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Automatic vectorization is critical to enhancing performawd compute-intensive programs on modern processors. How-
ever, there is much room for improvement over the auto-veettioiz capabilities of current production compilers, thrioug
careful vector-code synthesis that utilizes a variety opltransformations (e.g. unroll-and-jam, interchange).etc.

As the set of transformations considered is increased, feetsm of the most effective combination of transformations
becomes a significant challenge: currently used cost-modeledtorizing compilers are often unable to identify the best
choices. In this paper, we address this problem using ma&tameing models to predict the performance of SIMD codes. In
contrast to existing approaches that have used high-leaélifes of the program, we develop machine learning models base
on features extracted from the generated assembly code, Tdelsyare trained off-line on a number of benchmarks, and used
at compile-time to discriminate between numerous possiblerieet variants generated from the input code.

We demonstrate the effectiveness of the machine learning rogdaling it to guide automatic vectorization on a variety of
tensor contraction kernels, with improvements ranging from@8x over Intel ICC’s auto-vectorized code. We also evaluate
the effectiveness of the model on a number of stencil compustad show good improvement over auto-vectorized code.

1. INTRODUCTION

With the increasing degree of SIMD parallelism in processtire effectiveness of automatic vector-
ization in compilers is crucial. Most production compilessich as Intel's ICC, GNU GCC, PGl's
pgcc, IBM’s XL/C etc., perform automatic vectorization. Whihe automatic vectorization of these
compilers often provides very good performance improvdaroempared to scalar code, the achieved
performance nevertheless is often far below the peak pedioce of the processor, even when the
data fits within L1 cache and no cache misses are incurred.

The main reason for the sub-optimal performance of veadreode from current production com-
pilers is the extreme difficulty of choosing the best amonggemumber of possible transformations
of high level loop nests into assembly code. The complexwdi@tpipelines with multiple functional
units in modern processors makes it extremely challengintgtelop analytical performance models
to predict the execution time for a sequence of machineuostms. Production compilers therefore
typically use simple heuristics to guide loop transformasi and back-end code generation.

Machine learning (ML) models have garnered consideralikrést in the compiler community.
ML approaches have been used in numerous situations, tanicesto optimize compiler flag settings
[Agakov et al. 2006; Cavazos et al. 2007], choose effectiop lunrolling factors [Monsifrot et al.
2002], and optimize tile sizes [Yuki et al. 2010]. Howeveg are unaware of any prior use of ML
models to assist in optimizing vector code generation. impghper, we develop such a model.

The present work focuses particularly on the vectorizatiba class of compute-intensive loops
that arise commonly in quantum chemistry codes — tensoractiwns. Tensor contractions are es-
sentially generalized higher dimensional matrix-matnirdqucts, where the tensors can have more
than two dimensions and the summations can be performedeveral dimensions. Various types of
tensor contractions are required in the implementationigii Accuracy quantum chemistry models
such as the coupled cluster method [Crawford and Schadf2000]. These codes are vectorized
by current compilers, but the achieved performance is déiebelow machine peak. We use a code
generator that explicitly generates vector intrinsictgrafonsidering various possible loop permuta-
tions, unrolling and choices of the loop to be vectorizedhgldNe build an ML model to predict the
performance of the generated assembly code for the varimasige transformations. After training
the ML model using of a number of generated variants fromiaitrg set of synthetic nested loops
representing tensor contractions, the model is used to@#ivectorized code generation for a num-
ber of tensor contractions from the CCSD (Couple Clustegi8s;and Doubles) method. We show
that the code generated using the ML model is significanttteb¢han that generated through auto-
vectorization by GCC and ICC. We complete our experimertalysby assessing the effectiveness
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of the generated ML model to successfully rank-order théopeiance of a number of vectorized
variants for several stencil computations.

The rest of the paper is structured as follows. In Section Begeribe the approach we use for vec-
torizing tensor contractions. We then characterize thiemopation search space in Section 3, showing
that the percentage of high-performance points in thisesfgsmall. In Section 4, we discuss the dif-
ferent ML models that we evaluate, along with a descriptibthe various feature sets that we use
with the ML models. Section 5 presents experimental resultsan analysis of the relative effective-
ness of the evaluated models. We then develop a compositeddielin Section 6 from the individual
models discussed in Section 4 and show its improvement upoimtlividual ML models. Section 7
discusses the application of our techniques to stencil cdatipns and analyzes experimental results.
Section 8 provides a summary of the state of the art and celedek.

2. SYNTHESIS OF VECTORIZED CODE
2.1. Automatic Vectorization of Tensor Contractions

In this work, we focus on the class of loops that arise witls¢grtontractions (TC). Tensor contrac-
tions represent the core computational kernels in accatataitio methods for electronic structure
calculations such as the coupled cluster (CC) and configaratteraction (Cl) models in quantum
chemistry suites [Harrison et al. 2005; Crawford and Sdraéif 2000; Baumgartner et al. 2002]. A
TC involvesd-nested loops that updatekalimensional output tensok & d). As an illustration, we
show below an example of a TC, wheéXeM, O, andP represent the size of each dimensiarandB
represent the input tensors, aids the output tensor.

for (i=0; i<N i++)
for (j=0; j<M j++)
for (k=0; k<O k++)
for (1=0; I<P; |++)
AITIIIK] += ALTTLG LK *BLIT[IT;

In a TC, each index of the nested loop appears exactly twi@nasray index, each appearance
being in a different tensor. In the exampl@ppears as an index for arra§&ndB (which makes it a
‘contracted’ index),j andk index into array#A andC, while| indexesB andC. The loop nest is fully
permutable, i.e., all 24 possible loop orderings for thigregle are valid. We label a TC according to
its array indices as representeddfA, andB. The example TC would be representedijds-i j k-i | .

Stock et al. developed a customized vectorization algoritmat generates SIMD intrinsics-based
code [Stock et al. 2011] for six specific TC kernels from MADSK [Harrison et al. 2005]. That
code generation algorithm is also suitable for generatéajorized variants of arbitrary TCs. We first
provide a brief description of the algorithm, before diging the set of optimizations that are applied
to generate the vectorized variants.

Vectorization may be achieved along any of the nested lomgdsions in the iteration space for a
TC. For those arrays in the statement for which the fastegtngndimension (referred to as the unit-
stride dimension, e.g., the rightmost index in C/C++ andldfgnost index in Fortran/MATLAB)
matches the loop dimension chosen for vectorization, ggaipadjacent elements in memory can
be directly loaded into vector registers after an unrotl-f|am transformation of the vectorized loop
with the unroll factor being the vector length. If the loopnginsion chosen for vectorization does not
appear at allamong an array’s indices, then a replicatidatfelement on all components of a vector
register will be required, i.e., splatoperation. Finally, if the vectorized loop dimension appda
some other position than the fastest varying dimensiorargsposition is used after unroll-and-jam
of the loop corresponding to the index of the fastest varglimgension of that array. This enables
use of vector loads followed by an inter-register transgosgather non-contiguous data into vector
registers. We note that the needed data movement is not diepteon the loop permutation used,
although the total data movement cost is a function of bagHdbp which is vectorized as well as the
loop permutation and unroll factors.
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2.2. Tensor Contractions Considered

We consider a set of TCs from CCSD (Coupled Cluster SinglebB)ua computational method
for ab initio electronic structure calculations [Crawford and Schakf&000; Hirata 2003]. CCSD
requires the execution of many TCs, from which we extractedidique kernels. These are repre-
sentative of the kinds of TCs that occur in computationalntis&y and were used to evaluate the
effectiveness of an ML model in identifying effective vected code variants. In order to train an
ML model, a different set of 30 randomly generated TCs wa®gsad, as described in Section 3.2.

2.3. Optimization Space

For any TC, the set of possible vectorized code variantstexichéned by the three degrees of freedom
of the vector synthesis algorithm [Stock et al. 2011]: i) lh@p order of the TC (that is, the result of
a sequence of loop interchanges), ii) the specific loop fitmeridop nest along which vectorization is
performed, and iii) the loops among the loop nest on whiclollHand-jam is applied, along with the
associated unroll factors. The total number of variantsaf®iC can be very large due to these three
degrees of freedom: for the 30 TCs used to train the ML motelnumber of code variants ranged
between 42 and 2497, due to differences in the number of langgrray indices in the TCs.

Loop permutationThe first of the transformations we discuss is loop permurative focus on full
tiles which fit into the first level of cache (TCs are fully tillele computations [Wolfe 1989]), so the
effect of loop permutation with regards to improving spldthaality of memory accesses is minimal.
However, loop permutation can enable some load and storatipes to be hoisted out of the inner-
most loop. This can create a significant improvement betweeiants with different loop orders,
when the hoisted instructions are relatively expensivg (splats and register transpose operations).
For ad-dimensional loop nest! distinct loop orders exist.

Vectorized loopThe choice of the loop to be vectorized affects how memomyadéd to and stored
from the SIMD registers. All loops that are either parallefepresent reductions are considered for
vectorization. Thus, for TCs all the loops are consideredase each loop is either fully parallel or a
reduction. If an array is accessed in unit-stride along #warized dimension, a standard vector load
instruction can be used, which is efficient on modern archites. If an array is not accessed by the
vectorized dimension, a vector splat is required to loadldta, which involves a scalar load followed
by replication of the value to all elements of a SIMD registean accumulation is performed on an
array not accessed by the vectorized dimension, a redustiomolved and the SIMD register must
be reduced before a scalar store is executed. Finally, ag aan be accessed in non-unit stride by
the vectorized loop. In general, in order to vectorize tladeshent, consecutive elements along the
vectorized dimension must be gathered into a SIMD registeising multiple scalar loads. However,
with TCs, data can be loaded with vector loads along the arcayt-stride dimension, followed by
a register level transpose to place consecutive elemeng éthe vectorized dimension into vector
registers. This transformation contributes a multipligafactor equal to the loop nest depth to the
size of the space of vectorized code variants considered.

Unroll-and-Jam:The final transformation considered is unroll-and-jam,cltdan increase register
reuse and therefore increase the arithmetic intensityoAps in TCs are eligible for unroll-and-jam,
so that the potential search space for this transformatimmeacan be very large. We restrict the
possible unroll factors of each loop to the set of divisorshaf loop size to eliminate the need to
generate inefficient edge-case handling code within thienigetd loop nest, with the result that loops
in our benchmarks are unrolleck] 2x, 4x, or 8x. In the context of vectorization, unroll-and-jam is
also used to enable the register transpose operation lbed@bove.

2.4. Detailed Example
To show how these optimizations interact, we present in riéigu an optimized version of the
i jkl-inkn-jnl mTC from the CCSD test set, for double precision floating paimnbers, and the

AVX vector instruction set. The choices with respect to theve three optimizations for this example
are as follows:
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for (me0; nx8; m+=8) {
for (j=0; j<4; j+=1) {
for (1=0; 1<8; I+=8) {
for (k=0; k<4; k+=4) {
for (n=0; n<8; n+=1) {

B t enp0=_m®56_| oadu_pd( &B[ (j ) *512+(n) *64+(1)*8+(m1]);

/* Omtting 14 similar loads into B_tenpl ... B_tenpld */
Bt enp15=_m256_| oadu_pd(&B[ (j)*512+(n)*64+(| +7)*8+(m+4)]);

= _m®56_unpackhi _pd(B_t enp0, B_t enpl);
t2 = _m256_unpackl o_pd(B_t enp2, B_t enp3);
= _m®56_unpackhi _pd(B_t enp2, B_t enp3) ;
) = _m56_per nut e2f 128 pd(__t0, __t2, 0x20);
B tenp2 = _m®@56_pernute2f 128 pd(__t1, _ t3, 0x20);
2 = _m®56_pernute2f 128 _pd(__t0, _ t2, 0x31);
B tenp3 = _m256_pernute2f 128 _pd(__t1, __t3, 0x31);
/* Omtting 3 simlar 4-by-4 transposes, for B_tenp4 ... B_tenpl5 */

for (i=0; i<2; i+=1) {
A _tenp0=_mm256_br oadcast _sd( &A[ (i)*256+(m) *32+(k)*8+(n)]);
/* Omtting 30 simlar splats into A tenpl ... A tenp30 */
A_tenmp3l=_m®56_br oadcast _sd( &A[ (i) *256+(m+7)*32+(k+3)*8+(n)]);

C_tenp0=_m256_| oadu_pd( & (i)*128+(j)*32+(k)*8+(1)]);
/* Omitting 6 simlar loads into Ctenpl ... C_tenp6 */

C tenp7=_m®56_| oadu_pd(&Q] (i)*128+(])*32+(k+3)*8+(1 +4)]);

C_t enp0=_mR56_add_pd(_m®56_nul _pd(A_t enp0, B_t enp0), C_t enp0) ;
/* Omitting 62 simlar nuliply adds updating C tenpl ... C_tenp6 */
C_tenp7=_m256_add_pd(_m®56_nul _pd(A_t enp31, B_tenpl5), C tenp7);

_mm256_storeu_pd(&J (i)*128+(j)*32+(k)*8+(1)], C_tenp0);
/* Omitting 6 simlar stores fromC_tenpl ... Ctenp6 to C*/
_m256_st oreu_pd(&J (i) *128+(j ) *32+(k+3) *8+(1 +4)], C_tenp7);

}
PYrhd

Fig. 1. Example of generated code for thigkl - i mkn- j nl mTensor Contraction

Loop permutationThe loop order in this examplerig | kni , which allows access tto be hoisted
from the innermost loop. Doing so is important because thddmfB require an expensive transpose.
Vectorized loopfor this code variant, the tensor contraction is vectoraledg thel dimension.
Therefore the loads and stores to the result aGa@an be done with standard vector operations.
However, loads from require a splat operation and loads fr8rnvolve register-level transposition

with respect to thenandl dimensions.

Unroll-and-jam: The amount each loop is unrolled is indicated by how muchétsfor is incre-
mented. The loops that are unrolled promote reuse of cergisters. In this example unroll-and-jam
of themloop allows for more reuse of the registers with values ffbfBecause of the unroll-and-jam,
the resulting code is almost 300 lines long. This is showrign F, where repetitive sections of similar
code have been replaced by comments describing them.

3. CHARACTERIZATION OF THE OPTIMIZATION SPACE
In order to characterize the complexity of the optimizafooblem we address, we evaluate numerous
possible variants (that is, each one corresponds to a speeifdf parameters given to the vectorization
algorithm) for a variety of TCs.

3.1. Tested Configurations

We performed our evaluation across several compilers ggsms and instruction sets. Specifically,
we considered two production compilers: GNU GCC 4.6 andl @€ 12.0; two processors: In-
tel Core i7 with theNehalem micro-architecture and Intel Core i7 with tt8andy Bridge micro-
architecture; and two data types for the tensor contrastidroat anddoubl e. For the Nehalem,

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,oletA, Publication date: January YYYY.



Using Machine Learning to Improve Automatic Vectorization A5

we evaluated using the SSE4.2 SIMD instruction set, whiletfe Sandy Bridge we evaluated using
SSE and AVX instruction sets. The cartesian product of tpessibilities results in a total of twelve
different configurations.

The Nehalem processor runs at 2.66 GHz, with a theoretical peak peresithgeaded application
of 10.64 GFlop/sdoubl e) and 21.28 GFlop/d ( oat ). TheSandy Bridge processor runs at 3.4 GHz,
with theoretical single-threaded peak SSE performancedf GFlop/s doubl €) and 27.2 GFlop/s
(f1 oat) and peak AVX performance of 27.2 GFlop#o(bl €) and 54.4 GFlop/sf( oat ).

3.2. Generation of Tensor Contractions for Training Set

In order to train the ML models, a set of 30 TCs were randomhtisgsized. These were generated
using 3 to 6 indices and between 1 and 4 contracted indicesaiirhy indices, corresponding to the
contraction being performed, were chosen as to span ayarfieontractions and transposition of
matrices which can occur in quantum chemistry codes. TheAlé&s named in a canonical fashion to
eliminate duplicates, and any that occur in the 19 CCSD TGs wamoved from the set of synthetic
TCs for ML training. The process of generating random TC®furh number of indices was repeated
until 30 acceptable TCs were generated: there are 4 withi@aadl0 with 4 indices, 5 with 5 indices,
and 11 with 6 indices. Of these, only 11 have an obvious diioarfsr vectorization (where two of
the arrays have the same unit stride loop index).

Since TCs are fully tileable, contractions on large tensarrs always be tiled such that all data
accessed by atile fits entirely in L1 cache. We thereforedaeuL 1-resident datasets for construction
of the ML model and its evaluation. For each TC, the sizes eftéimsors were chosen to ensure that
all tensors could together fit in L1 cache, with sizes alorgféistest varying dimension of all tensors
being a perfect multiple of the vector length.

For our experiments, we used in-program timing code to mortite execution time. Each TC
was run approximately PGimes, although the actual number of repetitions was setatcet total of
roughly 50 million floating point operations were executéde execution time was computed as an
average over all the repetitions. The variance among intgre runs for any TC was less than 4%.

3.3. Variability Analysis

Figure 2 shows the sorted performance distribution, oftedldonsidered variants for four represen-
tative TCs from the CCSD application, for one of the twelvef@gurations of processor, instruction
set, data type, and compiler.

40
ijkl-imIn-jnkm  -------
35 F ijKl-imnk-njml --------
ijKl-minj-nlmk e
30 ijkl-imjn-Inkm ===~
w 25F
3
o 20 |
o
© 15
10 - ,_4,,::.,...r.-......u,-;"-'f
5 - |

Program variants (sorted by performance)

Fig. 2. Performance distribution of Tensor Contractions using3tedy Bridge/AVX/float/ICC configuration.

We observe that only a very small fraction, fewer than 4% efdpace of vectorized code variants,
attains 80% or more of the search-space optimal performdnt code generated by ICC’s auto-
vectorization on the input code (that is, without using tbde synthesis algorithm to generate the
vector intrinsics-based code) only achieves 1.90 GFlap/thgi j ki -i ml n-j nkmTC, which is worse
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than 97% of the points in this search space, where the beanvaerforms at 39.08 GFlop/s. In this
paper, our objective is to develop an effective model thatassist in automatically finding the best
variant in the search space.

For a single TC from the CCSD code, Figure 3 shows the sorteidrpgance distribution for
three configurations (Nehalem with SSE, Sandy Bridge witk 88d Sandy Bridge with AVX) All
three configurations use floats and ICC. We observe that sldition of performance for different
configurations can be quite different. For the consideredlTC auto-vectorization of the input code
on Sandy Bridge using AVX results in performance of 2.96 @HRoHere 74% of the search space is
faster, with the space optimal variant achieving 38.57 GfSlo

40

nehalem sse -------

35 - sandybridge avx -------- E
sandybridge sse e

30 | A

25 | P

GFlop/s

20 | .
15 '
10

Program variants (sorted by performance)

Fig. 3. Performance distribution of a Tensor Contraction acrofésrént configurations.

We also observe that the compiler has a critical impact orrafagive performance of different
vectorized variants. Figure 4 plots, for the same reprasigatTC, the performance of all its vector-
ized variants when using ICC and GCC. The variants are sadeording to their performance when
compiled with ICC. We observe wild performance variatioeteen ICC and GCC for a given vari-
ant, as illustrated by the numerous spikes. The best peirigreectorized variant with GCC (28.1
GFlop/s) performs poorly when compiled with ICC, achievorgy 11.25 GFlop/s. The converse is
also true, as shown by the relatively low performance withd3Cthe far right of the Figure.

40

sse-float-icc -------
35 sse-float-gcc
avx-float-icc

30
25
20

GFlop/s

15
10

Program variants (sorted by ICC performance)

Fig. 4. GCC results sorted in ascending order of ICC performance.

The choice of compiler also affects the maximal performaad@evable for a particular TC. For
example, for the j kl -injn-nl nk TC on Sandy Bridge using AVX and floats, ICC attains 33.16
GFlops/s, while GCC is 13% slower at 28.94 GFlop/s. HoweN&g, is not always more effective.
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There are instances where the best among the vectorizeshisacompiled with GCC is significantly
faster than the best of all variants compiled with ICC.

4. MACHINE LEARNING MODELS

We have shown in Section 3 that the best vectorized variarg ®fC is application-dependent,
machine-dependent and even compiler-dependent. We sdelildoa decision model to determine
which variant is expected to have the best performance.

4.1. Problem Formulation

Traditional machine learning approaches to automaticalgct a loop transformation sequence re-
quire explicit modeling of the sequence in the learning fEob[Agakov et al. 2006; Dubach et al.
2009; Cooper et al. 2002]. We depart from this view and irtstaald performance predictorthat
are independent of the algorithms used to generate thenzslovariants. We solve this problem
by building models that can predict the performance of wé&ntd programsvithout running them

so that we can rank programs (i.e., all the vectorized vegiahthe benchmark) according to their
predicted performance. The program that ranks first is smlegs the output of our model. In our
approach, there is no need for the model to correctly prekdéchumerical value associated with the
performance of a program variant: only the relative ordéwben predicted variants is relevant.

Our approach is motivated by two important factors. Firgtleveloping a technique that is not tied
to the specifics of the optimization algorithm, we signifitpaimcrease the applicability of the model.
The second motivation comes from the optimization spacensider. Building a model that operates
directly on a high-level transformation sequence (e.@,frameters to be given to a vectorization
algorithm) would have to take into account that the paransgtace varies across benchmarks. Input
programs to be optimized may have very different optimaagpaces: for example, the decision of
which loop to vectorize is made from the set of parallel artiotion loops of the program, and this
set is not constant across programs. The fact that the dea@pace is not constant across programs
makes it poorly suited to machine learning models, and sévehallenges the capability of any
model to be generic across arbitrary benchmarks. In cdntoas approach is robust to arbitrary
search spaces and algorithms to construct them.

Compiler optimization heuristics play a significant roletive final performance of a program.
These optimizations are usually organized in passes tbawacessively applied. The optimization
heuristics implemented in compilers are often fragile asmkdive to the order in which those passes
are performed, and of course to the precise structure ofribet iprogram. The main reason for
the limited success of analytical models for performanasigtion is that they attempt to predict
performance before the compiler optimizations are appWethlytically modeling each and every
optimization of a compiler is just not feasible, and evere#dible would require a redesign of the
model for each compiler revision.

To overcome this problem we propose to build models tmrate on the assembly cottet is
produced by the compiler. By working on the end result of thiére compiler optimization process,
we avoid the need to model the impact of those optimizatingarticular, after instruction schedul-
ing and register allocation are performed, we can analyp®itant performance factors such as the
arithmetic intensity of the vectorized loops (that is, tltia of arithmetic vs. memory movement
operations) and the distance between producer and consyiaetions.

4.2. Assembly Features

We focus our feature extraction on the inner-most loop oktraels as it is the dominant contributor
to execution time. Within the inner-most loop we consider ttumber of occurrences of each type
of vector instruction and the distance (in number of indtams) to the first consumer of the value
produced by each vector instruction, if any.

Vector Operation Countd=ive parameters counting each of the following types of meopera-
tions: addition, multiplication, load, store, and misaakous (e.g. shuffles); and additionally the total
number of vector operations, equal to the sum of the five eo@ther useful metrics can be derived
from these values as described below. As an example, Figsineves a piece of assembly code with
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3 loads, 0 miscellaneous, 1 multiply, 1 add, and 1 store.@8agderations in the assembly code are
largely ignored in our model, since separate hardwaredritsfithe vector units is available on CPUs
to execute scalar operations and they are not expectedy@pagnificant role in determining the
performance of loops dominated by vector instructions. &gerimental results shown later in the
paper show that vector operation counts form a sound basikdanput set.

shufps  $0, %m®b, %&b

movaps  9%&mmil5, %nmi4

shufps  $0, %mmd, %M

movaps  9%&mmB, 9%&mmil2  (used in 3)

mul ps 9%mb, %ml4 (used in 3)

mul ps oxmR, %mml5 (used in 4)
movups  544(%sp, % di), Y%m milps  %mmb, %mil2 (used in 5)
novups 560(% sp, % di), %mP addps x4, %mmi  (not used)
movups  572(%sp, % di), Y%mB milps %2, %m6  (used in 5)
addq $32, % di addps oxnml5, %mml0 (not used)
mul ps oxnmt, 9xme milps %, %mb  (used in 4)
addps ome, 9xmB addps  %mil2, 9%mm (not used)
movups  Y%m8, 572(% sp, % di) milps %2, %m¥%  (used in 3)
incq %9 addps  %mb, %mil  (not used)
cnpq $8, %9 addps  9%mb, %mB  (not used)
jb ..BL.6 addps  %mm, %mill (not used)
Fig. 5. Example of x86 assembly code. Fig. 6. Example of x86 assembly code with many arith-

metic instructions wittSufficient Distancannotations.

Arithmetic Intensity:The ratio of vector arithmetic operations to vector loadshdugh this is a
derived metric computed from the vector operation countis, & sufficiently significant metric to
warrant explicit inclusion as an input feature for the maehiearning models — maintaining a high
arithmetic intensity is essential to high performance omleno CPUSs. In the example of Figure 5, the
arithmetic intensity i% since there are 2 arithmetic operations (1 add and 1 multgig 3 loads.

Sufficient DistanceThe number of arithmetic vector operations that producesaltr¢hat is not
consumed in the next four instructions. The specific distaridour was chosen as it is representative
of the latency of vector arithmetic operations used on betited x86 CPUs, however this value
could be easily tuned for other architectures. The rateif@l this metric is that operations with a
sufficiently large distance between producer and consunsénuiction are unlikely to cause pipeline
stalls, while operations with limited distance betweendpier and consumer can be expected to be
more performance limiting. Figure 6 shows an example of xBéribhmetic instructions annotated
with the distance until their output is used (the right opére the output). In this example there are
10 instructions with sufficient distance. When extractirig feature we also consider values produced
that are not used until the next iteration of the loop.

Sufficient Distance RatioThe percentage of arithmetic vector operations which haNcent
distance from their first consumer. Higher values of thisratiggest that available instruction level
parallelism may be better exploited by the multiple vectanctional units of a processor, without
pipeline stalls due to dependences. In Figure 6 the raé}%smce there are 13 arithmetic instructions,
of which 10 have sufficient distance.

Total OperationsThe count of the total number of instructions in the innertiosp, including
non-vector operations. In Figure 5 this value is 10, and gufé 5 this value is 16. This is important
because modern processors are more effective in procésspgwith a limited body size which they
can cache and reuse the decoded micro operations betwesioiis of the loop.

Critical Path: An approximation of the minimum number of instructions thratst be executed in
serial order in the inner most loop. This metric is based en/éttor operation counts and number of
ports available to process each type of instruction. In gtarigure 5 the critical path is computed
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as 5 instructions. This is because only vector operatiomsansidered, of which there are 6, but the
add and multiply are considered only one cycle for this metsithe CPU can issue the two of them
in parallel.

These features are combined to form feature sets which arkassinputs to each of the machine
learning models. Our strategy for building an effectivetfiea set is to start with the simplest possible
set which should be able to predict performance reasonaélly and incrementally add features in
order of importance based on the additional informatiorvegad by the features. However, there may
come a point where additional features fail to provide bem@iil may even reduce the effectiveness
of the models. We provide a detailed analysis in Section 5.

4.3. Overview of the Process

Our overall approach is to train ML models to predict the parfanceP of a vector of input fea-
turesASMseaturesthat characterizes a program. This training is done o#;litypically during the
installation of the compiler. When a new program is to be ojzi&rth, the model is used to predict the
performance of a number of transformed variants of the ippagram. This evaluationever requires
actual execution of the programor any of the transformed variants. The model determineshndf
the transformed variants is predicted to perform best, hisdsariant is the output of the optimization
process.

4.4. Training and Evaluation

We train a specific model for each of the configurations deddih Section 3.1. That is, for each pro-
cessor type, compiler, data type (float or double) and SIMiirirction set (AVX or SSE), a dedicated
model is trained. This is relevant as we have shown the $atsif the best variant to each of these
factors. For the training of the models, we @selusively the 30 synthetic TC kernatsdescribed in
Section 3.2. Thus, none of the CCSD TC kernels used to eeathatmodels in Sec. 6 are included
among the set of kernels used for training.

A model is trained as follows. A collection of vectorized izets is generated for each of the 30
kernels, and for each of them their feature veétBiVkatureiS cOmputed. Each assembly code variant
is run on the target machine and its performaRgg,q is recorded. We used GFlop/s as the metric for
Pactual- The model is trained with the tup{@SMreature Pactual)- IN the experiments of Sec. 4, we use
the standardleave One Benchmark Out Cross-Validatmocedure for evaluating our models on the
30 TC set. That s, the models are trained\ba 1 benchmarks and all their associated variants, that is
approximately 20000 programs. Models are thgaluated on all the variants of the benchmark that
has been left out-or each variant, the feature vectd®Mqature is fed to the model, which outputs
Poredictes the expected performance. This procedure is repeateddudily for each benchmark to
be evaluated: each evaluation is done on a benchmark arid afisociated vector variants that were
never seen by the model during the training. We remark thrahfoexperiments of Sec. 6 and Sec. 7,
models are trained on all variants of the 30 TC set, and eteduan a fully distinct test set (CCSD
and Stencil benchmark suites).

The running time of the training procedure depends on thepdenused, ICC being slower than
GCC for our test suite. The total training time ranges frorm8Autes to 2 hours, depending on the
configuration. For the evaluation of an unseen benchmarkothétime is dominated by the time to
compile all variants, and therefore depends on the numbearidnts. In our experiments it ranged
from about 30 seconds to 10 minutes.

4.5. Learning Algorithms Evaluated

We implemented performance prediction models using sifeidint machine learning algorithms
available in Weka [Bouckaert et al. 201®erceptron is an acyclic artificial neural network trained
using back propagatiom* andiBk are both instance based learning algorithms which predistd

on similar instances from the training se6P generates M5 model trees which are binary trees where
each internal node compares an input value to a constamtdeésl during trainingSVM is a support
vector machine algorithm using sequential minimal optatian; finallyLR is linear regression. All
these algorithms were used with the default parameter sgitevided with Weka.
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5. ANALYSIS OF THE GENERATED MODELS

We now analyze the feature space and evaluate choices éatisel of features to be used as inputs
to the models and the resulting performance.

5.1. Correlation Between Features

To characterize the feature space, we performed a stud afofficients of determination between
the features described in Section 4.2, averaged for albviged variants of the CCSD application.
This is summarized as a Hinton diagram shown in Figure 7.
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Fig. 7. Hinton diagram of the coefficient of determination betwesstdires averaged for all vectorized variants of CCSD

The most prominent aspect of the diagram is that none of thteifes are exceptionally well cor-
related with performance, motivating the need for comlgjmmultiple features to create an input set
to the models. Looking at arithmetic intensity, it is amohg best correlated to GFlop/s, our perfor-
mance metric. Arithmetic intensity alone was used by Stdci.ein their cost model [Stock et al.
2011], and is a logical choice since the higher the aritherietiensity, the less memory bound the
computation. The performance achieved by using this featlone is analyzed below, and is ref-
erenced ass1 (feature set 1). We show that usifgj as the only input to the model exhibits poor
predictions.

Another category of features shows good correlation wittigpeance, this is the set of vector
operation countAdds to Vec. Ops). We observe that those features are quite well correlatébdeach
other, especialliuls, the number of vector multiply operations, is the most dateal to performance
in this set. We analyze below the performance of a featurésgehat contains those features in
addition tofs1, and show that usinfg2 greatly improves the quality of the predictions.

The sufficient distance ratio feature is by far the leastalated to other features. As such itis able
to provide information to the predictors which is unavaléafsom the other features. Although it is
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also the least correlated to performance, we show belovatiding this feature improves the quality
of the model. We analyze the ge8 below, which contains this feature in additionf¢a.

Finally, the sufficient distance, critical path and totakogion features are all highly correlated
with each other, and show good correlation with performakiéeanalyze below the performance of
the feature sefs4 that contains these features in additiori$® However we find that this does not
improve the performance of the predictors over using ¢s8y

5.2. Prediction Quality for the Feature Sets
To determine the quality of predictions, we computeeffitiency metricefined as follows:

Performance of predicted best

Performance of actual best
The efficiency is 100% if the predicted best variant is thaualcbest variant for the benchmark.
The actual best variant was found by evaluating on the targetine the entire space of possible
vectorized variants generated by our algorithm, and thendtiethe maximum measured performance
is taken as the best variant.

Efficiency=

350 q

ocoo
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ocmu
)
j

300 -
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Fig. 8. Quality of predictions for each of the four feature setsr@teconfigurations.

In Figure 8 we quantify, for each feature set consideredgusieK* model, the number of bench-
marks for which the predicted best achieves less than 50%esftiy 0-0.5), those achieving 50%
to 80% (.5-0.8) and those achieving more than 80% efficien6y8<1.0). The poor results using
fs1 illustrates how arithmetic intensity alone is not a suffitieriterion to determine performance.
This is consistently observed across all ML models ussngOn the other hand, the relatively sim-
ilar performance ofs2, fs3 andfs4 indicates that arithmetic intensity coupled with vectoergiion
counts gathers the most important information to predidigpmance, as would be predicted by their
relatively good correlation with performance as seen irufdgr7. Additional features ifs3 andfs4
provide minimal benefit. A complete analysis shows thatéone specific combinations of ML model
and configurationfs4 performs marginally better thas3. However, we conclude th&t3 is the most
suitable feature set in our experiments, based on itsahilibbtain the best average efficiency across
many of the models and configurations, while limiting theuiegd number of inputs.

5.3. Evaluation of the Models

We plot in Figure 9 the result of the predictive modeling ggs8, for three different configurations.
We also plot the performance of ICC’s auto-vectorizatiorth@noriginal source code, using the same
efficiency metric, and the result of a random choice from #srch space of variants.

We are able to significantly outperform ICC auto-vectoiaaby considering a large search space
of transformations and making a better decision about whighsformation to apply. Our models
find performance dependencies between the transformatistesad of predicting the effect of each
transformation individually. Also, by considering vediation along all dimensions instead of only
those accessed in unit-stride, we are able to utilize theCSiMits of the processors where current
compilers fail to find the best transformations to optimize vectorized code.
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Fig. 9. Quality of the prediction, using thfe3 feature set, ol oat data using ICC. (a) is Nehalem with SSE, (b) is Sandy
Bridge with SSE, (c) is Sandy Bridge with AVX.

The efficiency achieved birandom search reflects the variation in the quantity of good verzéati
variants across configurations : for Sandy Bridge w/AVX, talt 1 benchmark irRandom fail to
exhibit more than 50% efficiency. For this configuration, fpace contains fewer ‘good’ variants
than withNehalem. In contrast, our ML models, in particular instance-basadning algorithms such
asIBk andKStar, achieve 80% efficiency or more for a vast majority of the Ienarks. We note that
simpler classification models such as Multi-Layer PeraapttLP andSVM, while still significantly
outperformingRandom selection, exhibit a lower prediction quality. However, etailled analysis
shows that while on average those models perform worse,fw denchmarks they outperform the
instance and tree based algorithms.

We conducted a similar study across all configurations, logiiveg thatiBk, KStar and M5P are
consistently the best ML models for accurately ranking teefggmance of the various vectorized
variants. We report in Table | the efficiency of these threelel® across all twelve configurations.
We abbreviate the configuration using four letters: N for &lem and S for Sandy Bridge, S for SSE
and A for AVX, F forfl oat and D fordoubl e, and | for ICC and G for GCC. When ties occur (a
model may predict the same performance for two or more vesjawe report the average efficiency
of the variants which ranked first. Table | shows that no singbdel is consistently best across all
configurations, although all three models perform simylarithin any given configuration.

Table I. Average efficiency of the most successful individual models from leave one out analysis across configurations.
Nehalem/Sandybridge, SSE/AVX, Float/Double, ICC/GCC
Model NSDG NSDI NSFG NSFI SADG SADI SAFG SAFlI SSDG SSDI SSFG FBS
IBk 0.88 0.94 0.88 0.96 0.89 0.81 089 087 087 093 0.89 094

KStar  0.87 096 087 092 091 088 089 088 088 095 0.89 0.93
M5P 086 093 086 090 091 085 089 089 087 094 083 0.87

6. COMPOSING MODELS

We now provide in-depth experimental results for TCs from@CSD application. For the remainder
of the section, we use ML models that were trained on the s8d sdndom TCs that we generated.
We evaluate those models on the 19 unseen TCs from CCSDsthadrie of the TCs from CCSD
were used for training the models.

6.1. Performance Analysis

A careful study of the individual results shows that whileneomodels can correctly output an 80%-+
variant for a given benchmark, other models may fail to doV8e.illustrate this in Table II, which
details the performance of the various models for Sandygérigith AV X, usingf | oat data and ICC,
with thefs3 feature set. We use a description of the indices from thetanays in the TCs to identify
the benchmarks. For instancéé; i k- kj represents a contraction of two 2D Tensors to produce a 2D
Tensor, and the loop depth is 3 (that is, the number of diffeiredices). Thest-m column indicates
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the efficiency obtained by using Stock’s static cost mod&di et al. 2011] to select the vectorized
variant.

Table Il. Efficiency of the ML models on the CCSD test set, using Sandy Bridge with AVX, f | oat data and ICC.

Tensor ICC Random St-m| IBk KStar LR M5P MLP SVM | Weighted
Contraction Rank
ij-ik-Kj 0.14 0.38 085 100 100 0.70 1.00 1.00 0.63 1.00
ij-ikl-ljk 0.10 0.32 005 097 076 081 0.76 073 081 0.97
ij-Kil-Ikj 0.10 0.31 055 | 1.00 089 067 1.00 0.67 0.67 1.00
ijk-ikl-1j 0.14 0.47 070 | 0.85 0.73 063 092 085 0.63 0.73
ijk-il-jlk 0.23 0.29 048 | 099 099 055 082 071 0.80 0.99
ijk-1lk-jl 0.25 0.34 023 099 099 069 098 081 0.80 0.99
ijk-ilk-1j 0.24 0.43 023 | 0.84 084 065 081 0.81 0.80 0.84
ijk-ilmk-mijl 0.08 0.25 0.75 | 098 070 066 038 070 0.78 0.98

ijkl-imjn-Inkm | 0.06 0.35 0.05 086 084 073 076 0.86 0.58 0.86
ijkl-imjn-nimk | 0.10 0.35 086 089 096 077 077 079 0.57 0.96
ijkl-imkn-jnim | 0.05 0.27 0.05 09 090 062 0.78 0.67 0.51 0.96
ijkl-imkn-njml | 0.09 0.31 028 | 093 093 094 088 092 0.78 0.93
ijkl-imIn-jnkm | 0.05 0.28 0.04 092 092 070 0.87 074 0.67 0.92
ijkl-imin-njmk | 0.05 0.28 0.77 | 0.88 092 044 092 0.77 044 0.92
ijkl-imnj-nlkm | 0.05 0.33 0.03 | 083 099 048 088 0.75 0.48 0.89
ijkl-imnk-njml | 0.08 0.39 054 | 078 074 087 080 083 0.37 0.74
ijkl-minj-nimk | 0.12 0.46 044 | 091 086 065 090 092 0.65 0.86
ijkl-mink-jnim | 0.09 0.37 0.02 073 091 046 094 082 0.46 0.91
ijkl-minl-njmk | 0.09 0.46 024 | 1.00 100 063 097 061 0.30 1.00
Average 0.11 0.35 0.38] 091 089 067 085 079 0.62 0.92

While IBk andKStar are consistently the two best models, we observe numerses gzhere one
is able to achieve a significantly better efficiency than theen For instance, forj k-i | k- nj |
IBk achieves 98% efficiency whilgStar is limited to 70%. The situation can also be reversed, as
with i j kI - mi nk-j nl m In order to benefit from the ability of different models tceedict best trans-
formations for different benchmarks, we evaluated the dse second-order model combining the
predictions of the two best individual models.

6.2. The Weighted-Rank Model

Each individual model produces a predicted performancealfiovariants of a program, leading to
a rank of the variants according to this prediction. Thagisen a modeM and a variant, we
obtainRY, the rank of the variant according to its predicted perfaroea The variant with the best
predicted performance h&' = 1, the second predicted best has rank 2, etc.

We also observe from Table Il that the simpler models do perfsignificantly worse on average
across all benchmarks. Hence we do not consider all modeisyrly the best performing ones to
develop the composite model. Our composite model combiresanks obtained by a variant Bk
andKStar, to obtain a composite rartw Rfor a variant:

WR, =y1.R* +y,.R}*
The factory; represents the contribution of each individual models ®fthal vote. For instance,
choosingy; = % creates a ‘fair’ voting model, where both ML models have thme decision power.
We have evaluated a fair voting model and observed that ibisansistently better than the best
individual model,|Bk.
To build theweightedRank model, we used Linear Regression to find yheoefficient values. The
problem learned is:

RPRE) S WR

and the model is trained using f9¥ R, the actual rank of each variant. We used Weka’s Linear
Regression model, with the default parameter values. We thee30 TCs and all their associated
variants for the training, and report the evaluation on € CSD Tensor Contractions in Table II.
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The Weighted Rank model performs on average marginallgbttan the two individual models,
with an average efficiency of 92%. However, its most impdrtamtribution is to improve over the
‘worst’ performing benchmarks when considering configiorag individually. In all but 3 cases, the
Weighted Rank model outputs the maximal efficiency of eik&ar or 1Bk, thus effectively selecting
the model that predicts the better variant.

We performed a complete analysis across all twelve configurs and found that the Weighted
Rank model is consistently better on average than eachithdivmodel. The results are shown in
Table 111, which reports the average efficiency of all mogalzross all twelve configurations, for the
CCSD test set. We have also experimented with other congpasitiels, including a Weighted Rank
model using all six individual models that uses a neural nétwo learn the weight function; it did
not perform as well as the 2-way Weighted Rank model desti@beve.

Table IIl. Average efficiency of the ML models on the CCSD set, across all configurations. Nehalem/Sandybridge,
SSE/AVX, Float/Double, ICC/GCC

Configuration| ICC/GCC Random St-m IBk KStar LR M5P MLP SVM | Weighted
Rank
NSDG 0.42 0.64 082 | 086 085 083 081 0.84 0.83 0.86
NSDI 0.37 0.66 0.78 | 095 096 080 092 093 0.93 0.95
NSFG 0.31 0.53 079 | 091 086 064 086 0.80 0.63 0.90
NSFI 0.19 0.54 084 | 092 089 072 089 088 0.84 0.92
SADG 0.27 0.51 075 | 084 089 070 087 083 0.72 0.85
SADI 0.22 0.38 044 | 0.82 086 067 088 069 0.75 0.88
SAFG 0.21 0.49 0.65| 081 082 068 081 081 0.67 0.81
SAFI 0.11 0.35 038 | 091 089 067 085 0.79 0.62 0.92
SSDG 0.43 0.67 086 | 0.88 085 0.83 0.78 085 0.75 0.87
SSDI 0.33 0.67 079 | 095 095 075 093 094 091 0.94
SSFG 0.33 0.53 082 | 0.88 087 063 088 0.78 0.63 0.88
SSFI 0.20 0.52 0.84 | 092 089 067 081 080 0.78 0.92
Average 0.28 0.54 0.73| 0.88 0.88 0.71 0.85 0.83 0.75 0.89

6.3. Performance Evaluation on CCSD

We complete our experimental evaluation by reporting inldd¥ the performance, in GFlop/s, ob-
tained by using thgveightedRank model to select at compile-time an effective vectorizedardarfor
the 19 CCSD tensor contractions. As previously discussatk nf the CCSD contractions were seen
during training. We compare these results against the derfgpauto-vectorizationicc -fast or
gcc - @3) on the original input code. We report in theg column the mean performance across all
19 contractions. To illustrate the variance across thelaacks, we also repontin, the performance
of the TC with the lowest GFlop/s across the benchmark sastevell agnax, the one with the high-
est GFlop/s. Table IV highlights the very strong benefit imgour model on top of Stock’s vector
synthesis algorithm, when compared to ICC’s automaticorezation. Despite the small fraction of
high-performance variants in this complex search spadbussated in Section 3, the/eightedRank
model is able to achieve single-core improvements rangorg £x up to 8x on average. We observe
that for some TCs, complex loop permutation sequences quéreel, along with vectorizing (one of)
the reduction loop(s). To the best of our knowledge, ICCtoawectorization is limited to vectorizing
dimensions accessed in unit-stride, and thus do not veetedme of the benchmarks.

Interestingly, Table IV also shows that GC@c¢ - O3) can outperform ICC for some configu-
rations; this is especially the case for tlhex column for the original code. For the original code,
manual investigation of a few benchmarks showed that GCGesppnroll-and-jam more effectively
than ICC. The best absolute performance is found on Sandig8mvith AVX, where ICC attains
43GFlop/s, which is about 80% of the machine peak. HoweweerSandy Bridge with SSE, GCC
achieves 21.4GFlop/s while ICC tops at 21 GFlop/s (77% ofhimecpeak). GCC’s ability to slightly
outperform ICC for some benchmarks was observed acrossugaconfigurations, but ICC performs
consistently better on average when compiling vectorrisics code for the Nehalem and Sandy
Bridge systems.
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Table IV. GFlop/s obtained for the CCSD benchmarks, using compiler auto-vectorization and our WeightedRank
model. For each configuration, min is the performance of the slowest CCSD TC, max the performance of the
fastest CCSD TC, avg is the average performance across all 19 CCSD TCs. Nehalem/Sandybridge, SSE/AVX,
Float/Double, ICC/GCC

Configuration Compiler Weighted Rank Improv.
min avg max | min avg max
NSDG 1.38GF/s 3.02GF/s 8.48GF/s | 3.55GF/s 6.02GF/s 6.96GF/s | 2.00x
NSDI 1.30GF/s 2.82GF/s 5.29GF/s | 6.69GF/s 7.24GF/s 8.11GF/s | 2.57x
NSFG 1.39GF/s 4.34GF/s 16.70GF/s| 9.22GF/s 11.77GF/s 14.24GF/s| 2.71x
NSFI 1.30GF/s 2.71GF/s 5.98GF/s | 6.77GF/s 12.13GF/s 14.30GF/s| 4.47x
SADG 2.31GF/s 4.55GF/s 11.63GF/s| 10.35GF/s 14.26GF/s 17.88GF/s| 3.13x
SADI 1.89GF/s 3.92GF/s 6.69GF/s | 11.50GF/s 14.64GF/s 22.23GF/s| 3.73x
SAFG 2.40GF/s 6.87GF/s 24.47GF/s| 14.69GF/s 25.84GF/s 35.47GF/s| 3.76x
SAFI 1.89GF/s 4.15GF/s 9.79GF/s | 24.92GF/s 33.18GF/s 43.30GF/s| 7.99x
SSDG 2.31GF/s 4.57GF/s 11.62GF/s| 5.47GF/s 8.86GF/s 10.35GF/s| 1.94x
SSDI 1.89GF/s 3.90GF/s 6.69GF/s | 10.06GF/s 10.97GF/s 12.68GF/s| 2.81x
SSFG 2.40GF/s 6.89GF/s 24.74GF/s 10.02GF/s 16.96GF/s 21.41GF/s| 2.46x
SSFI 1.89GF/s 4.16GF/s 9.57GF/s | 8.93GF/s 16.58GF/s 20.97GF/s| 3.99x
6.4. Performance Evaluation Without Synthesis of Vectorized Code

To complete the evaluation of the ML-based approach, weopars complementary evaluation of

the predictors. We consider the case of the CCSD benchmattkomly unroll-and-jam factors and

loop permutation transformations being applied, both atWlare implemented in modern compilers

such as ICC and GCC. That ime do not use the customized generation of vector intrinsits

simply provide the compiler with variants where unroll-gach and loop permutation were chosen

by our model and applied on the source code. The objective ighlight the limitations of the

current state-of-the-art heuristics implemented in thagiter to compute the unroll-and-jam factors

and loop permutation, and show the improvement that can taénalal over the current state-of-the-art

production compilers simply by using our ML model in placétd internally implemented heuristics.
Table V shows the performance obtained for the CCSD appiitatith variants chosen from this

restricted search space, for the Intel ICC compiler, avetdgr each of the six configurations.

Table V. Performance (Perf.) in GFlop/s and improvement (Imp.) of the WeightedRank predictor used only for unroll-
and-jam factors and loop permutation, over ICC default auto-vectorization heuristic. Nehalem/Sandybridge, SSE/AVX,

Float/Double

Tensor NSD NSF SAD SAF SSb SSF
Contraction Perf. Imp. Perf. Imp. Perf. Imp. Perf. Imp. Perf. Imp. Perf. Imp.
ij-ik-Kj 811 213 1111 294 9.01 1.38 1094 180 1430 240 19.79 3.09
ij-ikl-ljk 518 247 7.40 354 590 1.97 12.69 414 944 314 1162 3.69
ij-Kil-1kj 6.67 3.14 1058 5.01 586 1.88 10.16 3.22 11.13 357 17.37 5.49
ijk-ikl-lj 6.76 2.09 1151 3.84 1230 2.80 21.83 398 959 218 19.13 344
ijk-il-jlk 731 137 16.87 2.87 1838 271 23.05 253 9.65 146 2724 292
ijk-ilk-jl 723 136 15.78 2.62 17.24 258 2192 224 9.64 145 27.74 2.89
ijK-ilk-lj 7.61 143 1469 248 1553 235 27.04 288 945 142 2297 240
ijk-ilmk-mijl 5.03 2.17 10.13 4.67 10.06 3.20 10.16 359 9.38 286 16.22 543
ijkl-imjn-Inkm | 6.77 497 952 731 864 425 1880 9.34 1151 577 16.91 8.64
ijkl-imjn-nimk | 5.77 221 1086 4.63 7.48 199 1833 553 9.63 256 17.22 5.13
ijkl-imkn-jnim | 6.82 529 931 6.93 848 460 16.69 9.04 10.28 540 16.10 8.13
ijkl-imkn-njml | 6.19 3.15 12.88 6.03 9.56 3.46 19.10 6.47 10.04 3.52 19.06 6.43
ijkl-imIn-jnkm | 6.36 5.03 7.19 534 844 444 19.27 9.86 10.55 5.63 1297 6.76
ijkl-imin-njmk | 551 2.12 946 7.26 893 238 17.32 831 894 240 1490 7.50
ijkl-imnj-nlkm | 6.33 243 958 7.22 843 227 1816 9.88 9.39 256 16.63 831
ijkl-imnk-njml | 4.66 2.24 1262 593 9.88 3.32 29.09 10.18 7.95 2.63 2247 7.66
ijkl-minj-nimk | 593 1.67 9.64 3.66 7.81 168 16.94 433 996 208 16.06 4.09
ijkl-mink-jnim | 6.02 2.42 10.38 4.14 8.26 233 17.52 505 9.92 279 1643 457
ijkl-minl-njmk | 5.57 244 12,09 541 1050 3.13 3351 990 934 284 2028 6.27
Average: 6.31 264 1114 483 1004 277 19.08 591 10.01 298 18.481 5.
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The ML models were trained using the same feature set as adiypesaluating numerous variants
where the production compiler (Intel ICC here) was used tegate the final vector code. With an
average improvement of@x to 5.9x over the heuristic implemented in the ICC auto-vectorarati
pass, our models are clearly capable of achieving good imeaitce by using optimization parame-
ters that are internally accessible in modern compilere. Aduristics guiding these optimization in
production compilers could be immediately improved by gsinr models.

7. EVALUATION ON STENCIL COMPUTATIONS

We complete our evaluation by examining the capability @ thachine learning models to rank-
order the performance of vectorized variants of severatdteomputations. We note thabntrary to
Tensor Contractions, the algorithm we employed to generattorized stencil variants is restricted
and thus the final performance is not fully representativefectively vectorized stencil codes. We
used a ‘naive’ version of Stock’s vectorization algorithon fhe sole purpose of generating a search
space of vectorized variants, on which the ML models can bliated. Nevertheless, we obtain good
performance improvements over the compiler’s auto-véegdton in the vast majority of cases.

The stencils selected for the test suite were chosen frontZ[@e al. 2001]: Partial derivatives
(disofive, disothree, drowthree); Biharmonic operatordpigbiharm, dlilbiharm); NAS MG (dresid, dr-
prithree); and Noise cleaningr(oiseone, inoisetwo). All are 2D or 3D stencils. We used the criteria
that the stencils each have only a single pass, fewer thanif&pand at least one non-trivial coeffi-
cient. We did not apply any time-tiling on the considereadhsiis.

7.1. Vectorization Algorithm

Stencils differ from TCs in many regards. The vectorizatadgorithm of [Stock et al. 2011] was
modified to fit the domain of stencil computations. An exangila simple 1-dimensional stencil is:

for (i=0; i<N, i++)
Bli] = Ali-1] + 2*Ali]+ Ali+1];

Vectorization for this code is done by loading three vectgisters fromA, multiplying the middle
vector by 2, summing the vectors, and storing them backBnta all the stencils considered, there
are only two arraysA as the input and as the output. In general, stencils always have the same
ordering of accessors, and thus both arrays always shasathe unit-stride accessor. As described
below, these factors significantly reduce the space of plessiectorizations, and thus the stencil
benchmarks we consider only have 12 to 233 vectorized \sresach.

Vectorized loopBecause both arrays share the same unit-stride accessarjtmo ambiguity in
choosing which dimension to vectorize, and thus for allGitewve only consider vectorization along
the unit-stride accessing dimension. This simplifies thetareoperations that need to be considered,
and there are only standard vector load, stores, and atithin¢he loops, but the scalar coefficients
must be splatted to registers (which can be hoisted outsal®ops).

Loop permutationAll loops in the stencils considered are parallel, and tHuiap permutations
are valid. However, because there are only 2 or 3 loops, tAelsespace of loop permutations is
much smaller compared to TCs having 3 to 6 loops. Furtherntbeebenefit of being able to hoist
operations out of the innermost loop is nonexistent sincmamory accesses in stencils depend on
all loops.

Unroll-and-Jam:In the case of TCs, register reuse was gained from accessels wére not de-
pendent on the unrolled loop, but, as stated before, sgedoilnot have such accesses. However,
stencil are still able to benefit from the unroll-and-jamrms#rmation as some vectors may be reused
as different points in future iterations. In the presenteahaple, if vectors of length 2 are used, then
the value ofA[ i +1] will be reused ad\i - 1] in the next iteration sincA[ (i +2)- 1] =Ali +1] .

7.2. Overview of the Search Space Complexity

In contrast to the performance distribution of TC varianteew using Stock’s algorithm, the perfor-
mance distribution of the considered stencils shows a maofower gap between the best and worst
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vectorized variants. This is illustrated in Figure 10, whpdots the distribution of three representative
stencil benchmarks, across three distinct configuratilesélem/SSE, Sandy Bridge/SSE and Sandy
Bridge/AVX).
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Fig. 10. Performance distribution of three representative sten(tikeft) using Intel ICC, (Right) using GNU GCC.

Figure 10 plots on the left the distribution when using the&CI€ompiler. Fordi sofi ve and
i noi setwo, the distribution is flat as all variants have about the saerdopmance. Nevertheless
there is a significant performance improvement over ICCte-aectorization on the original code:
the best variant fodi sof i ve is 1.8x faster than the auto-vectorized code with ICC, which acsev
4.8GFlop/s. The fact that all variants have roughly the sparéormance indicates that ICC is per-
forming aggressive low-level optimizations on the intiasscode, that possibly undo some transfor-
mations (e.g., unroll-and-jam and loop permutation).

While our search space still exhibits interesting perforogaimprovement, it is clear that for all
benchmarks that have a flat distribution, even purely rang@iection among the variant will be very
effective,de factoreducing the need of complex machine learning techniquas.dbservation is not
true for all stencil benchmarks, and in particular when gghre GCC compiler. Figure 10 plots on
the right the performance of the same benchmarks and same&drarconfiguration, but using GCC.
A much wider performance variation is seen, for all threedbemarks. We also observe a significant
performance improvement over GCC's auto-vectorizati@andy Bridge using single-precision AVX
averages 2.86 improvement across the benchmarks.

7.3. Experimental Results

To evaluate the quality of the predicting models we havetbwi generated vectorized variants of
all nine stencils in our benchmark suite, and evaluated thvtinthe modelghat were trained on
the Tensor Contraction training sethat is, similarly to the CCSD evaluation, none of the silenc
benchmarks were seen during the training of the models.

We report in Table VI the average efficiency across all nimmats of the six considered ML
models and the Weighted Rank model, across all twelve camfligns, in addition to the compiler
auto-vectorization efficiency as well as random selecticaectorized variant.

As indicated by the performance distributions in FigureR@ndom performs very well when using
ICC. Nevertheless the Weighted Rank model does consigtaumiperform Random, and is on average
better than any individual model. Its capability to ideyt#f good vectorized variant is illustrated in
particular when using the GCC compiler, when the perforreatistribution offers greater challenges
to the optimization selection process. For instance, fohdlem/SSE usingl oat , the Weighted
Rank model outperforms all individual model by a significarargin, achieving 89% efficiency for
an average 2.8 performance improvement over GCC'’s auto-vectorization.

We conclude our experimental evaluation of stencil benckaby showing in Table VII the per-
formance, in GFlop/s, obtained when using thieightedRank model to select at compile-time an
effective vectorized variant for the 9 stencils. This taoléows the format of Table IV.

We observe a significant performance improvement over demgiito-vectorization, although not
as high as compared to the CCSD case. This is mostly due teetierization algorithm we used to
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Table VI. Average efficiency of the ML models on the Stencil set, across all configurations. Nehalem/Sandybridge,
SSE/AVX, Float/Double, ICC/GCC

Configuration | ICC/GCC  Random| IBk KStar LR M5P  MLP SVM | Weighted Rank

NSDG 0.60 0.81 095 087 064 080 084 0.64 0.93
NSDI 1.05 0.94 095 095 096 093 094 094 0.95
NSFG 0.32 0.74 0.84 0.72 060 062 085 0.60 0.89
NSFI 0.41 0.94 095 095 096 093 093 095 0.96
SADG 0.41 0.80 085 082 068 075 0.74 0.68 0.86
SADI 0.79 0.93 092 092 092 093 094 093 0.92
SAFG 0.33 0.91 090 093 091 090 091 091 0.92
SAFI 0.41 0.95 096 096 094 095 093 094 0.96
SSDG 0.56 0.83 097 095 062 074 073 0.62 0.99
SSDI 1.03 0.97 097 097 097 097 096 0.96 0.97
SSFG 0.32 0.80 0.80 081 072 072 086 0.71 0.84
SSFI 0.42 0.95 096 096 096 096 095 0.96 0.96
Average 0.55 0.88 092 09 082 085 0.88 0.82 0.93

Table VII. GFlop/s obtained for the Stencil benchmarks, using compiler auto-vectorization and our WeightedRank
model. For each configuration, min is the performance of the slowest stencil, max the performance of the fastest
stencil, avg is the average performance across all 9 stencils. Nehalem/Sandybridge, SSE/AVX, Float/Double,

ICC/GCC
Configuration Compiler Weighted Rank Improv.
min avg max | min avg max |
NSDG 2.17GF/s 3.35GF/s 4.12GF/s| 3.48GF/s 5.34GF/s 6.91GF/s 1.59x
NSDI 4.26GF/s 5.59GF/s 6.65GF/s| 4.33GF/s 5.24GF/s 6.97GF/s 0.94x
NSFG 3.20GF/s 3.78GF/s 4.45GF/s| 7.22GF/s 10.50GF/s 12.52GF/s| 2.77x
NSFI 2.76GF/s 4.20GF/s 5.10GF/s 8.85GF/s 9.97GF/s 12.26GF/s| 2.37x
SADG 3.41GF/s 4.65GF/s 5.52GF/s| 6.58GF/s 9.86GF/s 13.39GF/s| 2.12x
SADI 6.44GF/s 7.89GF/s 9.02GF/s| 7.90GF/s 9.23GF/s 11.49GF/s| 1.17x
SAFG 4.40GF/s 5.05GF/s 6.13GF/s | 11.36GF/s 14.44GF/s 19.08GF/s| 2.86x
SAFI 4.17GF/s 5.85GF/s 7.02GF/s| 10.41GF/s 13.74GF/s 16.07GF/s| 2.35x
SSDG 3.41GF/s 4.66GF/s 5.52GF/s| 6.19GF/s 8.44GF/s 10.26GF/s| 1.81x
SSDI 6.48GF/s 7.87GF/s 8.88GF/s| 6.21GF/s 7.61GF/s 9.97GF/s 0.97x
SSFG 4.36GF/s 5.02GF/s 6.14GF/s| 9.51GF/s 13.41GF/s 16.05GF/s| 2.67x
SSFI 4.17GF/s 5.86GF/s 7.02GF/s| 12.38GF/s 13.48GF/s 16.01GF/s| 2.30x

generate the variants, whose original design target wasteontractions. The best absolute perfor-
mance is attained with Sandy Bridge/AVX, usiiigoat with the GCC compiler, reaching 19GFlop/s
(35% of machine peak). For both Nehalem/SSE and Sandy BAd¥eusing doubl e, ICC outper-
forms the best vectorized variant by a small margin. Howefggrall other cases, a performance
improvement ranging on average between k. Bnd 2.86< can be observed.

We expect this performance improvement to greatly incredtie a better suited stencil vector-
ization algorithm. We recall that our vectorization stgptés designed to operate on assembly code,
independent of the transformation algorithm. It is thusested that our models can be reused as-is
on any customized stencil vectorization algorithm devetbim the future.

8. RELATED WORK

Automatic vectorization has been the subject of extendiwdysin literature [Kennedy and Allen
2002; Wolfe 1996]. Numerous previous works have focused emerating effective code dealing
with hardware alignment and stride issues [Eichenbergat. @004; Nuzman et al. 2006; Fireman
et al. 2007; Larsen and Amarasinghe 2000; Larsen et al. 2002$r-loop vectorization [Nuzman
and Zaks 2008] and multi-platform auto-vectorization [Wan and Henderson 2006; Hohenauer
et al. 2009]. The automatic vectorizer of GNU GCC implemen#y of these techniques [Nuzman
and Henderson 2006; Nuzman et al. 2006; Nuzman and Zaks a8@8hus represents the state-of-
the-art. Since Intel's ICC is a closed source compiler, mizre difficult to assess what is currently
implemented. Nevertheless its very good performance coedp@ GCC for many codes suggests
advanced techniques for automatic vectorization have imeglemented.
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Stock et al. showed that transformations such as unroHjamdand loop permutation have a criti-
cal impact on the performance of TCs, in conjunction withidagd vector intrinsics code generation
[Stock et al. 2011]. It can outperform ICC by a large factartfee tensor contractions in the MAD-
NESS kernel. To the best of our knowledge, this is the besvpring method for SIMD execution of
the MADNESS tensor contraction kernels. Here we have gépedahe algorithm to arbitrary tensor
contractions, and have shown the deficiencies of its cosemdparticular for the AVX instruction
set. Our machine learning models can achieve up8a ®etter performance than Stock’s model.

We consider a set of transformations that are a superse¢ @I¥iD-related transformations con-
sidered by Hall et al. in their auto-tuning work [Chen et &l08; Chen et al. 2007], where only unroll-
and-jam and loop permutation pertaining to SIMD optimiaatare considered. We have observed that
additional dedicated optimizations such as register pases and intrinsics code generation, which are
considered by our approach, can provide upstcelditional performance improvement over the com-
piler’s auto-vectorization. In addition, in contrast tepious work on auto-tuning [Chen et al. 2008;
Yi and Qasem 2008; Tiwari et al. 2009], our wargerates at compile time and does not require the
execution of any variants on the machiitdés a purely model-driven approach.

Trifunovic et al. proposed an analytical cost model for estihg the impact of loop permutation
and loop strip-mining [Trifunovic et al. 2009] on vectoriima. While it is applicable to TCs, in
contrast to our work it does not take into account the inssrgf subsequent compiler passes (e.g.,
vector code generation, instruction selection, scheduw@ird register allocation) and does not consider
critical optimizations for performance, such as unrollgam and register transpose.

Deciding the enabling or disabling of loop unrolling was ddry Monsifrot et al. [Monsifrot et al.
2002] using decision tree learning, and was one of the etidgt®on using machine learning to tune a
high-level transformation. Numerous other works congdehe use of machine learning to drive the
optimization process [Kisuki et al. 2000; Cooper et al. 1,9880per et al. 2002; Franke et al. 2005;
Haneda et al. 2005; Agakov et al. 2006]. None of these worksidered the advanced vectorization
techniques that are used in this paper. Cavazos et al. adtieeproblem of predicting good compiler
optimizations by using performance counters to automiitigenerate compiler heuristics [Cavazos
et al. 2007]. That work was limited to the traditional optiation space of the PathScale compiler.
Further, the program to be optimized by the compiler firsttioduk executed (without optimization) to
determine the feature vector of performance counters thet then input to the trained ML model to
predict the best optimization sequence. In contrast, opirageh is a purely compile-time technique.

9. CONCLUSION

Most production compilers today have automatic vectadpatapability for multi-core processors
with short-vector SIMD instruction sets, but the achievedfgrmance is often significantly lower
than machine peak. A primary reason is that the space oflpedeop transformations is very large
and effective models do not exist to select the best tram&fions. In this paper, we have developed a
machine-learning-based performance model to guide steatbr SIMD compiler optimization. The
use of the performance model for vectorizing tensor cotitacomputations demonstrated signif-
icantly better performance than production vectorizinghpders, and the model was shown to be
beneficial for the domain of stencil computations.
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