
Polyhedral Compilation Foundations

Louis-Noël Pouchet
pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

Feb 8, 2010

888.11, Class #3

Introduction: Polyhedral Compilation Foundations - #3

Overview of Today’s Lecture

Outline:
I Transformation in the polyhedral representation

I Affine scheduling
I Scanning hyperplane
I Legal transformation

I One-dimensional affine schedules
I Convex set of legal schedules
I Objective functions

Mathematical concepts:
I Affine functions
I Affine form of Farkas Lemma

OSU 2

Affine Scheduling: Polyhedral Compilation Foundations - #3

Affine Scheduling

Definition (Affine schedule)

Given a statement S, a p-dimensional affine schedule ΘR is an affine form on
the outer loop iterators~xS and the global parameters~n. It is written:

Θ
S(~xS) = TS

~xS
~n
1

 , TS ∈Kp×dim(~xS)+dim(~n)+1

I A schedule assigns a timestamp to each executed instance of a
statement

I If T is a vector, then Θ is a one-dimensional schedule
I If T is a matrix, then Θ is a multidimensional schedule

OSU 3

Affine Scheduling: Polyhedral Compilation Foundations - #3

Scheduling Statement Instances

Interchange Transformation
The transformation matrix is the identity with a permutation of two rows.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

1 2 3

4 5 6

0 1 2 3 4 5 6 i’0
1
2
3

j’

=⇒

 1 0
−1 0

0 1
0 −1

(i
j

)
+

−1
2

−1
3

≥~0

(
i′
j′

)
=
[0 1

1 0

](i
j

)  0 1
0 −1
1 0

−1 0

(i′
j′

)
+

−1
2

−1
3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

A~x+~a≥~0 ~y = T~x (AT−1)~y+~a≥~0

do i = 1, 2
do j = 1, 3

do j = 1, 3
do i = 1, 2

OSU 4

Affine Scheduling: Polyhedral Compilation Foundations - #3

Scheduling Statement Instances

Reversal Transformation
The transformation matrix is the identity with one diagonal element replaced by −1.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

5

4

6 1

2

3

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

 1 0
−1 0

0 1
0 −1

(i
j

)
+

−1
2

−1
3

≥~0

(
i′
j′

)
=
[−1 0

0 1

](i
j

) −1 0
1 0
0 1
0 −1

(i′
j′

)
+

−1
2

−1
3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

A~x+~a≥~0 ~y = T~x (AT−1)~y+~a≥~0

do i = 1, 2
do j = 1, 3

do i = -1, -2, -1
do j = 1, 3

OSU 5

Affine Scheduling: Polyhedral Compilation Foundations - #3

Scheduling Statement Instances

Coumpound Transformation
The transformation matrix is the composition of an interchange and reversal

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

3

6

2

5

1

4

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

 1 0
−1 0

0 1
0 −1

(i
j

)
+

−1
2

−1
3

≥~0

(
i′
j′

)
=
[0 −1

1 0

](i
j

)  0 −1
0 1
1 0

−1 0

(i′
j′

)
+

−1
2

−1
3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

A~x+~a≥~0 ~y = T~x (AT−1)~y+~a≥~0

do i = 1, 2
do j = 1, 3

do j = -1, -3, -1
do i = 1, 2

OSU 6

Affine Scheduling: Polyhedral Compilation Foundations - #3

Scheduling Statement Instances

Coumpound Transformation
The transformation matrix is the composition of an interchange and reversal

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

3

6

2

5

1

4

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

 1 0
−1 0

0 1
0 −1

(i
j

)
+

−1
2

−1
3

≥~0

(
i′
j′

)
=
[0 −1

1 0

](i
j

)  0 −1
0 1
1 0

−1 0

(i′
j′

)
+

−1
2

−1
3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

A~x+~a≥~0 ~y = T~x (AT−1)~y+~a≥~0

do i = 1, 2
do j = 1, 3

do j = -1, -3, -1
do i = 1, 2

OSU 7

Affine Scheduling: Polyhedral Compilation Foundations - #3

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

OSU 8

Affine Scheduling: Polyhedral Compilation Foundations - #3

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

OSU 9

Affine Scheduling: Polyhedral Compilation Foundations - #3

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

OSU 10

Affine Scheduling: Polyhedral Compilation Foundations - #3

Program Transformations

Distribute loops

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 1 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
for (k = 0; k < n; ++k)
C[i-n][j] += A[i-n][k]*

B[k][j];

I All instances of S1 are executed before the first S2 instance

OSU 11

Affine Scheduling: Polyhedral Compilation Foundations - #3

Program Transformations

Distribute loops + Interchange loops for S2

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 0
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I The outer-most loop for S2 becomes k

OSU 12

Affine Scheduling: Polyhedral Compilation Foundations - #3

Program Transformations

Illegal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (k = 0; k < n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k]*

B[k][j];
for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i-n][j] = 0;

I All instances of S1 are executed after the last S2 instance

OSU 13

Affine Scheduling: Polyhedral Compilation Foundations - #3

Program Transformations

A legal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

I Delay the S2 instances
I Constraints must be expressed between ΘS1 and ΘS2

OSU 14

Affine Scheduling: Polyhedral Compilation Foundations - #3

Program Transformations

Implicit fine-grain parallelism

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 = (1 0 0 0) .

 i
j
n
1



Θ
S2.~xS2 = (0 0 1 1 0) .


i
j
k
n
1



for (i = 0; i < n; ++i)
pfor (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
pfor (j = 0; j < n; ++j)

pfor (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I Number of rows of Θ ↔ number of outer-most sequential loops

OSU 15

Affine Scheduling: Polyhedral Compilation Foundations - #3

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

(1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

(i j i j k n n 1 1)T

~p

OSU 16

Affine Scheduling: Polyhedral Compilation Foundations - #3

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

(1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

(i j i j k n n 1 1)T

0 0

~ı

0 0 0

~p

0

c

0

OSU 17

Affine Scheduling: Polyhedral Compilation Foundations - #3

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Transformation Description

~ı
reversal Changes the direction in which a loop traverses its iteration range
skewing Makes the bounds of a given loop depend on an outer loop counter

interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation

~p fusion Fuses two loops, a.k.a. jamming
distribution Splits a single loop nest into many, a.k.a. fission or splitting

c peeling Extracts one iteration of a given loop
shifting Allows to reorder loops

OSU 18

Affine Scheduling: Polyhedral Compilation Foundations - #3

Pictured Example

Example of 2 extended dependence graphs

OSU 19

Legal Schedule: Polyhedral Compilation Foundations - #3

Legal Program Transformation

A few properties:
I A transformation is illegal if a dependence crosses the hyperplane

backwards
I A dependence going forward between 2 hyperplanes indicates

sequentiality
I No dependence between any point of the hyperplane indicates

parallelism

Definition (Precedence condition)

Given ΘR a schedule for the instances of R, ΘS a schedule for the instances
of S. ΘR and ΘS are legal schedules if ∀〈~xR,~xS〉 ∈DR,S:

ΘR(~xR)≺ΘS(~xS)

OSU 20

Scheduling: Polyhedral Compilation Foundations - #3

Scheduling in the Polyhedral Model

Constraints:
I The schedule must be legal, for all dependences
I Dependence constraints have to be turned into constraints on the

solution set

Scheduling:
I Among all possibilities, one has to be picked
I Optimal solution requires to consider all legal possible schedules

OSU 21

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

One-Dimensional Affine Schedules

For the rest of the lecture, we focus on 1-d schedules

Example

for (i = 1; i < N; ++i)
A[i] = A[i - 1] + A[i] + A[i + 1];

I Simple program: 1 loop, 1 polyhedral statement
I 2 dependences:

I RAW: A[i] → A[i - 1]
I WAR: A[i + 1] → A[i]

OSU 22

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Checking the Legality of a Schedule

Exercise: given the dependence polyhedra, check if a schedule is legal

D1 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .

eq
iS
i′S
n
1

 D2 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .

eq
iS
i′S
n
1


1 Θ = i
2 Θ =−i

I Solution: Check for the existence of pairs of instances in dependence in
the dependence polyhedron when the timestamp are equals

OSU 23

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Checking the Legality of a Schedule

Exercise: given the dependence polyhedra, check if a schedule is legal

D1 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .

eq
iS
i′S
n
1

 D2 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .

eq
iS
i′S
n
1


1 Θ = i
2 Θ =−i

I Solution: Check for the existence of pairs of instances in dependence in
the dependence polyhedron when the timestamp are equals

OSU 24

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

A (Naive) Scheduling Approach

I Pick a schedule for the program statements
I Check if it respects all dependences

This is called filtering

Limitations:
I How to use this in combination of an objective function?
I The density of legal 1-d affine schedules is low:

matmult locality fir h264 crout

~i-Bounds −1,1 −1,1 0,1 −1,1 −3,3
c-Bounds −1,1 −1,1 0,3 0,4 −3,3
#Sched. 1.9×104 5.9×104 1.2×107 1.8×108 2.6×1015

⇓
#Legal 6561 912 792 360 798

OSU 25

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Objectives for a Good Scheduling Algorithm

I Build a legal schedule!
I Embed some properties in this legal schedule

I latency: minimize the time between the first and last iteration
I parallelism (for placement)
I permutability (for tiling)
I ...

A 2-step approach:
I Find the solution set of all legal affine schedules
I Find an ILP formulation for the objective function

OSU 26

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

The Precedence Constraint (Again!)

Precedence constraint adapted to 1-d schedules:

Definition (Causality condition for schedules)

Given DR,S, ΘR and ΘS are legal iff for each pair of instances in dependence:

Θ
R(~xR) < Θ

S(~xS)

Equivalently: ∆R,S = Θ
S(~xS)−Θ

R(~xR)−1≥ 0

I All functions ∆R,S which are non-negative over the dependence
polyhedron represent legal schedules

I For the instances which are not in dependence, we don’t care
I First step: how to get all non-negative functions over a polyhedron?

OSU 27

The Farkas Lemma: Polyhedral Compilation Foundations - #3

Affine Form of the Farkas Lemma

Lemma (Affine form of Farkas lemma)

Let D be a nonempty polyhedron defined by A~x+~b≥~0. Then any affine
function f (~x) is non-negative everywhere in D iff it is a positive affine
combination:

f (~x) = λ0 +~λT(A~x+~b), with λ0 ≥ 0 and~λ≥~0

λ0 and ~λT are called the Farkas multipliers.

I Intuition: a positive combination of some positive points is another
positive point

OSU 28

The Farkas Lemma: Polyhedral Compilation Foundations - #3

The Farkas Lemma: Example

I Function: f (x) = ax+b
I Domain of x: {1≤ x≤ 3}→ x−1≥ 0, −x+3≥ 0
I Farkas lemma: f (x)≥ 0⇔ f (x) = λ0 +λ1(x−1)+λ2(−x+3)

The system to solve:
λ1 − λ2 = a

λ0 − λ1 + 3λ2 = b
λ0 ≥ 0

λ1 ≥ 0
λ2 ≥ 0

OSU 29

The Farkas Lemma: Polyhedral Compilation Foundations - #3

Pictured Example

1
0

2 3
b= a

b= 3a

a>0 => b>= a

a<0 => b>= 3a

f(x)

x

(Courtesy of Cedric Bastoul’s thesis!)

OSU 30

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

OSU 31

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

Property (Causality condition for schedules)

Given RδS, ΘR and ΘS are legal iff for each pair of instances in dependence:

Θ
R(~xR) < Θ

S(~xS)

Equivalently: ∆R,S = Θ
S(~xS)−Θ

R(~xR)−1≥ 0

OSU 32

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Lemma (Affine form of Farkas lemma)

Let D be a nonempty polyhedron defined by A~x+~b≥~0. Then any affine function f (~x)
is non-negative everywhere in D iff it is a positive affine combination:

f (~x) = λ0 +~λT(A~x+~b), with λ0 ≥ 0 and~λ≥~0.

λ0 and ~λT are called the Farkas multipliers.

OSU 33

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

OSU 34

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

Many to one

OSU 35

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

Θ
S(~xS)−Θ

R(~xR)−1 = λ0 +~λT
(

DR,S

(
~xR

~xS

)
+~dR,S

)
≥ 0


DRδS iR : λD1,1 −λD1,2 +λD1,3 −λD1,4

iS : −λD1,1 +λD1,2 +λD1,5 −λD1,6

jS : λD1,7 −λD1,8

n : λD1,4 +λD1,6 +λD1,8

1 : λD1,0

OSU 36

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

Θ
S(~xS)−Θ

R(~xR)−1 = λ0 +~λT
(

DR,S

(
~xR
~xS

)
+~dR,S

)
≥ 0


DRδS iR : −t1R = λD1,1 −λD1,2 +λD1,3 −λD1,4

iS : t1S = −λD1,1 +λD1,2 +λD1,5 −λD1,6

jS : t2S = λD1,7 −λD1,8

n : t3S − t2R = λD1,4 +λD1,6 +λD1,8

1 : t4S − t3R −1 = λD1,0

OSU 37

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

- Projection

I Solve the constraint system
I Use (purpose-optimized) Fourier-Motzkin projection algorithm

I Reduce redundancy
I Detect implicit equalities

OSU 38

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Example: Semantics Preservation (1-D)

Valid

Transformation

Coefficients

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

- Projection

OSU 39

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Example: Semantics Preservation (1-D)

Valid

Transformation

Coefficients

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

Bijection

- Identification

- Projection

I One point in the space ⇔ one set of legal schedules
w.r.t. the dependences

I These conditions for semantics preservation are not new! [Feautrier,92]

OSU 40

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Scheduling Algorithm for Multiple Dependences

Algorithm
I Compute the schedule constraints for each dependence
I Intersect all sets of constraints
I Output is a convex solution set of all legal one-dimensional schedules

I Computation is fast, but requires eliminating variables in a system of
inequalities: projection

I Can be computed as soon as the dependence polyhedra are known

OSU 41

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Selecting a Good Schedule

Build a cost function to select a (good) schedule:
I Minimize latency: bound the execution time

Bound the program execution / find bounded delay [Feautrier]
Given L = w0 +~u.~w, compute min(Θ(~x)−L) s.t. Θ is legal

I Exhibit coarse-grain parallelism
Placement constraints [Lim/Lam]
ΘR(~xR) = ΘS(~xS) for all instances s.t. Θ is legal

I Many more possible...

OSU 42

One-dimensional Schedules: Polyhedral Compilation Foundations - #3

Limitations of One-dimensional Schedules

I Not all programs have a legal one-dimensional schedule

Example

for (t = 0; t < L; ++t)
for (i = 1; i < N - 1; ++i)
for (j = 1; j < N - 1; ++j)
A[i][j] = A[i-1][j-1] + A[i+1][j] + A[i][j+1];

I Not all compositions of transformation are possible
I Interchange in inner-loops
I Fusion / distribution of inner-loops

Next week: the general case of multidimensional schedules

OSU 43

	Introduction
	Affine Scheduling
	Legal Schedule
	Scheduling
	One-dimensional Schedules
	The Farkas Lemma
	One-dimensional Schedules

