved performance is oftenfar below machine peak. We use a code
generator that explicitly generates vector intrinsics, after considering various possible loop permuta-
tions, unrolling and choices of the loop to be vectorized along. We build an ML model to predict the
performance of the generated assembly code for the various possible transformations. After training
the ML model using of a number of generated variants from a training set of synthetic nested loops
representing tensor contractions, the model is used to optimize vectorized code generation for a num-
ber of tensor contractions from the CCSD (Couple Cluster Singles and Doubles) method. We show
that the code generated using the ML model is significantly better than that generated through auto-
vectorization by GCC and ICC. We complete our experimental study by assessing the effectiveness
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of the generated ML model to successfully rank-order the performance of a number of vectorized
variants for several stencil computations.

The rest of the paper is structured as follows. In Section 2 wedescribe the approach we use for vec-
torizing tensor contractions. We then characterize the optimization search space in Section 3, showing
that the percentage of high-performance points in this space is small. In Section 4, we discuss the dif-
ferent ML models that we evaluate, along with a description of the various feature sets that we use
with the ML models. Section 5 presents experimental resultsand an analysis of the relative effective-
ness of the evaluated models. We then develop a composite ML model in Section 6 from the individual
models discussed in Section 4 and show its improvement upon the individual ML models. Section 7
discusses the application of our techniques to stencil computations and analyzes experimental results.
Section 8 provides a summary of the state of the art and related work.

2. SYNTHESIS OF VECTORIZED CODE

2.1. Automatic Vectorization of Tensor Contractions

In this work, we focus on the class of loops that arise with tensor contractions (TC). Tensor contrac-
tions represent the core computational kernels in accurateab initio methods for electronic structure
calculations such as the coupled cluster (CC) and configuration interaction (CI) models in quantum
chemistry suites [Harrison et al. 2005; Crawford and Schaefer III 2000; Baumgartner et al. 2002]. A
TC involvesd-nested loops that update ak-dimensional output tensor (k < d). As an illustration, we
show below an example of a TC, whereN,M,O, andP represent the size of each dimension.A andB
represent the input tensors, andC is the output tensor.

for (i=0; i<N; i++)
for (j=0; j<M; j++)
for (k=0; k<O; k++)
for (l=0; l<P; l++)
C[l][j][k] += A[i][j][k]*B[i][l];

In a TC, each index of the nested loop appears exactly twice asan array index, each appearance
being in a different tensor. In the example,i appears as an index for arraysA andB (which makes it a
‘contracted’ index),j andk index into arraysA andC, while l indexesB andC. The loop nest is fully
permutable, i.e., all 24 possible loop orderings for this example are valid. We label a TC according to
its array indices as represented inC,A, andB. The example TC would be represented asljk-ijk-il.

Stock et al. developed a customized vectorization algorithm that generates SIMD intrinsics-based
code [Stock et al. 2011] for six specific TC kernels from MADNESS [Harrison et al. 2005]. That
code generation algorithm is also suitable for generating vectorized variants of arbitrary TCs. We first
provide a brief description of the algorithm, before discussing the set of optimizations that are applied
to generate the vectorized variants.

Vectorization may be achieved along any of the nested loop dimensions in the iteration space for a
TC. For those arrays in the statement for which the fastest varying dimension (referred to as the unit-
stride dimension, e.g., the rightmost index in C/C++ and theleftmost index in Fortran/MATLAB)
matches the loop dimension chosen for vectorization, groups of adjacent elements in memory can
be directly loaded into vector registers after an unroll-and-jam transformation of the vectorized loop
with the unroll factor being the vector length. If the loop dimension chosen for vectorization does not
appear at all among an array’s indices, then a replication ofthat element on all components of a vector
register will be required, i.e., asplatoperation. Finally, if the vectorized loop dimension appears in
some other position than the fastest varying dimension, a transposition is used after unroll-and-jam
of the loop corresponding to the index of the fastest varyingdimension of that array. This enables
use of vector loads followed by an inter-register transposeto gather non-contiguous data into vector
registers. We note that the needed data movement is not dependent on the loop permutation used,
although the total data movement cost is a function of both the loop which is vectorized as well as the
loop permutation and unroll factors.
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2.2. Tensor Contractions Considered

We consider a set of TCs from CCSD (Coupled Cluster Single Double), a computational method
for ab initio electronic structure calculations [Crawford and SchaeferIII 2000; Hirata 2003]. CCSD
requires the execution of many TCs, from which we extracted 19 unique kernels. These are repre-
sentative of the kinds of TCs that occur in computational chemistry and were used to evaluate the
effectiveness of an ML model in identifying effective vectorized code variants. In order to train an
ML model, a different set of 30 randomly generated TCs was generated, as described in Section 3.2.

2.3. Optimization Space

For any TC, the set of possible vectorized code variants is determined by the three degrees of freedom
of the vector synthesis algorithm [Stock et al. 2011]: i) theloop order of the TC (that is, the result of
a sequence of loop interchanges), ii) the specific loop from the loop nest along which vectorization is
performed, and iii) the loops among the loop nest on which unroll-and-jam is applied, along with the
associated unroll factors. The total number of variants fora TC can be very large due to these three
degrees of freedom: for the 30 TCs used to train the ML model, the number of code variants ranged
between 42 and 2497, due to differences in the number of loopsand array indices in the TCs.

Loop permutation:The first of the transformations we discuss is loop permutation. We focus on full
tiles which fit into the first level of cache (TCs are fully tileable computations [Wolfe 1989]), so the
effect of loop permutation with regards to improving spatial locality of memory accesses is minimal.
However, loop permutation can enable some load and store operations to be hoisted out of the inner-
most loop. This can create a significant improvement betweenvariants with different loop orders,
when the hoisted instructions are relatively expensive (e.g., splats and register transpose operations).
For ad-dimensional loop nest,d! distinct loop orders exist.

Vectorized loop:The choice of the loop to be vectorized affects how memory is loaded to and stored
from the SIMD registers. All loops that are either parallel or represent reductions are considered for
vectorization. Thus, for TCs all the loops are considered, because each loop is either fully parallel or a
reduction. If an array is accessed in unit-stride along the vectorized dimension, a standard vector load
instruction can be used, which is efficient on modern architectures. If an array is not accessed by the
vectorized dimension, a vector splat is required to load thedata, which involves a scalar load followed
by replication of the value to all elements of a SIMD register. If an accumulation is performed on an
array not accessed by the vectorized dimension, a reductionis involved and the SIMD register must
be reduced before a scalar store is executed. Finally, an array can be accessed in non-unit stride by
the vectorized loop. In general, in order to vectorize the statement, consecutive elements along the
vectorized dimension must be gathered into a SIMD register by using multiple scalar loads. However,
with TCs, data can be loaded with vector loads along the array’s unit-stride dimension, followed by
a register level transpose to place consecutive elements along the vectorized dimension into vector
registers. This transformation contributes a multiplicative factor equal to the loop nest depth to the
size of the space of vectorized code variants considered.

Unroll-and-Jam:The final transformation considered is unroll-and-jam, which can increase register
reuse and therefore increase the arithmetic intensity. Allloops in TCs are eligible for unroll-and-jam,
so that the potential search space for this transformation alone can be very large. We restrict the
possible unroll factors of each loop to the set of divisors ofthe loop size to eliminate the need to
generate inefficient edge-case handling code within the optimized loop nest, with the result that loops
in our benchmarks are unrolled 1×, 2×, 4×, or 8×. In the context of vectorization, unroll-and-jam is
also used to enable the register transpose operation described above.

2.4. Detailed Example

To show how these optimizations interact, we present in Figure 1 an optimized version of the
ijkl-imkn-jnlm TC from the CCSD test set, for double precision floating pointnumbers, and the
AVX vector instruction set. The choices with respect to the above three optimizations for this example
are as follows:
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for (m=0; m<8; m+=8) {
for (j=0; j<4; j+=1) {
for (l=0; l<8; l+=8) {
for (k=0; k<4; k+=4) {

for (n=0; n<8; n+=1) {
B_temp0=_mm256_loadu_pd(&B[(j)*512+(n)*64+(l)*8+(m)]);
/* Omitting 14 similar loads into B_temp1 ... B_temp14 */
B_temp15=_mm256_loadu_pd(&B[(j)*512+(n)*64+(l+7)*8+(m+4)]);

__t0 = _mm256_unpacklo_pd(B_temp0,B_temp1);
__t1 = _mm256_unpackhi_pd(B_temp0,B_temp1);
__t2 = _mm256_unpacklo_pd(B_temp2,B_temp3);
__t3 = _mm256_unpackhi_pd(B_temp2,B_temp3);
B_temp0 = _mm256_permute2f128_pd(__t0, __t2, 0x20);
B_temp2 = _mm256_permute2f128_pd(__t1, __t3, 0x20);
B_temp1 = _mm256_permute2f128_pd(__t0, __t2, 0x31);
B_temp3 = _mm256_permute2f128_pd(__t1, __t3, 0x31);
/* Omitting 3 similar 4-by-4 transposes, for B_temp4 ... B_temp15 */

for (i=0; i<2; i+=1) {
A_temp0=_mm256_broadcast_sd(&A[(i)*256+(m)*32+(k)*8+(n)]);
/* Omitting 30 similar splats into A_temp1 ... A_temp30 */
A_temp31=_mm256_broadcast_sd(&A[(i)*256+(m+7)*32+(k+3)*8+(n)]);

C_temp0=_mm256_loadu_pd(&C[(i)*128+(j)*32+(k)*8+(l)]);
/* Omitting 6 similar loads into C_temp1 ... C_temp6 */
C_temp7=_mm256_loadu_pd(&C[(i)*128+(j)*32+(k+3)*8+(l+4)]);

C_temp0=_mm256_add_pd(_mm256_mul_pd(A_temp0,B_temp0),C_temp0);
/* Omitting 62 similar muliply adds updating C_temp1 ... C_temp6 */
C_temp7=_mm256_add_pd(_mm256_mul_pd(A_temp31,B_temp15),C_temp7);

_mm256_storeu_pd(&C[(i)*128+(j)*32+(k)*8+(l)],C_temp0);
/* Omitting 6 similar stores from C_temp1 ... C_temp6 to C */
_mm256_storeu_pd(&C[(i)*128+(j)*32+(k+3)*8+(l+4)],C_temp7);

}
} } } } }

Fig. 1. Example of generated code for theijkl-imkn-jnlm Tensor Contraction

Loop permutation:The loop order in this example ismjlkni, which allows access toB to be hoisted
from the innermost loop. Doing so is important because the loads ofB require an expensive transpose.

Vectorized loop:For this code variant, the tensor contraction is vectorizedalong thel dimension.
Therefore the loads and stores to the result arrayC can be done with standard vector operations.
However, loads fromA require a splat operation and loads fromB involve register-level transposition
with respect to them andl dimensions.

Unroll-and-jam:The amount each loop is unrolled is indicated by how much its iterator is incre-
mented. The loops that are unrolled promote reuse of certainregisters. In this example unroll-and-jam
of them loop allows for more reuse of the registers with values fromC. Because of the unroll-and-jam,
the resulting code is almost 300 lines long. This is shown in Fig. 1, where repetitive sections of similar
code have been replaced by comments describing them.

3. CHARACTERIZATION OF THE OPTIMIZATION SPACE

In order to characterize the complexity of the optimizationproblem we address, we evaluate numerous
possible variants (that is, each one corresponds to a specific set of parameters given to the vectorization
algorithm) for a variety of TCs.

3.1. Tested Configurations

We performed our evaluation across several compilers, processors and instruction sets. Specifically,
we considered two production compilers: GNU GCC 4.6 and Intel ICC 12.0; two processors: In-
tel Core i7 with theNehalem micro-architecture and Intel Core i7 with theSandy Bridge micro-
architecture; and two data types for the tensor contractions: float anddouble. For the Nehalem,
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we evaluated using the SSE4.2 SIMD instruction set, while for the Sandy Bridge we evaluated using
SSE and AVX instruction sets. The cartesian product of thesepossibilities results in a total of twelve
different configurations.

TheNehalem processor runs at 2.66 GHz, with a theoretical peak per single-threaded application
of 10.64 GFlop/s (double) and 21.28 GFlop/s (float). TheSandy Bridge processor runs at 3.4 GHz,
with theoretical single-threaded peak SSE performance of 13.6 GFlop/s (double) and 27.2 GFlop/s
(float) and peak AVX performance of 27.2 GFlop/s (double) and 54.4 GFlop/s (float).

3.2. Generation of Tensor Contractions for Training Set

In order to train the ML models, a set of 30 TCs were randomly synthesized. These were generated
using 3 to 6 indices and between 1 and 4 contracted indices. The array indices, corresponding to the
contraction being performed, were chosen as to span a variety of contractions and transposition of
matrices which can occur in quantum chemistry codes. The TCswere named in a canonical fashion to
eliminate duplicates, and any that occur in the 19 CCSD TCs were removed from the set of synthetic
TCs for ML training. The process of generating random TCs foreach number of indices was repeated
until 30 acceptable TCs were generated: there are 4 with 3 indices, 10 with 4 indices, 5 with 5 indices,
and 11 with 6 indices. Of these, only 11 have an obvious dimension for vectorization (where two of
the arrays have the same unit stride loop index).

Since TCs are fully tileable, contractions on large tensorscan always be tiled such that all data
accessed by a tile fits entirely in L1 cache. We therefore focus on L1-resident datasets for construction
of the ML model and its evaluation. For each TC, the sizes of the tensors were chosen to ensure that
all tensors could together fit in L1 cache, with sizes along the fastest varying dimension of all tensors
being a perfect multiple of the vector length.

For our experiments, we used in-program timing code to monitor the execution time. Each TC
was run approximately 105 times, although the actual number of repetitions was set so that a total of
roughly 50 million floating point operations were executed.The execution time was computed as an
average over all the repetitions. The variance among independent runs for any TC was less than 4%.

3.3. Variability Analysis

Figure 2 shows the sorted performance distribution, of all the considered variants for four represen-
tative TCs from the CCSD application, for one of the twelve configurations of processor, instruction
set, data type, and compiler.
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Fig. 2. Performance distribution of Tensor Contractions using theSandy Bridge/AVX/float/ICC configuration.

We observe that only a very small fraction, fewer than 4% of the space of vectorized code variants,
attains 80% or more of the search-space optimal performance. The code generated by ICC’s auto-
vectorization on the input code (that is, without using the code synthesis algorithm to generate the
vector intrinsics-based code) only achieves 1.90 GFlop/s for theijkl-imln-jnkm TC, which is worse
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than 97% of the points in this search space, where the best variant performs at 39.08 GFlop/s. In this
paper, our objective is to develop an effective model that can assist in automatically finding the best
variant in the search space.

For a single TC from the CCSD code, Figure 3 shows the sorted performance distribution for
three configurations (Nehalem with SSE, Sandy Bridge with SSE and Sandy Bridge with AVX) All
three configurations use floats and ICC. We observe that the distribution of performance for different
configurations can be quite different. For the considered TC, ICC auto-vectorization of the input code
on Sandy Bridge using AVX results in performance of 2.96 GFlop/s. Here 74% of the search space is
faster, with the space optimal variant achieving 38.57 GFlop/s.
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Fig. 3. Performance distribution of a Tensor Contraction across different configurations.

We also observe that the compiler has a critical impact on therelative performance of different
vectorized variants. Figure 4 plots, for the same representative TC, the performance of all its vector-
ized variants when using ICC and GCC. The variants are sortedaccording to their performance when
compiled with ICC. We observe wild performance variations between ICC and GCC for a given vari-
ant, as illustrated by the numerous spikes. The best performing vectorized variant with GCC (28.1
GFlop/s) performs poorly when compiled with ICC, achievingonly 11.25 GFlop/s. The converse is
also true, as shown by the relatively low performance with GCC in the far right of the Figure.
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Fig. 4. GCC results sorted in ascending order of ICC performance.

The choice of compiler also affects the maximal performanceachievable for a particular TC. For
example, for theijkl-imjn-nlmk TC on Sandy Bridge using AVX and floats, ICC attains 33.16
GFlops/s, while GCC is 13% slower at 28.94 GFlop/s. However,ICC is not always more effective.
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There are instances where the best among the vectorized variants compiled with GCC is significantly
faster than the best of all variants compiled with ICC.

4. MACHINE LEARNING MODELS

We have shown in Section 3 that the best vectorized variant ofa TC is application-dependent,
machine-dependent and even compiler-dependent. We seek tobuild a decision model to determine
which variant is expected to have the best performance.

4.1. Problem Formulation

Traditional machine learning approaches to automaticallyselect a loop transformation sequence re-
quire explicit modeling of the sequence in the learning problem [Agakov et al. 2006; Dubach et al.
2009; Cooper et al. 2002]. We depart from this view and instead build performance predictorsthat
are independent of the algorithms used to generate the vectorized variants. We solve this problem
by building models that can predict the performance of vectorized programswithout running them,
so that we can rank programs (i.e., all the vectorized variants of the benchmark) according to their
predicted performance. The program that ranks first is selected as the output of our model. In our
approach, there is no need for the model to correctly predictthe numerical value associated with the
performance of a program variant: only the relative order between predicted variants is relevant.

Our approach is motivated by two important factors. First, by developing a technique that is not tied
to the specifics of the optimization algorithm, we significantly increase the applicability of the model.
The second motivation comes from the optimization space to consider. Building a model that operates
directly on a high-level transformation sequence (e.g., the parameters to be given to a vectorization
algorithm) would have to take into account that the parameter space varies across benchmarks. Input
programs to be optimized may have very different optimization spaces: for example, the decision of
which loop to vectorize is made from the set of parallel and reduction loops of the program, and this
set is not constant across programs. The fact that the decision space is not constant across programs
makes it poorly suited to machine learning models, and severely challenges the capability of any
model to be generic across arbitrary benchmarks. In contrast, our approach is robust to arbitrary
search spaces and algorithms to construct them.

Compiler optimization heuristics play a significant role inthe final performance of a program.
These optimizations are usually organized in passes that are successively applied. The optimization
heuristics implemented in compilers are often fragile and sensitive to the order in which those passes
are performed, and of course to the precise structure of the input program. The main reason for
the limited success of analytical models for performance prediction is that they attempt to predict
performance before the compiler optimizations are applied. Analytically modeling each and every
optimization of a compiler is just not feasible, and even if feasible would require a redesign of the
model for each compiler revision.

To overcome this problem we propose to build models thatoperate on the assembly codethat is
produced by the compiler. By working on the end result of the entire compiler optimization process,
we avoid the need to model the impact of those optimizations.In particular, after instruction schedul-
ing and register allocation are performed, we can analyze important performance factors such as the
arithmetic intensity of the vectorized loops (that is, the ratio of arithmetic vs. memory movement
operations) and the distance between producer and consumeroperations.

4.2. Assembly Features

We focus our feature extraction on the inner-most loop of thekernels as it is the dominant contributor
to execution time. Within the inner-most loop we consider the number of occurrences of each type
of vector instruction and the distance (in number of instructions) to the first consumer of the value
produced by each vector instruction, if any.

Vector Operation Counts:Five parameters counting each of the following types of vector opera-
tions: addition, multiplication, load, store, and miscellaneous (e.g. shuffles); and additionally the total
number of vector operations, equal to the sum of the five counts. Other useful metrics can be derived
from these values as described below. As an example, Figure 5shows a piece of assembly code with
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3 loads, 0 miscellaneous, 1 multiply, 1 add, and 1 store. Scalar operations in the assembly code are
largely ignored in our model, since separate hardware outside of the vector units is available on CPUs
to execute scalar operations and they are not expected to play a significant role in determining the
performance of loops dominated by vector instructions. Theexperimental results shown later in the
paper show that vector operation counts form a sound basis for the input set.

movups 544(%rsp,%rdi), %xmm1
movups 560(%rsp,%rdi), %xmm2
movups 572(%rsp,%rdi), %xmm3
addq $32, %rdi
mulps %xmm1, %xmm2
addps %xmm2, %xmm3
movups %xmm3, 572(%rsp,%rdi)
incq %r9
cmpq $8, %r9
jb ..B1.6

Fig. 5. Example of x86 assembly code.

shufps $0, %xmm6, %xmm6
movaps %xmm15, %xmm14
shufps $0, %xmm4, %xmm4
movaps %xmm6, %xmm12 (used in 3)
mulps %xmm5, %xmm14 (used in 3)
mulps %xmm2, %xmm15 (used in 4)
mulps %xmm5, %xmm12 (used in 5)
addps %xmm14, %xmm7 (not used)
mulps %xmm2, %xmm6 (used in 5)
addps %xmm15, %xmm10 (not used)
mulps %xmm4, %xmm5 (used in 4)
addps %xmm12, %xmm0 (not used)
mulps %xmm2, %xmm4 (used in 3)
addps %xmm6, %xmm1 (not used)
addps %xmm5, %xmm3 (not used)
addps %xmm4, %xmm11 (not used)

Fig. 6. Example of x86 assembly code with many arith-
metic instructions withSufficient Distanceannotations.

Arithmetic Intensity:The ratio of vector arithmetic operations to vector loads. Although this is a
derived metric computed from the vector operation counts, it is a sufficiently significant metric to
warrant explicit inclusion as an input feature for the machine learning models — maintaining a high
arithmetic intensity is essential to high performance on modern CPUs. In the example of Figure 5, the
arithmetic intensity is23 since there are 2 arithmetic operations (1 add and 1 multiply) and 3 loads.

Sufficient Distance:The number of arithmetic vector operations that produce a result that is not
consumed in the next four instructions. The specific distance of four was chosen as it is representative
of the latency of vector arithmetic operations used on both tested x86 CPUs, however this value
could be easily tuned for other architectures. The rationale for this metric is that operations with a
sufficiently large distance between producer and consumer instruction are unlikely to cause pipeline
stalls, while operations with limited distance between producer and consumer can be expected to be
more performance limiting. Figure 6 shows an example of x86 of arithmetic instructions annotated
with the distance until their output is used (the right operand is the output). In this example there are
10 instructions with sufficient distance. When extracting this feature we also consider values produced
that are not used until the next iteration of the loop.

Sufficient Distance Ratio:The percentage of arithmetic vector operations which have sufficient
distance from their first consumer. Higher values of this ratio suggest that available instruction level
parallelism may be better exploited by the multiple vector functional units of a processor, without
pipeline stalls due to dependences. In Figure 6 the ratio is10

13 since there are 13 arithmetic instructions,
of which 10 have sufficient distance.

Total Operations:The count of the total number of instructions in the innermost loop, including
non-vector operations. In Figure 5 this value is 10, and in Figure 5 this value is 16. This is important
because modern processors are more effective in processingloops with a limited body size which they
can cache and reuse the decoded micro operations between iterations of the loop.

Critical Path: An approximation of the minimum number of instructions thatmust be executed in
serial order in the inner most loop. This metric is based on the vector operation counts and number of
ports available to process each type of instruction. In example Figure 5 the critical path is computed
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as 5 instructions. This is because only vector operations are considered, of which there are 6, but the
add and multiply are considered only one cycle for this metric as the CPU can issue the two of them
in parallel.

These features are combined to form feature sets which are used as inputs to each of the machine
learning models. Our strategy for building an effective feature set is to start with the simplest possible
set which should be able to predict performance reasonably well, and incrementally add features in
order of importance based on the additional information conveyed by the features. However, there may
come a point where additional features fail to provide benefit and may even reduce the effectiveness
of the models. We provide a detailed analysis in Section 5.

4.3. Overview of the Process

Our overall approach is to train ML models to predict the performanceP of a vector of input fea-
turesASMf eatures that characterizes a program. This training is done off-line, typically during the
installation of the compiler. When a new program is to be optimized, the model is used to predict the
performance of a number of transformed variants of the inputprogram. This evaluationnever requires
actual execution of the programnor any of the transformed variants. The model determines which of
the transformed variants is predicted to perform best, and this variant is the output of the optimization
process.

4.4. Training and Evaluation

We train a specific model for each of the configurations detailed in Section 3.1. That is, for each pro-
cessor type, compiler, data type (float or double) and SIMD instruction set (AVX or SSE), a dedicated
model is trained. This is relevant as we have shown the sensitivity of the best variant to each of these
factors. For the training of the models, we useexclusively the 30 synthetic TC kernelsas described in
Section 3.2. Thus, none of the CCSD TC kernels used to evaluate the models in Sec. 6 are included
among the set of kernels used for training.

A model is trained as follows. A collection of vectorized variants is generated for each of the 30
kernels, and for each of them their feature vectorASMf eatureis computed. Each assembly code variant
is run on the target machine and its performancePactual is recorded. We used GFlop/s as the metric for
Pactual. The model is trained with the tuple(ASMf eature,Pactual). In the experiments of Sec. 4, we use
the standardLeave One Benchmark Out Cross-Validationprocedure for evaluating our models on the
30 TC set. That is, the models are trained onN−1 benchmarks and all their associated variants, that is
approximately 20000 programs. Models are thenevaluated on all the variants of the benchmark that
has been left out. For each variant, the feature vectorASMf eature is fed to the model, which outputs
Ppredicted, the expected performance. This procedure is repeated individually for each benchmark to
be evaluated: each evaluation is done on a benchmark and all its associated vector variants that were
never seen by the model during the training. We remark that for the experiments of Sec. 6 and Sec. 7,
models are trained on all variants of the 30 TC set, and evaluated on a fully distinct test set (CCSD
and Stencil benchmark suites).

The running time of the training procedure depends on the compiler used, ICC being slower than
GCC for our test suite. The total training time ranges from 30minutes to 2 hours, depending on the
configuration. For the evaluation of an unseen benchmark thetotal time is dominated by the time to
compile all variants, and therefore depends on the number ofvariants. In our experiments it ranged
from about 30 seconds to 10 minutes.

4.5. Learning Algorithms Evaluated

We implemented performance prediction models using six different machine learning algorithms
available in Weka [Bouckaert et al. 2010]:Perceptron is an acyclic artificial neural network trained
using back propagation;K* andIBk are both instance based learning algorithms which predict based
on similar instances from the training set;M5P generates M5 model trees which are binary trees where
each internal node compares an input value to a constant determined during training;SVM is a support
vector machine algorithm using sequential minimal optimization; finallyLR is linear regression. All
these algorithms were used with the default parameter values provided with Weka.
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5. ANALYSIS OF THE GENERATED MODELS

We now analyze the feature space and evaluate choices for selection of features to be used as inputs
to the models and the resulting performance.

5.1. Correlation Between Features

To characterize the feature space, we performed a study of the coefficients of determination between
the features described in Section 4.2, averaged for all vectorized variants of the CCSD application.
This is summarized as a Hinton diagram shown in Figure 7.
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Fig. 7. Hinton diagram of the coefficient of determination between features averaged for all vectorized variants of CCSD

The most prominent aspect of the diagram is that none of the features are exceptionally well cor-
related with performance, motivating the need for combining multiple features to create an input set
to the models. Looking at arithmetic intensity, it is among the best correlated to GFlop/s, our perfor-
mance metric. Arithmetic intensity alone was used by Stock et al. in their cost model [Stock et al.
2011], and is a logical choice since the higher the arithmetic intensity, the less memory bound the
computation. The performance achieved by using this feature alone is analyzed below, and is ref-
erenced asfs1 (feature set 1). We show that usingfs1 as the only input to the model exhibits poor
predictions.

Another category of features shows good correlation with performance, this is the set of vector
operation count (Adds to Vec. Ops). We observe that those features are quite well correlated with each
other, especiallyMuls, the number of vector multiply operations, is the most correlated to performance
in this set. We analyze below the performance of a feature setfs2 that contains those features in
addition tofs1, and show that usingfs2 greatly improves the quality of the predictions.

The sufficient distance ratio feature is by far the least correlated to other features. As such it is able
to provide information to the predictors which is unavailable from the other features. Although it is
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also the least correlated to performance, we show below thatadding this feature improves the quality
of the model. We analyze the setfs3 below, which contains this feature in addition tofs2.

Finally, the sufficient distance, critical path and total operation features are all highly correlated
with each other, and show good correlation with performance. We analyze below the performance of
the feature setfs4 that contains these features in addition tofs3. However we find that this does not
improve the performance of the predictors over using onlyfs3.

5.2. Prediction Quality for the Feature Sets

To determine the quality of predictions, we compute anefficiency metricdefined as follows:

Efficiency=
Performance of predicted best

Performance of actual best
The efficiency is 100% if the predicted best variant is the actual best variant for the benchmark.
The actual best variant was found by evaluating on the targetmachine the entire space of possible
vectorized variants generated by our algorithm, and the onewith the maximum measured performance
is taken as the best variant.
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Fig. 8. Quality of predictions for each of the four feature sets over all configurations.

In Figure 8 we quantify, for each feature set considered, using theK* model, the number of bench-
marks for which the predicted best achieves less than 50% efficiency (0-0.5), those achieving 50%
to 80% (0.5-0.8) and those achieving more than 80% efficiency (0.8-1.0). The poor results using
fs1 illustrates how arithmetic intensity alone is not a sufficient criterion to determine performance.
This is consistently observed across all ML models usingfs1. On the other hand, the relatively sim-
ilar performance offs2, fs3 andfs4 indicates that arithmetic intensity coupled with vector operation
counts gathers the most important information to predict performance, as would be predicted by their
relatively good correlation with performance as seen in Figure 7. Additional features infs3 and fs4
provide minimal benefit. A complete analysis shows that for some specific combinations of ML model
and configuration,fs4 performs marginally better thanfs3. However, we conclude thatfs3 is the most
suitable feature set in our experiments, based on its ability to obtain the best average efficiency across
many of the models and configurations, while limiting the required number of inputs.

5.3. Evaluation of the Models

We plot in Figure 9 the result of the predictive modeling using fs3, for three different configurations.
We also plot the performance of ICC’s auto-vectorization onthe original source code, using the same
efficiency metric, and the result of a random choice from the search space of variants.

We are able to significantly outperform ICC auto-vectorization by considering a large search space
of transformations and making a better decision about whichtransformation to apply. Our models
find performance dependencies between the transformationsinstead of predicting the effect of each
transformation individually. Also, by considering vectorization along all dimensions instead of only
those accessed in unit-stride, we are able to utilize the SIMD units of the processors where current
compilers fail to find the best transformations to optimize the vectorized code.
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Fig. 9. Quality of the prediction, using thefs3 feature set, onfloat data using ICC. (a) is Nehalem with SSE, (b) is Sandy
Bridge with SSE, (c) is Sandy Bridge with AVX.

The efficiency achieved byRandom search reflects the variation in the quantity of good vectorized
variants across configurations : for Sandy Bridge w/AVX, allbut 1 benchmark inRandom fail to
exhibit more than 50% efficiency. For this configuration, thespace contains fewer ‘good’ variants
than withNehalem. In contrast, our ML models, in particular instance-based learning algorithms such
asIBk andKStar, achieve 80% efficiency or more for a vast majority of the benchmarks. We note that
simpler classification models such as Multi-Layer Perceptron MLP andSVM, while still significantly
outperformingRandom selection, exhibit a lower prediction quality. However, a detailed analysis
shows that while on average those models perform worse, for afew benchmarks they outperform the
instance and tree based algorithms.

We conducted a similar study across all configurations, concluding thatIBk, KStar andM5P are
consistently the best ML models for accurately ranking the performance of the various vectorized
variants. We report in Table I the efficiency of these three models across all twelve configurations.
We abbreviate the configuration using four letters: N for Nehalem and S for Sandy Bridge, S for SSE
and A for AVX, F for float and D fordouble, and I for ICC and G for GCC. When ties occur (a
model may predict the same performance for two or more variants), we report the average efficiency
of the variants which ranked first. Table I shows that no single model is consistently best across all
configurations, although all three models perform similarly within any given configuration.

Table I. Average efficiency of the most successful individual models from leave one out analysis across configurations.
Nehalem/Sandybridge, SSE/AVX, Float/Double, ICC/GCC

Model NSDG NSDI NSFG NSFI SADG SADI SAFG SAFI SSDG SSDI SSFG SSFI

IBk 0.88 0.94 0.88 0.96 0.89 0.81 0.89 0.87 0.87 0.93 0.89 0.94
KStar 0.87 0.96 0.87 0.92 0.91 0.88 0.89 0.88 0.88 0.95 0.89 0.93
M5P 0.86 0.93 0.86 0.90 0.91 0.85 0.89 0.89 0.87 0.94 0.83 0.87

6. COMPOSING MODELS

We now provide in-depth experimental results for TCs from the CCSD application. For the remainder
of the section, we use ML models that were trained on the set of30 random TCs that we generated.
We evaluate those models on the 19 unseen TCs from CCSD, that is, none of the TCs from CCSD
were used for training the models.

6.1. Performance Analysis

A careful study of the individual results shows that while some models can correctly output an 80%+
variant for a given benchmark, other models may fail to do so.We illustrate this in Table II, which
details the performance of the various models for Sandy Bridge with AVX, usingfloat data and ICC,
with thefs3 feature set. We use a description of the indices from the three arrays in the TCs to identify
the benchmarks. For instance,ij-ik-kj represents a contraction of two 2D Tensors to produce a 2D
Tensor, and the loop depth is 3 (that is, the number of different indices). TheSt-m column indicates
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the efficiency obtained by using Stock’s static cost model [Stock et al. 2011] to select the vectorized
variant.

Table II. Efficiency of the ML models on the CCSD test set, using Sandy Bridge with AVX, float data and ICC.

Tensor ICC Random St-m IBk KStar LR M5P MLP SVM Weighted
Contraction Rank

ij-ik-kj 0.14 0.38 0.85 1.00 1.00 0.70 1.00 1.00 0.63 1.00
ij-ikl-ljk 0.10 0.32 0.05 0.97 0.76 0.81 0.76 0.73 0.81 0.97
ij-kil-lkj 0.10 0.31 0.55 1.00 0.89 0.67 1.00 0.67 0.67 1.00
ijk-ikl-lj 0.14 0.47 0.70 0.85 0.73 0.63 0.92 0.85 0.63 0.73
ijk-il-jlk 0.23 0.29 0.48 0.99 0.99 0.55 0.82 0.71 0.80 0.99
ijk-ilk-jl 0.25 0.34 0.23 0.99 0.99 0.69 0.98 0.81 0.80 0.99
ijk-ilk-lj 0.24 0.43 0.23 0.84 0.84 0.65 0.81 0.81 0.80 0.84
ijk-ilmk-mjl 0.08 0.25 0.75 0.98 0.70 0.66 0.38 0.70 0.78 0.98
ijkl-imjn-lnkm 0.06 0.35 0.05 0.86 0.84 0.73 0.76 0.86 0.58 0.86
ijkl-imjn-nlmk 0.10 0.35 0.86 0.89 0.96 0.77 0.77 0.79 0.57 0.96
ijkl-imkn-jnlm 0.05 0.27 0.05 0.96 0.90 0.62 0.78 0.67 0.51 0.96
ijkl-imkn-njml 0.09 0.31 0.28 0.93 0.93 0.94 0.88 0.92 0.78 0.93
ijkl-imln-jnkm 0.05 0.28 0.04 0.92 0.92 0.70 0.87 0.74 0.67 0.92
ijkl-imln-njmk 0.05 0.28 0.77 0.88 0.92 0.44 0.92 0.77 0.44 0.92
ijkl-imnj-nlkm 0.05 0.33 0.03 0.83 0.99 0.48 0.88 0.75 0.48 0.89
ijkl-imnk-njml 0.08 0.39 0.54 0.78 0.74 0.87 0.80 0.83 0.37 0.74
ijkl-minj-nlmk 0.12 0.46 0.44 0.91 0.86 0.65 0.90 0.92 0.65 0.86
ijkl-mink-jnlm 0.09 0.37 0.02 0.73 0.91 0.46 0.94 0.82 0.46 0.91
ijkl-minl-njmk 0.09 0.46 0.24 1.00 1.00 0.63 0.97 0.61 0.30 1.00
Average 0.11 0.35 0.38 0.91 0.89 0.67 0.85 0.79 0.62 0.92

While IBk andKStar are consistently the two best models, we observe numerous cases where one
is able to achieve a significantly better efficiency than the other. For instance, forijk-ilmk-mjl
IBk achieves 98% efficiency whileKStar is limited to 70%. The situation can also be reversed, as
with ijkl-mink-jnlm. In order to benefit from the ability of different models to predict best trans-
formations for different benchmarks, we evaluated the use of a second-order model combining the
predictions of the two best individual models.

6.2. The Weighted-Rank Model

Each individual model produces a predicted performance forall variants of a program, leading to
a rank of the variants according to this prediction. That is,given a modelM and a variantv, we
obtainRM

v , the rank of the variant according to its predicted performance. The variantv with the best
predicted performance hasRM

v = 1, the second predicted best has rank 2, etc.
We also observe from Table II that the simpler models do perform significantly worse on average

across all benchmarks. Hence we do not consider all models, but only the best performing ones to
develop the composite model. Our composite model combines the ranks obtained by a variant onIBk
andKStar, to obtain a composite rankWRfor a variant:

WRv = γ1.R
IBK
v + γ2.R

K∗

v

The factorγi represents the contribution of each individual models to the final vote. For instance,
choosingγi =

1
2 creates a ‘fair’ voting model, where both ML models have the same decision power.

We have evaluated a fair voting model and observed that it is not consistently better than the best
individual model,IBk.

To build theWeightedRank model, we used Linear Regression to find theγi coefficient values. The
problem learned is:

(RIBK
v ,RK∗

v )→WRv

and the model is trained using forWRV the actual rank of each variant. We used Weka’s Linear
Regression model, with the default parameter values. We used the 30 TCs and all their associated
variants for the training, and report the evaluation on the 19 CCSD Tensor Contractions in Table II.
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The Weighted Rank model performs on average marginally better than the two individual models,
with an average efficiency of 92%. However, its most important contribution is to improve over the
‘worst’ performing benchmarks when considering configurations individually. In all but 3 cases, the
Weighted Rank model outputs the maximal efficiency of eitherKStar or IBk, thus effectively selecting
the model that predicts the better variant.

We performed a complete analysis across all twelve configurations, and found that the Weighted
Rank model is consistently better on average than each individual model. The results are shown in
Table III, which reports the average efficiency of all models, across all twelve configurations, for the
CCSD test set. We have also experimented with other composite models, including a Weighted Rank
model using all six individual models that uses a neural network to learn the weight function; it did
not perform as well as the 2-way Weighted Rank model described above.

Table III. Average efficiency of the ML models on the CCSD set, across all configurations. Nehalem/Sandybridge,
SSE/AVX, Float/Double, ICC/GCC

Configuration ICC/GCC Random St-m IBk KStar LR M5P MLP SVM Weighted
Rank

NSDG 0.42 0.64 0.82 0.86 0.85 0.83 0.81 0.84 0.83 0.86
NSDI 0.37 0.66 0.78 0.95 0.96 0.80 0.92 0.93 0.93 0.95
NSFG 0.31 0.53 0.79 0.91 0.86 0.64 0.86 0.80 0.63 0.90
NSFI 0.19 0.54 0.84 0.92 0.89 0.72 0.89 0.88 0.84 0.92
SADG 0.27 0.51 0.75 0.84 0.89 0.70 0.87 0.83 0.72 0.85
SADI 0.22 0.38 0.44 0.82 0.86 0.67 0.88 0.69 0.75 0.88
SAFG 0.21 0.49 0.65 0.81 0.82 0.68 0.81 0.81 0.67 0.81
SAFI 0.11 0.35 0.38 0.91 0.89 0.67 0.85 0.79 0.62 0.92
SSDG 0.43 0.67 0.86 0.88 0.85 0.83 0.78 0.85 0.75 0.87
SSDI 0.33 0.67 0.79 0.95 0.95 0.75 0.93 0.94 0.91 0.94
SSFG 0.33 0.53 0.82 0.88 0.87 0.63 0.88 0.78 0.63 0.88
SSFI 0.20 0.52 0.84 0.92 0.89 0.67 0.81 0.80 0.78 0.92
Average 0.28 0.54 0.73 0.88 0.88 0.71 0.85 0.83 0.75 0.89

6.3. Performance Evaluation on CCSD

We complete our experimental evaluation by reporting in Table IV the performance, in GFlop/s, ob-
tained by using theWeightedRank model to select at compile-time an effective vectorized variant for
the 19 CCSD tensor contractions. As previously discussed, none of the CCSD contractions were seen
during training. We compare these results against the compiler’s auto-vectorization (icc -fast or
gcc -O3) on the original input code. We report in theavg column the mean performance across all
19 contractions. To illustrate the variance across the benchmarks, we also reportmin, the performance
of the TC with the lowest GFlop/s across the benchmark suite,as well asmax, the one with the high-
est GFlop/s. Table IV highlights the very strong benefit in using our model on top of Stock’s vector
synthesis algorithm, when compared to ICC’s automatic vectorization. Despite the small fraction of
high-performance variants in this complex search space, asillustrated in Section 3, theWeightedRank
model is able to achieve single-core improvements ranging from 2× up to 8× on average. We observe
that for some TCs, complex loop permutation sequences are required, along with vectorizing (one of)
the reduction loop(s). To the best of our knowledge, ICC’s auto-vectorization is limited to vectorizing
dimensions accessed in unit-stride, and thus do not vectorize some of the benchmarks.

Interestingly, Table IV also shows that GCC (gcc -O3) can outperform ICC for some configu-
rations; this is especially the case for themax column for the original code. For the original code,
manual investigation of a few benchmarks showed that GCC applies unroll-and-jam more effectively
than ICC. The best absolute performance is found on Sandy Bridge with AVX, where ICC attains
43GFlop/s, which is about 80% of the machine peak. However, for Sandy Bridge with SSE, GCC
achieves 21.4GFlop/s while ICC tops at 21 GFlop/s (77% of machine peak). GCC’s ability to slightly
outperform ICC for some benchmarks was observed across various configurations, but ICC performs
consistently better on average when compiling vector intrinsics code for the Nehalem and Sandy
Bridge systems.
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Table IV. GFlop/s obtained for the CCSD benchmarks, using compiler auto-vectorization and our WeightedRank
model. For each configuration, min is the performance of the slowest CCSD TC, max the performance of the
fastest CCSD TC, avg is the average performance across all 19 CCSD TCs. Nehalem/Sandybridge, SSE/AVX,
Float/Double, ICC/GCC

Configuration Compiler Weighted Rank Improv.
min avg max min avg max

NSDG 1.38GF/s 3.02GF/s 8.48GF/s 3.55GF/s 6.02GF/s 6.96GF/s 2.00×
NSDI 1.30GF/s 2.82GF/s 5.29GF/s 6.69GF/s 7.24GF/s 8.11GF/s 2.57×
NSFG 1.39GF/s 4.34GF/s 16.70GF/s 9.22GF/s 11.77GF/s 14.24GF/s 2.71×
NSFI 1.30GF/s 2.71GF/s 5.98GF/s 6.77GF/s 12.13GF/s 14.30GF/s 4.47×
SADG 2.31GF/s 4.55GF/s 11.63GF/s 10.35GF/s 14.26GF/s 17.88GF/s 3.13×
SADI 1.89GF/s 3.92GF/s 6.69GF/s 11.50GF/s 14.64GF/s 22.23GF/s 3.73×
SAFG 2.40GF/s 6.87GF/s 24.47GF/s 14.69GF/s 25.84GF/s 35.47GF/s 3.76×
SAFI 1.89GF/s 4.15GF/s 9.79GF/s 24.92GF/s 33.18GF/s 43.30GF/s 7.99×
SSDG 2.31GF/s 4.57GF/s 11.62GF/s 5.47GF/s 8.86GF/s 10.35GF/s 1.94×
SSDI 1.89GF/s 3.90GF/s 6.69GF/s 10.06GF/s 10.97GF/s 12.68GF/s 2.81×
SSFG 2.40GF/s 6.89GF/s 24.74GF/s 10.02GF/s 16.96GF/s 21.41GF/s 2.46×
SSFI 1.89GF/s 4.16GF/s 9.57GF/s 8.93GF/s 16.58GF/s 20.97GF/s 3.99×

6.4. Performance Evaluation Without Synthesis of Vectorized Code

To complete the evaluation of the ML-based approach, we perform a complementary evaluation of
the predictors. We consider the case of the CCSD benchmarks with only unroll-and-jam factors and
loop permutation transformations being applied, both of which are implemented in modern compilers
such as ICC and GCC. That is,we do not use the customized generation of vector intrinsicsbut
simply provide the compiler with variants where unroll-and-jam and loop permutation were chosen
by our model and applied on the source code. The objective is to highlight the limitations of the
current state-of-the-art heuristics implemented in the compiler to compute the unroll-and-jam factors
and loop permutation, and show the improvement that can be obtained over the current state-of-the-art
production compilers simply by using our ML model in place ofthe internally implemented heuristics.

Table V shows the performance obtained for the CCSD application, with variants chosen from this
restricted search space, for the Intel ICC compiler, averaged for each of the six configurations.

Table V. Performance (Perf.) in GFlop/s and improvement (Imp.) of the WeightedRank predictor used only for unroll-
and-jam factors and loop permutation, over ICC default auto-vectorization heuristic. Nehalem/Sandybridge, SSE/AVX,
Float/Double

Tensor NSD NSF SAD SAF SSD SSF
Contraction Perf. Imp. Perf. Imp. Perf. Imp. Perf. Imp. Perf. Imp. Perf. Imp.

ij-ik-kj 8.11 2.13 11.11 2.94 9.01 1.38 10.94 1.80 14.30 2.40 19.79 3.09
ij-ikl-ljk 5.18 2.47 7.40 3.54 5.90 1.97 12.69 4.14 9.44 3.14 11.62 3.69
ij-kil-lkj 6.67 3.14 10.58 5.01 5.86 1.88 10.16 3.22 11.13 3.57 17.37 5.49
ijk-ikl-lj 6.76 2.09 11.51 3.84 12.30 2.80 21.83 3.98 9.59 2.18 19.13 3.44
ijk-il-jlk 7.31 1.37 16.87 2.87 18.38 2.71 23.05 2.53 9.65 1.46 27.24 2.92
ijk-ilk-jl 7.23 1.36 15.78 2.62 17.24 2.58 21.92 2.24 9.64 1.45 27.74 2.89
ijk-ilk-lj 7.61 1.43 14.69 2.48 15.53 2.35 27.04 2.88 9.45 1.42 22.97 2.40
ijk-ilmk-mjl 5.03 2.17 10.13 4.67 10.06 3.20 10.16 3.59 9.38 2.86 16.22 5.43
ijkl-imjn-lnkm 6.77 4.97 9.52 7.31 8.64 4.25 18.80 9.34 11.51 5.77 16.91 8.64
ijkl-imjn-nlmk 5.77 2.21 10.86 4.63 7.48 1.99 18.33 5.53 9.63 2.56 17.22 5.13
ijkl-imkn-jnlm 6.82 5.29 9.31 6.93 8.48 4.60 16.69 9.04 10.28 5.40 16.10 8.13
ijkl-imkn-njml 6.19 3.15 12.88 6.03 9.56 3.46 19.10 6.47 10.04 3.52 19.06 6.43
ijkl-imln-jnkm 6.36 5.03 7.19 5.34 8.44 4.44 19.27 9.86 10.55 5.63 12.97 6.76
ijkl-imln-njmk 5.51 2.12 9.46 7.26 8.93 2.38 17.32 8.31 8.94 2.40 14.90 7.50
ijkl-imnj-nlkm 6.33 2.43 9.58 7.22 8.43 2.27 18.16 9.88 9.39 2.56 16.63 8.31
ijkl-imnk-njml 4.66 2.24 12.62 5.93 9.88 3.32 29.09 10.18 7.95 2.63 22.47 7.66
ijkl-minj-nlmk 5.93 1.67 9.64 3.66 7.81 1.68 16.94 4.33 9.96 2.08 16.06 4.09
ijkl-mink-jnlm 6.02 2.42 10.38 4.14 8.26 2.33 17.52 5.05 9.92 2.79 16.43 4.57
ijkl-minl-njmk 5.57 2.44 12.09 5.41 10.50 3.13 33.51 9.90 9.34 2.84 20.28 6.27
Average: 6.31 2.64 11.14 4.83 10.04 2.77 19.08 5.91 10.01 2.98 18.48 5.41
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The ML models were trained using the same feature set as above, by evaluating numerous variants
where the production compiler (Intel ICC here) was used to generate the final vector code. With an
average improvement of 2.6× to 5.9× over the heuristic implemented in the ICC auto-vectorization
pass, our models are clearly capable of achieving good performance by using optimization parame-
ters that are internally accessible in modern compilers. The heuristics guiding these optimization in
production compilers could be immediately improved by using our models.

7. EVALUATION ON STENCIL COMPUTATIONS

We complete our evaluation by examining the capability of the machine learning models to rank-
order the performance of vectorized variants of several stencil computations. We note thatcontrary to
Tensor Contractions, the algorithm we employed to generatevectorized stencil variants is restricted,
and thus the final performance is not fully representative ofeffectively vectorized stencil codes. We
used a ‘naive’ version of Stock’s vectorization algorithm for the sole purpose of generating a search
space of vectorized variants, on which the ML models can be evaluated. Nevertheless, we obtain good
performance improvements over the compiler’s auto-vectorization in the vast majority of cases.

The stencils selected for the test suite were chosen from [Deitz et al. 2001]: Partial derivatives
(disofive, disothree, drowthree); Biharmonic operator (dbigbiharm, dlilbiharm); NAS MG (dresid, dr-
prjthree); and Noise cleaning (inoiseone, inoisetwo). All are 2D or 3D stencils. We used the criteria
that the stencils each have only a single pass, fewer than 25 points, and at least one non-trivial coeffi-
cient. We did not apply any time-tiling on the considered stencils.

7.1. Vectorization Algorithm

Stencils differ from TCs in many regards. The vectorizationalgorithm of [Stock et al. 2011] was
modified to fit the domain of stencil computations. An exampleof a simple 1-dimensional stencil is:

for (i=0; i<N; i++)
B[i] = A[i-1] + 2*A[i]+ A[i+1];

Vectorization for this code is done by loading three vector registers fromA, multiplying the middle
vector by 2, summing the vectors, and storing them back intoB. In all the stencils considered, there
are only two arrays,A as the input andB as the output. In general, stencils always have the same
ordering of accessors, and thus both arrays always share thesame unit-stride accessor. As described
below, these factors significantly reduce the space of possible vectorizations, and thus the stencil
benchmarks we consider only have 12 to 233 vectorized variants each.

Vectorized loop:Because both arrays share the same unit-stride accessor, there is no ambiguity in
choosing which dimension to vectorize, and thus for all stencils we only consider vectorization along
the unit-stride accessing dimension. This simplifies the vector operations that need to be considered,
and there are only standard vector load, stores, and arithmetic in the loops, but the scalar coefficients
must be splatted to registers (which can be hoisted outside the loops).

Loop permutation:All loops in the stencils considered are parallel, and thus all loop permutations
are valid. However, because there are only 2 or 3 loops, the search space of loop permutations is
much smaller compared to TCs having 3 to 6 loops. Furthermore, the benefit of being able to hoist
operations out of the innermost loop is nonexistent since all memory accesses in stencils depend on
all loops.

Unroll-and-Jam:In the case of TCs, register reuse was gained from accesses which were not de-
pendent on the unrolled loop, but, as stated before, stencils do not have such accesses. However,
stencil are still able to benefit from the unroll-and-jam transformation as some vectors may be reused
as different points in future iterations. In the presented example, if vectors of length 2 are used, then
the value ofA[i+1] will be reused asA[i-1] in the next iteration sinceA[(i+2)-1]=A[i+1].

7.2. Overview of the Search Space Complexity

In contrast to the performance distribution of TC variants when using Stock’s algorithm, the perfor-
mance distribution of the considered stencils shows a much narrower gap between the best and worst
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vectorized variants. This is illustrated in Figure 10, which plots the distribution of three representative
stencil benchmarks, across three distinct configurations (Nehalem/SSE, Sandy Bridge/SSE and Sandy
Bridge/AVX).
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Fig. 10. Performance distribution of three representative stencils. (Left) using Intel ICC, (Right) using GNU GCC.

Figure 10 plots on the left the distribution when using the ICC compiler. Fordisofive and
inoisetwo, the distribution is flat as all variants have about the same performance. Nevertheless
there is a significant performance improvement over ICC’s auto-vectorization on the original code:
the best variant fordisofive is 1.8× faster than the auto-vectorized code with ICC, which achieves
4.8GFlop/s. The fact that all variants have roughly the sameperformance indicates that ICC is per-
forming aggressive low-level optimizations on the intrinsics code, that possibly undo some transfor-
mations (e.g., unroll-and-jam and loop permutation).

While our search space still exhibits interesting performance improvement, it is clear that for all
benchmarks that have a flat distribution, even purely randomselection among the variant will be very
effective,de factoreducing the need of complex machine learning techniques. This observation is not
true for all stencil benchmarks, and in particular when using the GCC compiler. Figure 10 plots on
the right the performance of the same benchmarks and same hardware configuration, but using GCC.
A much wider performance variation is seen, for all three benchmarks. We also observe a significant
performance improvement over GCC’s auto-vectorization; Sandy Bridge using single-precision AVX
averages 2.86× improvement across the benchmarks.

7.3. Experimental Results

To evaluate the quality of the predicting models we have built, we generated vectorized variants of
all nine stencils in our benchmark suite, and evaluated themwith the modelsthat were trained on
the Tensor Contraction training set. That is, similarly to the CCSD evaluation, none of the stencil
benchmarks were seen during the training of the models.

We report in Table VI the average efficiency across all nine stencils of the six considered ML
models and the Weighted Rank model, across all twelve configurations, in addition to the compiler
auto-vectorization efficiency as well as random selection of a vectorized variant.

As indicated by the performance distributions in Figure 10,Random performs very well when using
ICC. Nevertheless the Weighted Rank model does consistently outperform Random, and is on average
better than any individual model. Its capability to identify a good vectorized variant is illustrated in
particular when using the GCC compiler, when the performance distribution offers greater challenges
to the optimization selection process. For instance, for Nehalem/SSE usingfloat, the Weighted
Rank model outperforms all individual model by a significantmargin, achieving 89% efficiency for
an average 2.8× performance improvement over GCC’s auto-vectorization.

We conclude our experimental evaluation of stencil benchmarks by showing in Table VII the per-
formance, in GFlop/s, obtained when using theWeightedRank model to select at compile-time an
effective vectorized variant for the 9 stencils. This tablefollows the format of Table IV.

We observe a significant performance improvement over compiler auto-vectorization, although not
as high as compared to the CCSD case. This is mostly due to the vectorization algorithm we used to
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Table VI. Average efficiency of the ML models on the Stencil set, across all configurations. Nehalem/Sandybridge,
SSE/AVX, Float/Double, ICC/GCC

Configuration ICC/GCC Random IBk KStar LR M5P MLP SVM Weighted Rank

NSDG 0.60 0.81 0.95 0.87 0.64 0.80 0.84 0.64 0.93
NSDI 1.05 0.94 0.95 0.95 0.96 0.93 0.94 0.94 0.95
NSFG 0.32 0.74 0.84 0.72 0.60 0.62 0.85 0.60 0.89
NSFI 0.41 0.94 0.95 0.95 0.96 0.93 0.93 0.95 0.96
SADG 0.41 0.80 0.85 0.82 0.68 0.75 0.74 0.68 0.86
SADI 0.79 0.93 0.92 0.92 0.92 0.93 0.94 0.93 0.92
SAFG 0.33 0.91 0.90 0.93 0.91 0.90 0.91 0.91 0.92
SAFI 0.41 0.95 0.96 0.96 0.94 0.95 0.93 0.94 0.96
SSDG 0.56 0.83 0.97 0.95 0.62 0.74 0.73 0.62 0.99
SSDI 1.03 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.97
SSFG 0.32 0.80 0.80 0.81 0.72 0.72 0.86 0.71 0.84
SSFI 0.42 0.95 0.96 0.96 0.96 0.96 0.95 0.96 0.96
Average 0.55 0.88 0.92 0.90 0.82 0.85 0.88 0.82 0.93

Table VII. GFlop/s obtained for the Stencil benchmarks, using compiler auto-vectorization and our WeightedRank
model. For each configuration, min is the performance of the slowest stencil, max the performance of the fastest
stencil, avg is the average performance across all 9 stencils. Nehalem/Sandybridge, SSE/AVX, Float/Double,
ICC/GCC

Configuration Compiler Weighted Rank Improv.
min avg max min avg max

NSDG 2.17GF/s 3.35GF/s 4.12GF/s 3.48GF/s 5.34GF/s 6.91GF/s 1.59×
NSDI 4.26GF/s 5.59GF/s 6.65GF/s 4.33GF/s 5.24GF/s 6.97GF/s 0.94×
NSFG 3.20GF/s 3.78GF/s 4.45GF/s 7.22GF/s 10.50GF/s 12.52GF/s 2.77×
NSFI 2.76GF/s 4.20GF/s 5.10GF/s 8.85GF/s 9.97GF/s 12.26GF/s 2.37×
SADG 3.41GF/s 4.65GF/s 5.52GF/s 6.58GF/s 9.86GF/s 13.39GF/s 2.12×
SADI 6.44GF/s 7.89GF/s 9.02GF/s 7.90GF/s 9.23GF/s 11.49GF/s 1.17×
SAFG 4.40GF/s 5.05GF/s 6.13GF/s 11.36GF/s 14.44GF/s 19.08GF/s 2.86×
SAFI 4.17GF/s 5.85GF/s 7.02GF/s 10.41GF/s 13.74GF/s 16.07GF/s 2.35×
SSDG 3.41GF/s 4.66GF/s 5.52GF/s 6.19GF/s 8.44GF/s 10.26GF/s 1.81×
SSDI 6.48GF/s 7.87GF/s 8.88GF/s 6.21GF/s 7.61GF/s 9.97GF/s 0.97×
SSFG 4.36GF/s 5.02GF/s 6.14GF/s 9.51GF/s 13.41GF/s 16.05GF/s 2.67×
SSFI 4.17GF/s 5.86GF/s 7.02GF/s 12.38GF/s 13.48GF/s 16.01GF/s 2.30×

generate the variants, whose original design target was tensor contractions. The best absolute perfor-
mance is attained with Sandy Bridge/AVX, usingfloat with the GCC compiler, reaching 19GFlop/s
(35% of machine peak). For both Nehalem/SSE and Sandy Bridge/AVX using double, ICC outper-
forms the best vectorized variant by a small margin. However, for all other cases, a performance
improvement ranging on average between 1.17× and 2.86× can be observed.

We expect this performance improvement to greatly increasewith a better suited stencil vector-
ization algorithm. We recall that our vectorization strategy is designed to operate on assembly code,
independent of the transformation algorithm. It is thus expected that our models can be reused as-is
on any customized stencil vectorization algorithm developed in the future.

8. RELATED WORK

Automatic vectorization has been the subject of extensive study in literature [Kennedy and Allen
2002; Wolfe 1996]. Numerous previous works have focused on generating effective code dealing
with hardware alignment and stride issues [Eichenberger etal. 2004; Nuzman et al. 2006; Fireman
et al. 2007; Larsen and Amarasinghe 2000; Larsen et al. 2002], outer-loop vectorization [Nuzman
and Zaks 2008] and multi-platform auto-vectorization [Nuzman and Henderson 2006; Hohenauer
et al. 2009]. The automatic vectorizer of GNU GCC implementsmany of these techniques [Nuzman
and Henderson 2006; Nuzman et al. 2006; Nuzman and Zaks 2008]and thus represents the state-of-
the-art. Since Intel’s ICC is a closed source compiler, it ismore difficult to assess what is currently
implemented. Nevertheless its very good performance compared to GCC for many codes suggests
advanced techniques for automatic vectorization have beenimplemented.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Using Machine Learning to Improve Automatic Vectorization A:19

Stock et al. showed that transformations such as unroll-and-jam and loop permutation have a criti-
cal impact on the performance of TCs, in conjunction with dedicated vector intrinsics code generation
[Stock et al. 2011]. It can outperform ICC by a large factor for the tensor contractions in the MAD-
NESS kernel. To the best of our knowledge, this is the best performing method for SIMD execution of
the MADNESS tensor contraction kernels. Here we have generalized the algorithm to arbitrary tensor
contractions, and have shown the deficiencies of its cost model, in particular for the AVX instruction
set. Our machine learning models can achieve up to 2.5× better performance than Stock’s model.

We consider a set of transformations that are a superset of the SIMD-related transformations con-
sidered by Hall et al. in their auto-tuning work [Chen et al. 2008; Chen et al. 2007], where only unroll-
and-jam and loop permutation pertaining to SIMD optimization are considered. We have observed that
additional dedicated optimizations such as register transpose and intrinsics code generation, which are
considered by our approach, can provide up to 2× additional performance improvement over the com-
piler’s auto-vectorization. In addition, in contrast to previous work on auto-tuning [Chen et al. 2008;
Yi and Qasem 2008; Tiwari et al. 2009], our workoperates at compile time and does not require the
execution of any variants on the machine. It is a purely model-driven approach.

Trifunovic et al. proposed an analytical cost model for evaluating the impact of loop permutation
and loop strip-mining [Trifunovic et al. 2009] on vectorization. While it is applicable to TCs, in
contrast to our work it does not take into account the interplay of subsequent compiler passes (e.g.,
vector code generation, instruction selection, scheduling and register allocation) and does not consider
critical optimizations for performance, such as unroll-and-jam and register transpose.

Deciding the enabling or disabling of loop unrolling was done by Monsifrot et al. [Monsifrot et al.
2002] using decision tree learning, and was one of the early efforts on using machine learning to tune a
high-level transformation. Numerous other works considered the use of machine learning to drive the
optimization process [Kisuki et al. 2000; Cooper et al. 1999; Cooper et al. 2002; Franke et al. 2005;
Haneda et al. 2005; Agakov et al. 2006]. None of these works considered the advanced vectorization
techniques that are used in this paper. Cavazos et al. address the problem of predicting good compiler
optimizations by using performance counters to automatically generate compiler heuristics [Cavazos
et al. 2007]. That work was limited to the traditional optimization space of the PathScale compiler.
Further, the program to be optimized by the compiler first hadto be executed (without optimization) to
determine the feature vector of performance counters that were then input to the trained ML model to
predict the best optimization sequence. In contrast, our approach is a purely compile-time technique.

9. CONCLUSION

Most production compilers today have automatic vectorization capability for multi-core processors
with short-vector SIMD instruction sets, but the achieved performance is often significantly lower
than machine peak. A primary reason is that the space of possible loop transformations is very large
and effective models do not exist to select the best transformations. In this paper, we have developed a
machine-learning-based performance model to guide short-vector SIMD compiler optimization. The
use of the performance model for vectorizing tensor contraction computations demonstrated signif-
icantly better performance than production vectorizing compilers, and the model was shown to be
beneficial for the domain of stencil computations.
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